

Top & New physics with MadGraph

Rikkert Frederix

Center for Particle Physics and Phenomenology (CP3) Université catholique de Louvain - Belgium

In collaboration with:

J. Alwall, P. Demin, S. de Visscher, M. Herquet F. Maltoni, T. Stelzer

Grenoble, Oct. 2007

Contents

- Introduction to MadGraph/MadEvent
- Example: BSM physics in top pair invariant mass
 - theoretical uncertainties
 - top mass
 - BSM physics
- Conclusions

Introduction to MadGraph/MadEvent

- MG/MEv4 is a user-driven, matrix element based, event generator
- Both for SM as well as BSM
- Web server interface from which the simulation itself can be done on-line or off-line
- With MG/ME and its tools/interfaces, the full simulation chain from hard scale physics to detector simulation is available within one framework

The Big Picture

Detector Simulation

Flow Chart

UCL

Université catholique de Louvain ALL REAL PROPERTY AND ADDRESS OF ADDRES ADDRESS OF ADDR

MG/ME Features

- Helicity amplitudes, based on HELAS
- Efficient (i.e. parallel) phase space integration ('multichannel' based on Feynman diagrams)
- It complies with the Les Houches Accord standards, w.r.t. the model parameters and event files
- Matching between Matrix Elements & Parton Shower
- Structure is model independent
- Easy to implement and validate new models
- Open development community

Matching

J.Alwall

Matrix Element

I. Parton-level description
2. Fixed order calculation
3. Exact quantum interference
4. Valid for hard and well separated
partons

5. Needed for multi-jet description

Parton Shower

 Hadron-level description
 Resums large logs
 quantum interference through AA
 Valid when partons are soft and/ or collinear
 Needed for realistic studies

Matrix element and Parton Shower approaches are complementary. We have to combine them without double-counting.

MadGraph uses MLM matching with k_{\perp} jet algorithm

Matching scheme is universal. Already tested and validated for:

 $Z, W^{\pm}, ZZ, W^{+}W^{-}, \tilde{q}\tilde{g}, t'\bar{t'}, t\bar{t}h, \ldots$

Models

- SM
 - HiggsEFT (Effective couplings between Higgs and gluons/ photons)
- MSSM (CP & R-parity conserving)
- Generic 2HDM (Completely general 2 Higgs doublet model, incl. FCNC and CP violation)
- User Model -- General framework to include user-defined models

BSM physics

- For new physics associated to top, two approaches are possible:
 - top-down (e.g., model parameter scanning)
 - **bottom-up** (e.g., inverse problem)

• Let's focus on the bottom-up approach

Bottom-up approach

- Define/choose a variable
- Theory uncertainties
- Effects from BSM (in 'model independent way') on this variable
- Use more info, like spin correlations, to be able to discriminate between BSM physics

Top pair invariant mass

NLO: Mangano, Nason & Ridolfi 1992 Incl. spin corr.: Bernreuther, Brandenburg, Si & Uwer 2001 NLL: Bonciani, Catani, Mangano & Nason 1998

LO vs NLO

This distribution is known at NLO. So we should use a MC at NLO for event generation. What are the differences between LO and NLO?

Cheoretical uncertainties

m_t=165 GeV

 $m_t = 170 \text{ GeV}$

m_t=175 GeV

Shape is under good control, normalization uncertainty is large. Study moments to compare distributions!

C Top mass from zeroth moment (cross section)

LHC

Tevatron

BSM resonances in top pair production at the LHC

Spin-l resonance

Spin-0 resonance

Gaemers & Hoogeveen 1984 Dicus, Stange & Willenbrock 1994

Spin-0 resonance

Spin-2 resonance

How to extract the spin information about the resonance?

Measure the Collins-Soper angle:

Collins-Soper angle in top pair production

Conclusions

- MadGraph/MadEvent is an event generator that is:
 - Multi purpose, new models are easy to implement
 - Complete, interfaces from model to detector simulation
 - User friendly, due to the web interface
 - Fast, thanks to the cluster oriented structure
 - Open, everybody can contribute!

See also the three operational cluster at <u>http://madgraph.phys.ucl.ac.be</u> <u>http://madgraph.hep.uiuc.edu</u> <u>http://madgraph.roma2.infn.it</u>

Back-up slides

How to extract the spin information about the resonance? l^+

Decay the top's and look at angular correlations between the leptons!

Gives also info about parity for spin-1 resonances

