Photon interactions in MadGraph/MadEvent v4

Michel Herquet (UCLouvain - CP3) & the MG/ME development team

An indisputable reason to study photons interactions ?

AND GOD SAID, "LET THERE BE LIGHT," AND THERE WAS LIGHT. GOD SAW THAT THE LIGHT WAS GOOD AND HE SEPARATED THE LIGHT FROM THE DARKNESS.

GENESIS 1:3-4

Outline

- # MadGraph/MadEvent v4
- * Photons interactions
- * Going beyond the Standard Model

Outline

MadGraph/MadEvent v4

- * Photons interactions
- * Going beyond the Standard Model

Why tree-level?

- * Most of the current collider pheno is done at treelevel both at the theoretical and (even more) at experimental level.
- * Experiments may need fully exclusive descriptions.
- * MC at NLO are very recent (and impressive) achievements, but currently limited to a small set of key SM processes.

Why tree-level?

Always the fastest way,

very often the most accurate way,

sometimes the only way to bring ideas to life and test them in the experiments!

Why Matrix Elements ?

- * "Natural" approach for phase space regions where perturbative expansion is effective (hard, high angle, ...)
- * Take into account all possible interferences
- Simulate correctly spin correlations
- * Can be used for new analysis techniques

MadGraph

* Basic building blocks : Feynman diagrams

- Generates "empty" topologies for m>n diagrams and "fill" them using valid interaction vertices
- * Knowing particles properties, produces Feynman diagrams and suitable calls to the HELAS library

MadEvent

- Integrates the MEs from MadGraph to generate events. Uses adaptive methods like VEGAS to adjust a "grid" to numerically flatten peaks
 - **But** : time expensive, peaks must lie on integration variables
- Solutions exist : Multi-Channel Integration (Amegic, Nextcalibur, Whizard), Single Diagram Enhanced MCI (MadEvent) :

$$\sum_{i} A_{i}|^{2} = \sum_{i} \left(\frac{|A_{i}|^{2}}{\sum_{j} |A_{j}|^{2}} |\sum_{k} A_{k}|^{2} \right)$$

* One peaked function per diagram

* Parallel in nature

MadGraph/MadEvent Flow

New web generation

* The new web generation:

- * User inputs model/parameters/cuts.
- * Code runs in parallel on one of our farms (UCL, UIUC, Roma)
- Returns cross section, plots, parton-level events.
- Returns also Pythia and PGS events if needed

* Advantages:

- Reduces overhead to getting results
- * Events can easily be shared/temporarily stored

MG/ME v4 features

- # Helicity amplitudes, based on HELAS
- * Parallel phase space integration (up to 10 external particles)
- * Les Houches Accord standards for model parameters (LHA) and for the parton-level event files (LHEF)
- * CKKW and kt-MLM matching methods
- * Interfaces for Pythia, Sherpa (and Herwig)
- * Analysis platforms: ExRootAnalysis and MadAnalysis
- * "Decay chains" syntax for diagram generation

Outline

MadGraph/MadEvent v4

* Photons interactions

* Going beyond the Standard Model

Basic principle...

If MG/ME can do the job for ee, ep and pp collisions ...

... it can do it as well for collisions involving photon(s)

Matrix elements for photon physics

graph 3

- MadGraph can generate diagrams for any hard scattering process with yy, ye and yp as initial states
- * At this stage, no assumption is made on photon exact origin
- * E.g. Associated WH production at the LHC

graph

Events production for photon physics

- * Both electron and proton (no breaking) beams have been implemented as photon sources in MadEvent (status 2 and 3 for the photon beam) by members of the UCL-CP3 photon group (Thanks!).
- # Electron: Weizsaecker-Williams EPA formula (very basic)

$$f_{\gamma}(z) = \frac{\alpha}{2\pi} \log \frac{s}{m_e^2} \left[\frac{1 + (1-z)^2}{z} \right]$$

- * Proton: more model dependent since the proton is not an elementary particle (V.M.Budnev et al., Phys.Rep. 15C (1975) 181)
- * No polarized γ beams yet, but trivial to implement (already there for electrons)

Real-life applications

Obtained using MadGraph/MadEvent

PW 2008 - Séverine Ovyn

S. OVYN, SEE SEVERINE'S PRESENTATION

Outline

MadGraph/MadEvent v4

* Photons interactions

***** Going beyond the Standard Model

New models

* MG/ME deals with different physical models as directories containing:

- * particles.dat : particle list with name, PDG codes, properties, ...
- * interactions.dat : list of all possible 3- and 4vertices
- * couplings.f : analytic expressions for Feynman rule couplings
- * MG/ME comes with several predefined models: MSSM, 2HDM, HEFT, BSM top, ...

New models (2)

- * Calculators: generic name for tools generating param_card.dat files (text files with all model parameters compliant with the Les Houches Accord format). Exist for MSSM, 2HDM, ...
- * USRMOD: script allowing users to implement their own models by modifying the SM default
- * Limitation: computing Feynman rules by hand is a hard task...

FeynRules

- * New package to compute Feynman rules from Lagrangian
- * Theorist friendly Mathematica package
- * Completely generic, zeroth level output is TeX!
- Interfaces for MG/ME, but also for FeynArts, Sherpa and CalcHEP
- Standard Model and simple models implemented and tested, MSSM on its way

SM SCALAR AND EXTRA SINGLET(S)

J. J. VAN DER BIJ

Institut für Physik, Albert-Ludwigs Universität Freiburg, H. Herderstr. 3, 79104 Freiburg i.B., Deutschland

[arXiv:0707.0359]

$$L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - \frac{\lambda_{0}}{8} (\Phi^{\dagger} \Phi - f_{0}^{2})^{2}$$
$$-\frac{1}{2} (\partial_{\mu} H)^{2} - \frac{\lambda_{1}}{8} (2f_{1} H - \Phi^{\dagger} \Phi)^{2}$$

FROM CLAUDE DUHR'S PRESENTATION AT MC4BSM08

 $\Phi = \{0, h + f0\}$ LHill = -1/2 del[H, mu]^2 - 11/8 (2 f1 H - HC[Φ]. Φ)^2

 $\left(\frac{1}{2}\partial_{\mathrm{mu}}(H)^{2}-\frac{1}{8}\ln\left(2\operatorname{f1} H-\Phi^{\dagger}.\Phi\right)^{2}\right)$

 $L = -\frac{1}{2} (D_{\mu}\Phi)^{\dagger} (D_{\mu}\Phi)$ $-\frac{\lambda_0}{8}(\Phi^{\dagger}\Phi - f_0^2)^2$ $\frac{1}{2}(\partial_{\mu}H)^2$ $-\frac{\lambda_1}{8}(2f_1H-\Phi^{\dagger}\Phi)^2$

m(b1,b2)

BSM with photons

* Example: effect of an anomalous γtu,c coupling for single top production in γp interactions at the LHC

J. DE FAVEREAU, SEE JEROME'S TALK

Conclusion

- MadGraph/MadEvent v4 is a multi-purpose, userfriendly event generation package based on exact matrix element calculations. It has been designed for both signal and complex background studies.
- It can deal with initial state photons, either as real beams or coming from e and p, using EPA
- * Various BSM models are now available, and new ones have never been so easy to implement

Thanks for your attention!