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What is
MadGraph/MadEvent (MG/ME)?

• MG/MEv4 is a user-driven, matrix element based, tree-level 
event generator

• Multi-process: Signal and background generation simultaneously

• Web server interface from which the simulation itself can be 
done on-line or off-line

• With MG/ME and its tools/interfaces, the full simulation chain 
from hard scale physics to detector simulation is available 
within one framework
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http://madgraph.roma2.infn.it/

http://madgraph.hep.uiuc.edu/

http://madgraph.phys.ucl.ac.be/

MadGraph on the Web

Three medium size clusters public access (+1 private cluster). ~1500 registered users.  
Thanks to: D. Lesny, L. Nelson (UIUC), F. Chalier, T. Keutgen (UCL),  R. Ammendola, N. Tantalo (RM2)
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Features
• Complete web simulation: MadEvent → Pythia → PGS, with personal 

web databases

• Multi-processes in single code & generation

• Standalone version for theorists, with MadDipole for NLO comp.

• New complete models: SM, HEFT, MSSM, 2HDM, TopBSM

• Easy new model implementation: USRMOD & interface to FeynRules

• Les Houches Accord (LHEF) for parton-level event files &
Les Houches Accord 2 for model parameters

• Merging w/ Parton Showers (kT a la MLM) w/ Pythia

• Detailed process specification

• MadWeight: automatic reweighting of experimental events

• Analysis platforms: ExRootAnalysis, MadAnalysis and MatchChecker
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Process specification
• Specify the process in the proc_card.dat (or use the box online)

• Use “/” to exclude particles and “>” to specify intermediate states (s- or t-
channel)

• e.g. “pp > tt~ > bb~W+W- / Z a”

• Specify the full decay chain by using “( ... > ... )”. This improves generation 
time by quite a lot! Works up to 8 final state particles

• e.g. “pp > (t > b (W+ > e+ ve)) (t~ > b~ (W- > mu- vm~))”

• Use “$” to exclude s-channel resonances (Only gauge invariant in NWA!)

• e.g. “pp > bb~W+W- $ t~” for W associated single top + b, without 
ttbar contributions

• Use “[ ... ]” for quarkonium production

• e.g. “gg > g cc~[3S11]” for gg>g+charmonium with S=1, L=0, J=1, c=1
(J/Psi production via a color-singlet transition).
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Matching ME and PS

• KT MLM scheme implemented by J. Alwall.

• Interfaced to (fortran) Pythia, with Q2 and pt2 ordered 
showers.

• Extensively validated in V+jets (data and comparison 
[arXiv:0706.2569]) and now also in VV+jets, tt+jets, h+jets, 
inclusive jets, ...

• Merging in BSM Physics samples available
(e.g. gluino/squark)

• Interfaces with Pythia8 and Herwig++ are through 
standard LHEF and not yet available with merging.
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PS alone vs Matched Sample
PS alone vs matched samples

    TOP2008  Elba, Italy ! ! ! ! ! ! !        !! ! ! !                                              ! ! Fabio Maltoni!  
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A MC Shower like Pythia is by construction a highly tunable tool. Consider for 
instance the pt distribution of the second jet with different settings:

• A parton shower like Pythia is by construction a highly tuneable tool. 
Consider for instance the pt distribution of the 2nd extra jet in ttbar events 
with different settings:
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PS alone vs matched samples

    TOP2008  Elba, Italy ! ! ! ! ! ! !        !! ! ! !                                              ! ! Fabio Maltoni!  
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[MadGraph]

A MC Shower like Pythia is by construction a highly tunable tool. Consider for 
instance the pt distribution of the second jet with different settings:

In a matched sample these differences are irrelevant since the behaviour at high pt is
described by the matrix element ⇒ more predictive power (= less flexibility...)

Uncertaintes in the matching itself not included.

PS alone vs Matched Sample
• A parton shower like Pythia is by construction a highly tuneable tool. 

Consider for instance the pt distribution of the 2nd extra jet in ttbar events 
with different settings:

In matched samples these differences are irrelevant since the high pt 
behavior is described by the matrix element.
Uncertainties in the matching itself are not shown.
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• The most inclusive observable

• All parton multiplicities contribute

• Excellent agreement with TeV data (validation)

It’s working!
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TopBSM:
New Physics in ttbar production

• In the topBSM model general resonances are added to the 
SM that couple to top quarks.

These resonances can describe a large variety of models:
Two-Higgs doublet models to extra dimensions and many 
more, by tuning the couplings and the masses of the 
resonances.

• In this way general resonances in ttbar events can be 
analyzed
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 [RF, F. Maltoni]
arXiv:0712.2355
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TopBSM:
ttbar invariant mass

Spin-1 Spin-2

“Only” for discovery of the resonance. To determine 
properties more involved variables are needed

 [RF, F. Maltoni]
arXiv:0712.2355
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TopBSM:
Spin Determination

By measuring the Collins-Soper angle information 
about the spin structure of the resonance can be 
obtained
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 [RF, F. Maltoni]
arXiv:0712.2355
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TopBSM:
Spin correlations

• To access the properties (CP 
or coupling structure) of 
resonances full matrix 
elements that describe the 
final state particles are needed.

• For example: to determine the 
coupling structure of a Spin-1 
resonance in ttbar production 
the full 2→6 need to be 
generated.
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 [RF, F. Maltoni]
arXiv:0712.2355
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MadWeight

• Tool to find matrix element weight of experimental events for 
(almost) any process in any model: Matrix Element Method.

• Use all information in the events to determine a parameter

• Transfer function W(x,y) accounts for the evolution from parton 
level event y to the reconstructed event in the detector x

• Many more “peaks” in the integration then matrix element 
alone. Need for efficient integration routines

[P. Artoisenet, V. Lemaître, F. Maltoni, O. Mattelaer]
next section, we discuss how to determine this optimal parametrization for a large class of

processes.

3.2 Phase space parametrization

As we have seen in section 2, the weight attached to an experimental event is the convolution

of the squared matrix element and the transfer function:

P (x,α) =
1

σα

∫
dφ(y)|Mα|2(y)dq1dq2f1(q1)f2(q2)W (x,y) (3.10)

Choosing the adaptive method described in Section 3.1 to perform the integration, we

should try to find a phase-space parametrization y such that the sharp behaviour of the

integrand is factorized (in the sense of the previous section, Eq. (3.9) in this parametriza-

tion.

The abrupt part of the integrand in (3.10) is actually a product of one-dimensional

functions. In the squared matrix element, the strong variations are caused by the propa-

gators, such that the order of magnitude of the squared amplitude is is controlled by the

invariant masses of the exchanged particles. The shape of the transfer function depends

on the architecture of the detector. At first approximation it is given by a product of

Gaussian-like distributions, each of them being centered around one reconstructed quan-

tity, either the modulus |pi|, or the polar angle θi, or the azimuthal angle φi, of a visible

particle i. Usually, the direction of a visible particle is assumed to be very well measured.

As a result, the associated transfer function is a very narrow Gaussian-like distribution, so

that it is necessary to keep the visible angles θi’s and φi’s in the phase space parametriza-

tion in order to perform the integration with the adaptive method described in section 3.1.

It is then natural to first consider the following phase space parametrization for n external

particles

dφ =

(
n∏

i=3

|pi|2d|pi|sinθidθidφi

2Ei(2π)3

)
dq1dq2(2π)4δ4(p1 + p2 −

n∑
j=3

pj) (3.11)

In this parametrization, the peaks in the transfer function are factorized, in the sense dis-

cussed in section 3.1. At this stage, we still have to impose the constrains associated to the

delta functions in Eq. (3.11). To this purpose we identify degrees of freedom that will be

fixed (point by point in the phase space) to ensure energy-momentum conservation. This

set of degrees of freedom is called the Constrained Sector (CS) in the following. Once

the CS has been defined, a phase-space point is produced by first generating randomly all

degrees of freedom except those in the CS, without any constrain from energy-momentum

conservation, and then fixing the degrees of freedom in the CS to restore energy momentum

conservation.

Specific constrained sectors with no missing particle

Let us first consider the topologies with no missing particle. In these cases it seems natural

to include the Bjorken fractions in the CS since these variables are usually not constrained

– 5 –
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MadWeight: PS integration

• Phase space integration using automatic (analytic) changes of 
variables to align with peaks

Decay chain example

each local change of variables is performed successively

Block A

Block DBlock D Block D

ECS B

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗−2

m∗−3

m∗−1

m∗−4

m∗−5

m∗−6

m∗−7

final parametrization :

dφ = d|p2|d|p3|d|p4|d|p6|
8∏

i=2

dθidφi

7∏
j=1

dm∗2
−j × J

MadWeight – p. 14/17

This leads to an 
efficient integration 
over the matrix 
elements and the 
transfer functions

[P. Artoisenet, V. Lemaître, F. Maltoni, O. Mattelaer]
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MadWeight: Example

• Measurement of the top-quark mass in the semi-leptonic 
channel

• 20 Monte-Carlo events (MG/ME/Pyhtia/PGS)

• Input: mt = 160 GeV

• Output:
mt = 158.9 ± 2.3 GeV

Examples of Application (I)

measurement of the top-quark mass in semi-leptonic channel

20 Monte Carlo events (MadGraph/Pythia/PGS)

L(mt) = e−N
R

P (x,mt)dx
∏N

i=1 P (xi;mt)

input : mtop = 160 GeV, output : mtop = 158.9 ± 2.3 GeV
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MadWeight – p. 8/19

[P. Artoisenet, V. Lemaître, F. Maltoni, O. Mattelaer]
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MadDipole

• First step to automatic NLO with MadGraph/MadEvent
• Various groups are focussing on the automatization of the 

loop diagrams, e.g.:
• CutTools [G. Ossola, C.G. Papadopoulos, R. Pittau]

• BlackHat [C. Berger et al.]

• Rocket [W. Giele, G. Zanderighi]

• GOLEM [T. Binoth et al.]

• Automatization of the Real contributions also needed

σ
NLO =

∫
m+1

[
d
(4)

σ
R
− d

(4)
σ

A

]
+

∫
m

[∫
loop

d
(d)

σ
V +

∫
1
d
(d)

σ
A

]
ε=0

 [RF, T. Gehrmann, N. Greiner;
JHEP 0809:122, 2008]
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MadDipole

• Goal:  Automatic Dipole Subtraction for any NLO 
calculation

• Catani-Seymour subtraction scheme

• Reals & subtraction terms for the reals and virtuals

• Including “alpha” dependence to restrict dipoles to 
divergent regions of the phase-space

• Both for SM and BSM

• Compatible with MG StandAlone

σ
NLO =

∫
m+1

[
d
(4)

σ
R
− d

(4)
σ

A

]
+

∫
m

[∫
loop

d
(d)

σ
V +

∫
1
d
(d)

σ
A

]
ε=0

 [RF, T. Gehrmann, N. Greiner;
JHEP 0809:122, 2008]
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MadDipole

• Subtraction is working
• alpha dependence clearly 

visible
• Extensive testing against 

MCFM
• Next steps:

• do the subtraction terms 
for the virtuals

• and the phase space 
integration

σ
NLO =

∫
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d
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σ
R
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+
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m
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ε=0

 [RF, T. Gehrmann, N. Greiner;
JHEP 0809:122, 2008]
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Summary

• MadGraph/MadEvent is a versatile Monte Carlo tool

• Matching between ME and PS available

• Many BSM physics models available. 
“Model-independent” topBSM available for top studies

• MadWeight for Matrix Element Method

• MadDipole as a first step to NLO

See also the three operational cluster at 
http://madgraph.phys.ucl.ac.be
http://madgraph.hep.uiuc.edu
http://madgraph.roma2.infn.it


