The two-Higgs-doublet model implementation in MadGraph v4

Michel Herquet

In collaboration with
Simon de Visscher
and the MG/ME development team

Center for Particle Physics and Phenomenology (CP3)
UCL - Belgium
Plan

- Motivations for a generic 2HDM
- MG/ME implementation
- TwoHiggsCalc: the 2HDM calculator
 - Scalar potential
 - Yukawa sector
- Validation
- Collider phenomenology: a light A^0
Motivations for a generic 2HDM

- Simple extension of SM scalar sector, yet with rich phenomenology:
 - New sources of CP violation
 - Flavour Changing Neutral Currents
 - Higgs bosons lighter than the LEP bound
 - Dark Matter candidates (e.g. IDM, Aaron Pierce's talk)
 - Improved naturalness (Barbieri and Hall)
 - ...

- Useful toy model to study scalar sector of larger BSM models (SUSY, Little Higgs, UED, ...)

- Almost any electroweak scalar phenomenology can be simulated in practice (process by process or by adding new particles)

Maximal freedom is required!
MG/ME v4 implementation

particles.dat

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h1</td>
<td>h1</td>
<td>S</td>
<td>D</td>
<td>MH1</td>
<td>WH1</td>
<td>S</td>
</tr>
<tr>
<td>h2</td>
<td>h2</td>
<td>S</td>
<td>D</td>
<td>MH2</td>
<td>WH2</td>
<td>S</td>
</tr>
<tr>
<td>h3</td>
<td>h3</td>
<td>S</td>
<td>D</td>
<td>MH3</td>
<td>WH3</td>
<td>S</td>
</tr>
<tr>
<td>h-</td>
<td>h+</td>
<td>S</td>
<td>D</td>
<td>MHC</td>
<td>WHC</td>
<td>S</td>
</tr>
</tbody>
</table>

interactions.dat

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>w+</td>
<td>h-</td>
<td>h1</td>
<td>GWH1CH</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w-</td>
<td>h1</td>
<td>h+</td>
<td>GWH1HC</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w+</td>
<td>h-</td>
<td>h2</td>
<td>GWH2CH</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w-</td>
<td>h2</td>
<td>h+</td>
<td>GWH2HC</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w+</td>
<td>h-</td>
<td>h3</td>
<td>GWH3CH</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w-</td>
<td>h3</td>
<td>h+</td>
<td>GWH3HC</td>
<td>QED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

couplings.f

gwhch1=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA1*1,TN1*1)
gwh1hc=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA1*1,-TN1*1)
gwhch2=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA2*1,+TN2*1)
gwh2hc=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA2*1,-TN2*1)
gwhch3=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA3*1,+TN3*1)
gwh3hc=e-(2*sw)*dcmplx(0,1)*dcmplx(+TA3*1,-TN3*1)

param_card.dat

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
|DECAY| 25 | 4.77286447e-03 | # H1 decays
| | 1.7765195e-04 | 2 | 13 | -13 | # BR(H1 -> mu mu~)
| | 4.986710e-02 | 15 | -15 | # BR(H1 -> ta ta~)
| | 6.82757014e-02 | 2 | 4 | -4 | # BR(H1 -> c c~)

NEEDS CALCULATOR!
BRIDGE can do it!
TwoHiggsCalc

- Model “Calculator” (in the MG/MEv4 terminology) for the 2HDM written in C
- Input and Output in a format similar to the SUSY LHA one (MG/ME standard)
- Full control on 2HDM potential parameter space and Yukawa couplings
- Output spectrum, mixing, total widths and BRs
- Available online with a web interface on all MadGraph clusters
TwoHiggsCalc: the potential

- Only assumptions:
 - charge conservation

- Check for
 - minimization
 - true minimum

- Parameters can be entered in any basis
 - THC works in the Higgs basis
 - Gen2HB takes care of the basis change

\[V = \mu_1 H_1 \dagger H_1 + \mu_2 H_2 \dagger H_2 - \left(\mu_3 H_1 \dagger H_2 + \text{h.c.} \right) \]
\[+ \lambda_1 \left(H_1 \dagger H_1 \right)^2 + \lambda_2 \left(H_2 \dagger H_2 \right)^2 \]
\[+ \lambda_3 \left(H_1 \dagger H_1 \right) \left(H_2 \dagger H_2 \right) + \lambda_4 \left(H_1 \dagger H_2 \right) \left(H_2 \dagger H_1 \right) \]
\[+ \left[\left(\lambda_5 H_1 \dagger H_2 + \lambda_6 H_1 \dagger H_1 + \lambda_7 H_2 \dagger H_2 \right) \left(H_1 \dagger H_2 \right) + \text{h.c.} \right] \]
TwoHiggsCalc: Yukawa sector

\[\mathcal{L}_Y = \frac{Q_L \sqrt{2}}{v} \left[(M_d H_1 + Y_d H_2) d_R + (M_u \tilde{H}_1 + Y_u \tilde{H}_2) u_R \right] \]
\[+ \frac{E_L \sqrt{2}}{v} \left[(M_e H_1 + Y_e H_2) e_R \right] \]

Yukawa couplings to the second Higgs doublet of the down type quarks (norm and phase)

<table>
<thead>
<tr>
<th>Y1D/G1D</th>
<th>0</th>
<th>0</th>
<th>Y1S/G1S</th>
<th>0</th>
<th>0</th>
<th>Y1B/G1B</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2D/G2D</td>
<td>0</td>
<td>0</td>
<td>Y2S/G2S</td>
<td>0</td>
<td>0</td>
<td>Y2B/G2B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y3D/G3D</td>
<td>0</td>
<td>0</td>
<td>Y3S/G3S</td>
<td>0</td>
<td>0</td>
<td>Y3B/G3B</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Only assumptions:
 - 1st generation massless
 - CKM reduced to Cabibbo angle
- Running of quark masses not (yet) implemented but “Yukawa” masses distinguished from “kinematic” masses to give maximal flexibility
Validation

• Validation of the simplified version of the model (with diagonal Yukawa matrices) almost done:
 – Couplings values manually checked
 – Comparison in SM and MSSM (MadGraphv4) limits of the model for all couplings and tens of cross sections (thanks to S. Ovyn)
 – Comparison with CompHep/CalcHep cross sections for standard 2HDM processes

• Validation of the full implementation is in progress
Collider phenomenology: a light pseudoscalar

- In general one has to assume $m_{A^0} \simeq m_{H^\pm}$ to avoid large contributions to T (usual custodial symmetry).
- In MSSM, $m_{H^\pm}^2 = m_{A^0}^2 + m_W^2$ so OK in the decoupling limit.
- With a twisted custodial symmetry, one can have a natural small ΔT if $m_{H^0} = m_{H^\pm}$ (see hep-ph/0703051, J.-M. Gérard and MH) allowing a light pseudoscalar and its unusual associated phenomenology.
Collider phenomenology: a light pseudoscalar

- Unusual dominant decay: \(H^+ \rightarrow W^+ A^0 \rightarrow W^+ b\bar{b} \)

 The ONLY chance to see the charged Higgs

- Top decays and single top associated production (2W4b and 2W3b final states)

- Preliminary results (MG/ME 4.1 parton level)
 - Acceptance of signal varying between 3 and 30%
 - 2W4b channel could be interesting both at Tevatron and LHC
 - 2W3b inclusive analysis possible due to low ttb background
Conclusion

- The generic 2HDM is available (among others) in MG/ME v4
- The associated calculator, TwoHiggsCalc, is also available via a user friendly web interface. Any basis convention can be used. Computes widths and BRs (now can use BRIDGE)
- Can be used for various scalar sector studies
- Extensively validated at various levels and in its SM and MSSM limits
- Full phenomenological study of a theoretically motivated light pseudoscalar scenario on the way