MADGRAPH/MADEVENT

RIKKERT FREDERIX
UNIVERSITY OF LOUVAIN
CERN-TH

MONTE CARLO SCHOOL
"PHYSICS AT THE TERASCALE"
20-24 APRIL 2009, DESY HAMBURG

A MAD TEAM...

Johan Alwall (SLAC)

- ** Pierre Artoisenet (CP3)

Olivier Mattelaer (CP3)

* Fabio Maltoni (CP3)

** Pavel Demin (CP3)

* Tim Stelzer (UIUC)

- Simon de Visscher (CP3)
- ** Rikkert Frederix (CERN)
- ** Michel Herquet (NIKHEF)
- More expected very soon!

WHAT WE WILL COVER

- ** What is MadGraph/MadEvent (MG/ME)
- * How to run the code
- Mark Implementing New Models
- Merging for BSM

WHAT WE WON'T COVER

- Internal workings of the code
- * Detailed off-line running
- * Decay chains & advanced process syntax
- MadWeight, MadDipole, MadOnium, ...

FIRST CONTACT

(VERY MUCH) SIMPLIFIED LHC EVENT

- **MG/ME** describes the Hard interaction at LO
- Interfaces to Parton
 Showering and
 Hadronization codes like
 Pythia or Herwig
- Interface to fast detector simulation with PGS

THE "BIG" PICTURE OF MG/ME

HOW TO RUN THE CODE?

HOW TO RUN THE CODE?

Let's have a look on the web at any of the three on-line operational clusters

* http://madgraph.phys.ucl.ac.be/ Center for Partic

** http://madgraph.hep.uiuc.edu/

** http://madgraph.roma2.infn.it/

SLIGHTLY MORE ADVANCED...

NEW PHYSICS

- ** Besides the available Models:
 - ** SM (incl. Higgs eff. coupl. to gluons)
 - **MSSM** (CP & R-parity conserving)

- ** TopBSM (spin-0,1,2 resonances in top pair production)
- ** There are two ways of implementing New Physics
 - **FeynRules**
 - **# Usermod**

BSM WITH FEYNRULES

- ** FeynRules is a Mathematica package to compute automatically Feynman Rules from any QFT Lagrangian.
- W User friendly MG/ME interface already tested extensively
- More models available soon (UED, 3-site, Littlest Higgs, ...)
- Not only interface to MG/ME, but also CalcHEP/CompHEP, FeynArts, Sherpa, ...
 - ** Allows to use best available Monte Carlo for the job without redoing the model implementation
- ** Best option for the implementation of realistic models (consistency, validation, ...)

More info at http://feynrules.phys.ucl.ac.be

C. Duhr & N. Christensen

FEYNRULES INTERFACE

USRMOD2

- ** UsrMod is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)
- * Full support of all the models produced with FeynRules
- ** Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available

USRMOD2

- ** UsrMod is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)
- * Full support of all the models produced with FeynRules
- ** Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available

g	g	V	C	ZERO ZERO	0	_	21
z	Z	V	W	ZMASS ZWIDTH	S	Z	23
W-	W+	V	W	WMASS WWIDTH	S	W	-24
h+	h-	S	D	MHC WHC	S	hc	37
h	h	S	D	HMASS HWIDTH	S	h	25

```
w- w+ h h GWWHH GWWHH QED QED
z z h h GZZHH GZZHH QED QED
b t h- HMCOUP QED
t b h+ HPCOUP QED
```

```
gzd(1) = -ez*(-Half + sin2w/Three)

gzd(2) = -ey/Three

HMCOUP(1) = -(a+b)

HMCOUP(2) = -(a-b)

HPCOUP(1) = -(a+b)

HPCOUP(2) = -(a-b)
```


USRMOD2

- ** UsrMod is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)
- Full support of all the models produced with FeynRules
- ** Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available

MATCHING/MERGING

Matrix elements (Hard interaction) and Parton Showers are complementary

** However, we need to avoid possible double counting

MATCHING/MERGING

Matrix elements (Hard interaction) and Parton Showers are complementary

** However, we need to avoid possible double counting

Solution: One parton ⇔ one jet

Define cut-off to separate ME and PS and use a merging prescription for the intermediate region (e.g. k_TMLM)

MATCHING/MERGING

Define cut-off to separate ME and PS and use a merging prescription for the intermediate region (e.g. k_TMLM)

** Additional double counting due to resonances e.g. squark pair production with additional jets

**Additional double counting due to resonances e.g. squark pair production with additional jets

If gluinos on resonance, double counting with

**Additional double counting due to resonances e.g. squark pair production with additional jets

If gluinos on resonance, double counting with

**Additional double counting due to resonances e.g. squark pair production with additional jets

If gluinos on resonance, double counting with

**Additional double counting due to resonances e.g. squark pair production with additional jets

If gluinos on resonance, double counting with

**Additional double counting due to resonances e.g. squark pair production with additional jets

If gluinos on resonance, double counting with

Alwall, de Visscher, Maltoni JHEP 0902:017,2009 [arXiv:0810.5350]

CONCLUSIONS

- MadGraph/MadEvent belongs to a complete chain from a BSM Lagrangian to collider data
- Efficient simulation from the web, or on your own machine(s)
- Wiki-page with more information, FAQ, talks, lectures, links, ...

CONCLUSIONS

- Efficient simulation from the web, or on your
 own machine(s)
- Wiki-page with more information, FAQ, talks, lectures, links, ...

http://madgraph.phys.ucl.ac.be/http://madgraph.hep.uiuc.edu/http://madgraph.roma2.infn.it/