MadGraph/MadEvent

Rikker Frederix
University of Louvain
CERN-TH

Monte Carlo School
"Physics at the Terascale"
20-24 April 2009, DESY Hamburg
A mad team...

- Johan Alwall (SLAC)
- Pierre Artoisenet (CP3)
- Pavel Demin (CP3)
- Simon de Visscher (CP3)
- Rikkert Frederix (CERN)
- Michel Herquet (NIKHEF)
- Fabio Maltoni (CP3)
- Olivier Mattelaer (CP3)
- Tim Stelzer (UIUC)

More expected very soon!
What we will cover

- What is MadGraph/MadEvent (MG/ME)
- How to run the code
- Implementing New Models
- Merging for BSM
What we won’t cover

- Internal workings of the code
- Detailed off-line running
- Decay chains & advanced process syntax
- MadWeight, MadDipole, MadOnium, ...
First Contact
MG/ME describes the Hard interaction at LO

Interfaces to Parton Showering and Hadronization codes like Pythia or Herwig

Interface to fast detector simulation with PGS
The "big" picture of MG/ME

- **Model**
 - particles.dat
 - interactions.dat
 - couplings.f

- **Calculator**
 - proc_card
 - param_card
 - run_card
 - pythia_card
 - pgs_card

- **MG**
 - Feyn. diags.
 - HELAS amplitudes

- **ME**
 - Parton-level events

- **Pythia**
 - Hadron-level events

- **PGS**
 - Reconstructed Objects

- **Reconstructed Objects**
 - Parton-level rootfile/plots
 - Hadron-level rootfile/plots
 - Reconstructed Objects rootfile/plots

- **ExRootAnalysis**

- **MadAnalysis**
How to run the code?
How to run the code?

Let’s have a look on the web at any of the three on-line operational clusters

- http://madgraph.phys.ucl.ac.be/
- http://madgraph.hep.uiuc.edu/
- http://madgraph.roma2.infn.it/
Slightly more advanced...
New Physics

Besides the available Models:

- **SM** (incl. Higgs eff. coupl. to gluons)
- **MSSM** (CP & R-parity conserving)
- **2HDM** (Completely general, incl. FCNC’s and CP violation)
- **TopBSM** (spin-0,1,2 resonances in top pair production)

There are two ways of implementing New Physics

- **FeynRules**
- **Usermod**
BSM with FeynRules

- **FeynRules** is a Mathematica package to compute automatically Feynman Rules from any QFT Lagrangian.
- User friendly **MG/ME interface** already tested extensively
- More models available soon (UED, 3-site, Littlest Higgs, ...)
- Not only interface to MG/ME, but also **CalcHEP/CompHEP, FeynArts, Sherpa, ...**
 - Allows to use best available Monte Carlo for the job without redoing the model implementation
- **Best option** for the implementation of realistic models (consistency, validation, ...)

More info at
http://feynrules.phys.ucl.ac.be

C. Duhr & N. Christensen
FeynRules interface

Lagrangian

FeynRules

MG interface

Model parameters

particles.dat
interactions.dat
couplings.f

Model

Calculator

proc_card
param_card
run_card
pythia_card
pgs_card

MG

ME

Pythia

PGS

Feyn. diags.
HELAS amplitudes

Parton-level events

Hadron-level events

Reconstructed Objects

ExRootAnalysis

MadAnalysis

Parton-level rootfile/plots

Hadron-level rootfile/plots

Reconstructed Objects rootfile/plots

More info at http://feynrules.phys.ucl.ac.be
UsrMod2

- UsrMod is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)
- Full support of all the models produced with FeynRules
- Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available
UsrMod2

- **UsrMod** is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)

- Full support of all the models produced with FeynRules

- Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available
UsrMod2

- **UsrMod** is a set of Python scripts to allow users to implement easily a few modifications to an existing MG/ME model (add particles, interactions, ...)

- Full support of all the models produced with FeynRules

- Best method for minor changes to existing models, i.e., for the study of a given signature, or when Mathematica is not available
Matrix elements (Hard interaction) and Parton Showers are complementary.

However, we need to avoid possible double counting.
Matrix elements (Hard interaction) and Parton Showers are complementary.

However, we need to avoid possible double counting.

Solution:
One parton \Leftrightarrow one jet

Define cut-off to separate ME and PS and use a merging prescription for the intermediate region (e.g. k_TMLM).
Matching/Merging

- Matching/Merging
- Parton Showers
- Hard interaction

Matrix elements and Parton Showers are complementary, but we need to avoid possible double counting.

Solution:
- One parton → one jet
- Define cut-off to separate ME and PS and use a merging prescription for the intermediate region (e.g. k_T MLM)

It's working!
- Different multiplicities add up to a single observation.

Diagrams by MadGraph:
1. $u \bar{d} \rightarrow e^+ v e$
2. $u \bar{d} \rightarrow e^+ v e g$

Different multiplicities add up to a single observation.
Merging in BSM
Merging in BSM

- Additional double counting due to **resonances**
 - e.g. squark pair production with additional jets
Merging in BSM

- Additional double counting due to *resonances*
 e.g. squark pair production with additional jets

- If gluinos on resonance, double counting with

Diagrams by MadGraph g g -> dr dr~ d d~

```latex
\begin{align*}
\text{graph 9} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 10} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 11} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 12} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 13} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 14} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 15} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 \\
\text{graph 16} & \quad 1 \quad \quad 2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \quad \quad 6 
\end{align*}
```
Merging in BSM

- Additional double counting due to resonances
 e.g. squark pair production with additional jets

- If gluinos on resonance, double counting with
Merging in BSM

- Additional double counting due to resonances
 e.g. squark pair production with additional jets

- If gluinos on resonance, double counting with
MERGING IN BSM

- Additional double counting due to resonances
 e.g. squark pair production with additional jets

- If gluinos on resonance, double counting with
MERGING IN BSM

- Additional double counting due to **resonances**
 e.g. squark pair production with additional jets

- If gluinos on resonance, double counting with

Alwall, de Visscher, Maltoni
Conclusions

- MadGraph/MadEvent belongs to a complete chain from a BSM Lagrangian to collider data
- Efficient simulation from the web, or on your own machine(s)
- Wiki-page with more information, FAQ, talks, lectures, links, ...
Conclusions

- MadGraph/MadEvent belongs to a complete chain from a BSM Lagrangian to collider data.
- Efficient simulation from the web, or on your own machine(s).
- Wiki-page with more information, FAQ, talks, lectures, links, ...

http://madgraph.phys.ucl.ac.be/
http://madgraph.hep.uiuc.edu/
http://madgraph.roma2.infn.it/