FKS SUBTRACTION IN MADGRAPH/MADEVENT

Rikkert Frederix CP3 (UCLouvain) & CERN-TH

in collaboration with Stefano Frixione, Fabio Maltoni & Tim Stelzer arXiv:0908.4272 [hep-ph]

CERN PhenClub, September 24, 2009

δ_O	$a_{\mathcal{S}} = b_{\mathcal{S}}$	$\xi_{cut} = \xi_{\max}$	$\xi_{cut} = 0.3$	$\xi_{cut} = 0.1$	$\xi_{cut} = 0.01$		
		useenergy=.true.					
	1.0	3.5988 ± 0.0146	3.6173 ± 0.0122	3.6190 ± 0.0140	3.6126 ± 0.0141		
2	1.5	3.6085 ± 0.0126	3.5942 ± 0.0143	3.5956 ± 0.0115	3.5989 ± 0.0133		
	2.0	3.6127 ± 0.0121	3.6122 ± 0.0158	3.6020 ± 0.0147	3.5956 ± 0.0144		
	1.0	3.6196 ± 0.0142	3.6012 ± 0.0139	3.5888 ± 0.0142	3.5833 ± 0.0130		
0.6	1.5	3.5941 ± 0.0123	3.6012 ± 0.0139	3.6009 ± 0.0138	3.6047 ± 0.0114		
	2.0	3.6066 ± 0.0120	3.6111 ± 0.0117	3.6053 ± 0.0110	3.5950 ± 0.0150		
	1.0	3.6350 ± 0.0151	3.5927 ± 0.0145	3.5813 ± 0.0128	3.5811 ± 0.0146		
0.2	1.5	3.6020 ± 0.0119	3.6086 ± 0.0133	3.6104 ± 0.0127	3.5993 ± 0.0119		
	2.0	3.5815 ± 0.0140	3.5966 ± 0.0136	3.5938 ± 0.0121	3.6079 ± 0.0125		
	1.0	3.6053 ± 0.0202	3.5998 ± 0.0181	3.5988 ± 0.0122	3.6088 ± 0.0165		
0.06	1.5	3.6144 ± 0.0161	3.5986 ± 0.0140	3.5847 ± 0.0119	3.5884 ± 0.0126		
	2.0	3.5990 ± 0.0166	3.6016 ± 0.0158	3.6014 ± 0.0147	3.6191 ± 0.0133		
			useenergy	y=.false.			
	1.0	3.6078 ± 0.0164	3.6149 ± 0.0162	3.6145 ± 0.0158	3.6085 ± 0.0140		
2	1.5	3.5695 ± 0.0156	3.5841 ± 0.0180	3.5975 ± 0.0165	3.5986 ± 0.0142		
	2.0	3.5921 ± 0.0125	3.6260 ± 0.0211	3.6034 ± 0.0134	3.6007 ± 0.0149		
	1.0	3.5891 ± 0.0199	3.5786 ± 0.0164	3.6084 ± 0.0232	3.5956 ± 0.0151		
0.6	1.5	3.6083 ± 0.0152	3.5944 ± 0.0136	3.6040 ± 0.0123	3.6018 ± 0.0147		
	2.0	3.5838 ± 0.0141	3.5633 ± 0.0154	3.5964 ± 0.0129	3.5920 ± 0.0158		
	1.0	3.5976 ± 0.0171	3.5790 ± 0.0166	3.5702 ± 0.0155	3.6155 ± 0.0132		
0.2	1.5	3.5804 ± 0.0163	3.5925 ± 0.0136	3.6012 ± 0.0137	3.6091 ± 0.0138		
	2.0	3.5978 ± 0.0148	3.5749 ± 0.0144	3.5825 ± 0.0128	3.5902 ± 0.0145		
	1.0	3.6122 ± 0.0170	3.5942 ± 0.0158	3.5743 ± 0.0146	3.5962 ± 0.0167		
0.06	1.5	3.6064 ± 0.0198	3.5977 ± 0.0136	3.6047 ± 0.0115	3.5886 ± 0.0123		
	2.0	3.5971 ± 0.0169	3.6018 ± 0.0136	3.5991 ± 0.0148	3.6040 ± 0.0148		

- Our 'benchmark process': e+e- -> Z -> uubar ggg
- Result is independent of internal (non-physical) parameters

** Also the integration uncertainty is independent of the choice for the internal parameters

run-time: 1-4 minutes for each integration channel

Table 1: Cross section (in pb) and Monte Carlo integration errors for the (n + 1)-body process $e^+e^- \rightarrow Z \rightarrow u\bar{u}ggg$. See the text for details. CERN PhenClub, September 2009

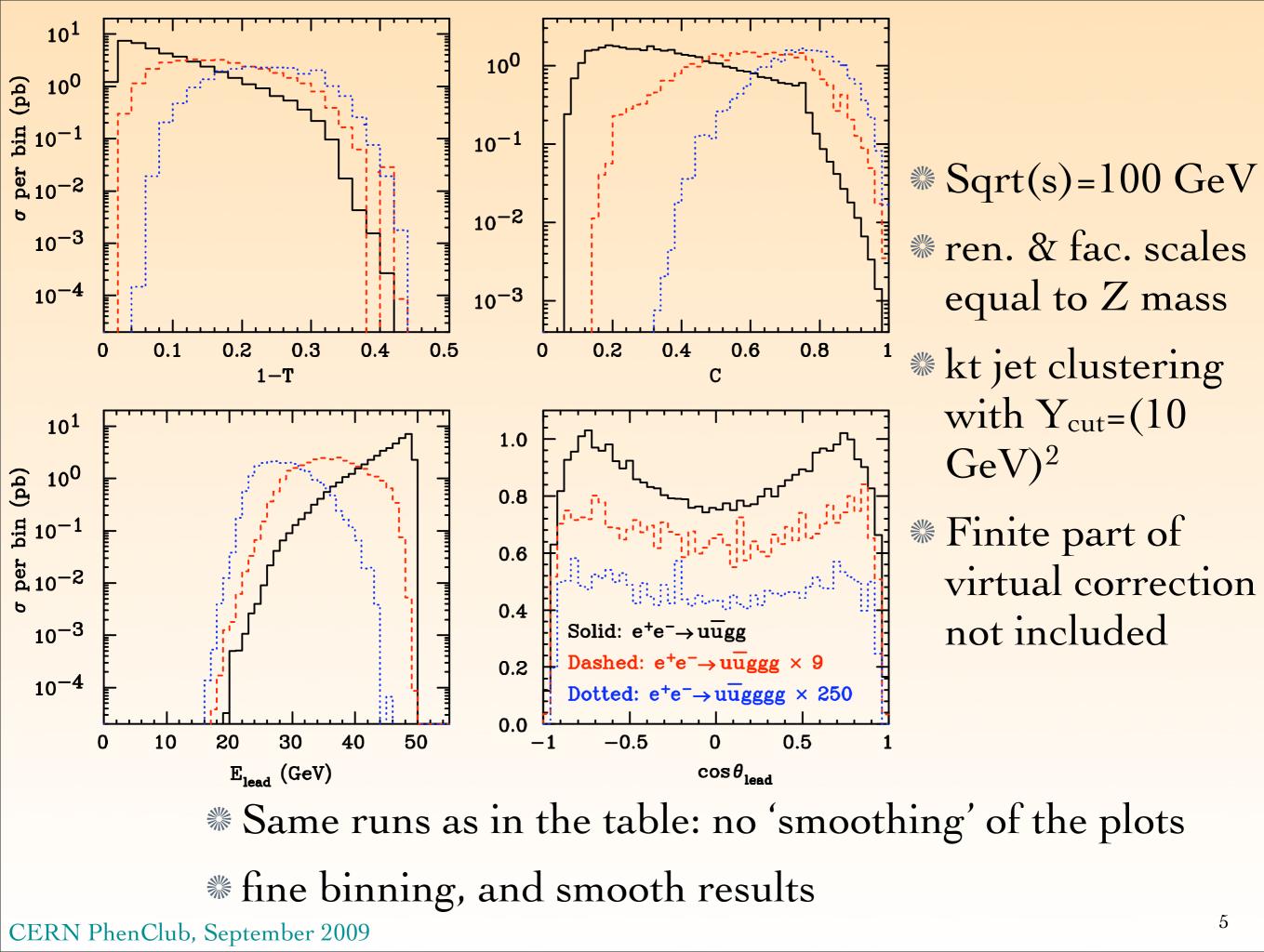
δ_O	$a_{\mathcal{S}} = b_{\mathcal{S}}$	$\xi_{cut} = \xi_{\max}$	$\xi_{cut} = 0.3$	$\xi_{cut} = 0.1$	$\xi_{cut} = 0.01$	
	useenergy=.true.					
	1.0	3.5988 ± 0.0146	3.6173 ± 0.0122	3.6190 ± 0.0140	3.6126 ± 0.0141	
2	C !	C.1.1 ·			}	
	S1X-	fold inc	rease o	t the sta		AIN.
	1.0	3.6196 ± 0.0142	3.6012 ± 0.0139	3.5888 ± 0.0142	3.5833 ± 0.0130	
0.6	1.5	3.5941 ± 0.0123	3.6012 ± 0.0139	3.6009 ± 0.0138	3.6047 ± 0.0114	
	2.0	2.0000 ± 0.0120	3.6111 ± 0.0117	3.6053 ± 0.0110	3.5950 ± 0.0150	
	1.0	3.6350 ± 0.0151	0.5927 ± 0.0145	3.5813 ± 0.0128	3.5811 ± 0.0146	
0.2	1.5	2.6020 ± 0.0113	2.6086 ± 0.6	27	3.5993 ± 0.0119	
	2.0	3.5815 ± 0.0140	3.5900 2 600	07 ± 0.0052	3.6079 ± 0.0125	•
	1.0	3.6053 ± 0.0202	3.5998 5.000	07 ± 0.0053	3.6088 ± 0.0165	
0.06	1.5	3.6144 ± 0.0161	3.5986 ± 0.5	19	3.5884 ± 0.0126	
	2.0	3.5990 ± 0.0166	3.6016 ± 0.0158	3.6014 ± 0.0147	3.6191 ± 0.0133	
	useenergy=.false.					
	1.0	3.6078 ± 0.0164	3.6149 ± 0.0162	3.6145 ± 0.0158	3.6085 ± 0.0140	
2	1.5	3.5695 ± 0.0156	3.5841 ± 0.0180	3.5975 ± 0.0165	3.5986 ± 0.0142	
	2.0	3.5921 ± 0.0125	3.6260 ± 0.0211	3.6034 ± 0.0134	3.6007 ± 0.0149	
	1.0	3.5891 ± 0.0199	3.5786 ± 0.0164	3.6084 ± 0.0232	3.5956 ± 0.0151	
0.6	1.5	3.6083 ± 0.0152	2.5544 ± 0.015	3.6040 ± 0.0123	3.6018 ± 0.0147	
	2.0	3.5838 ± 0.014	3.5633 ± 0.0154	35964 ± 0.0129	3.5920 ± 0.0158	
	1.0	3.5976 ± 0.0171	3.5700 1 0 0100	3.5702 ± 0		
0.2	1.5	3.5804 ± 0.0163	3.5925 ± 0.0136	3.6012 2 60	96 ± 0.0051	Ν.
	2.0	3.5978 ± 0.0148	3.5749 ± 0.0144	3.5825	86 ± 0.0051	
	1.0	3.6122 ± 0.0170	3.5942 ± 0.0158	3.5743 ± 0.01	107	
0.06	1.5	3.6064 ± 0.0198	3.5977 ± 0.0136	3.6047 ± 0.0115	3.5886 ± 0.0123	
	2.0	3.5971 ± 0.0169	3.6018 ± 0.0136	3.5991 ± 0.0148	3.6040 ± 0.0148	

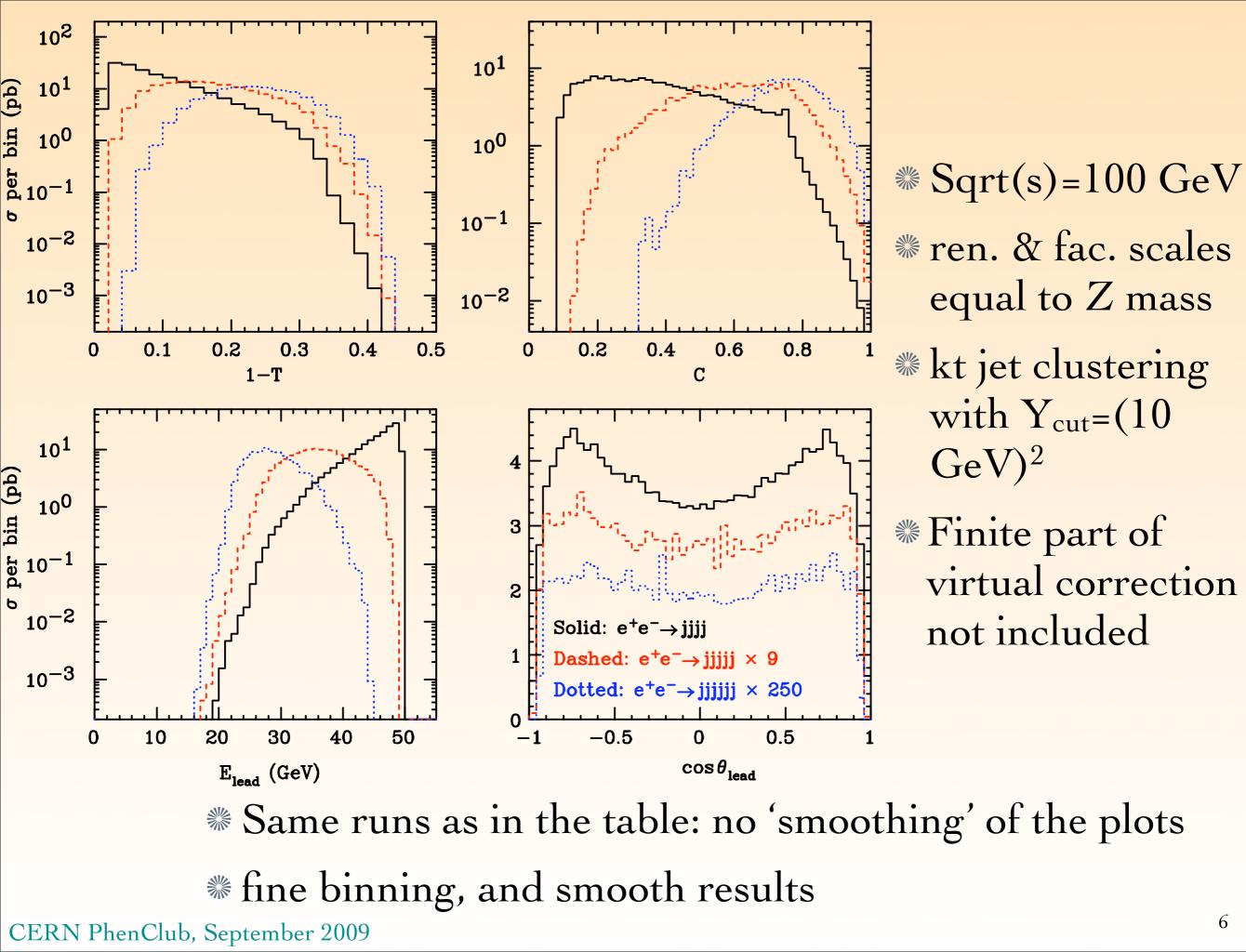
Our 'benchmark process': e+e- -> Z -> uubar ggg

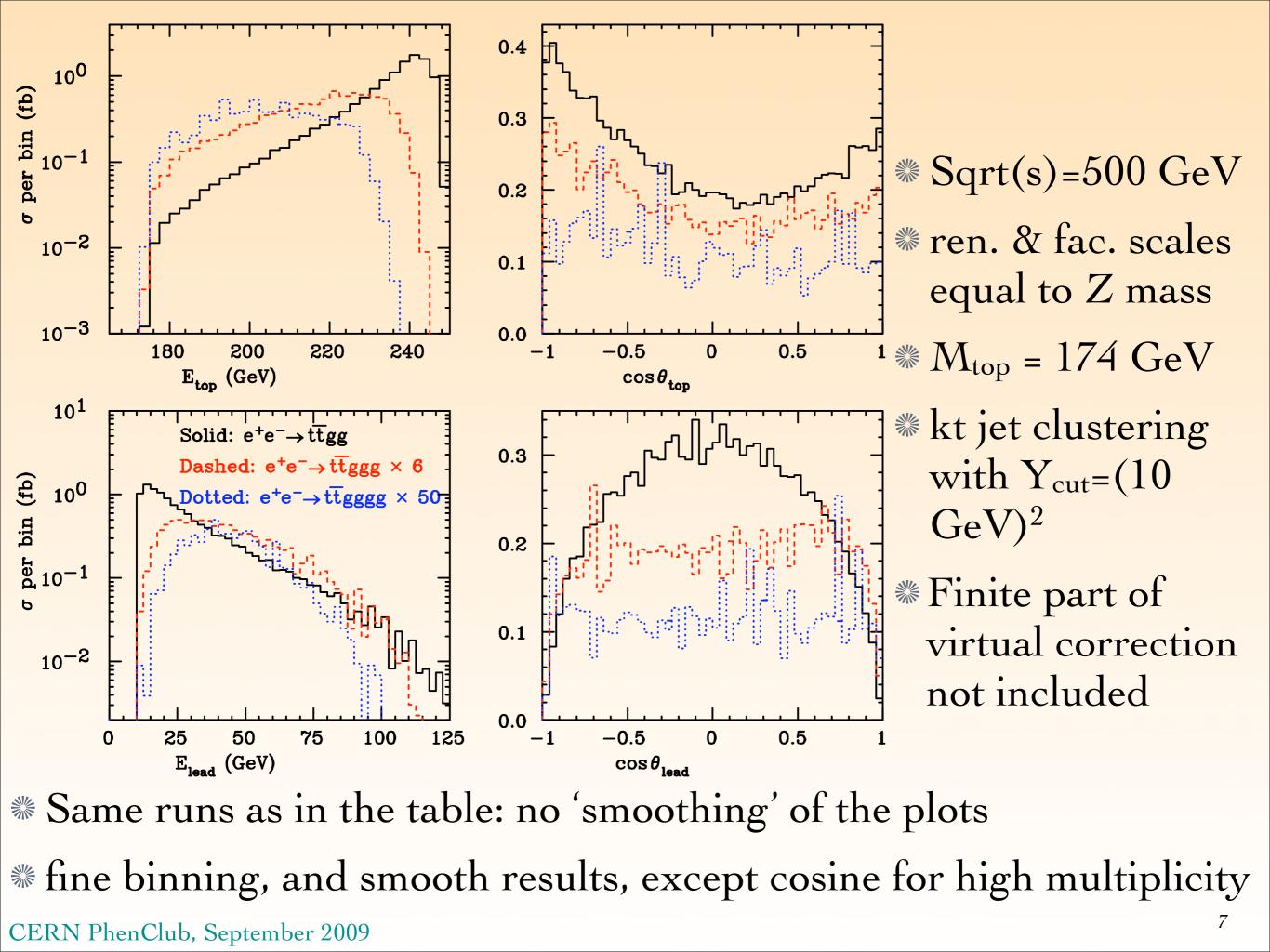
Result is independent of internal (non-physical) parameters

** Also the integration uncertainty is independent of the choice for the internal parameters

* run-time: 1-4 minutes for each integration channel


Table 1: Cross section (in pb) and Monte Carlo integration errors for the (n + 1)-body process $e^+e^- \rightarrow Z \rightarrow u\bar{u}ggg$. See the text for details. CERN PhenClub, September 2009


(n+1)-body process	cross section	$\overline{N}_{\mathrm{FKS}}$	iterations \times points	$N_{ m ch}$	ϵ
$e^+e^- \to Z \to u\bar{u}gg$	$(0.4144 \pm 0.0006 \ (0.15\%)) \times 10^2$	3	$10 \times 50 \mathrm{k}$	6	0.536
$e^+e^- \to Z \to u\bar{u}ggg$	$(0.3601 \pm 0.0014 \ (0.38\%)) \times 10^{1}$	3	$10 \times 50 \mathrm{k}$	18	0.167
$e^+e^- \to Z \to u\bar{u}gggg$	$(0.8869 \pm 0.0054 \ (0.61\%)) \times 10^{-1}$	3	$10\times350 \rm k$	52	0.031
$e^+e^- \to \gamma^*/Z \to jjjj$	$(0.1801 \pm 0.0002 \ (0.12\%)) \times 10^3$	14	$10 \times 50 \mathrm{k}$	56	0.520
$e^+e^- \to \gamma^*/Z \to jjjjj$	$(0.1529 \pm 0.0004 \ (0.26\%)) \times 10^2$	30	$10 \times 50 \mathrm{k}$	328	0.171
$e^+e^- \rightarrow \gamma^*/Z \rightarrow jjjjjj$	$(0.3954 \pm 0.0015 \ (0.38\%)) \times 10^{0}$	55	$10\times350 \rm k$	2450	0.033
$e^+e^- \to Z \to t\bar{t}gg$	$(0.1219 \pm 0.0003 \ (0.24\%)) \times 10^{-1}$	3	$10 \times 10 \mathrm{k}$	6	0.899
$e^+e^- \to Z \to t\bar{t}ggg$	$(0.1521 \pm 0.0013 \ (0.83\%)) \times 10^{-2}$	3	$10 \times 10 \mathrm{k}$	18	0.708
$e^+e^- \to Z \to t\bar{t}gggg$	$(0.1108 \pm 0.0031 \ (2.76\%)) \times 10^{-3}$	3	$10 \times 20 k$	52	0.427
$e^+e^- \to Z \to t\bar{t}b\bar{b}g$	$(0.1972 \pm 0.0024 \ (1.23\%)) \times 10^{-4}$	4	$10 \times 10 \mathrm{k}$	16	1.000
$e^+e^- \to Z \to t\bar{t}b\bar{b}gg$	$(0.2157 \pm 0.0029 \ (1.34\%)) \times 10^{-4}$	5	$10 \times 10 \mathrm{k}$	120	0.824
$e^+e^- \to Z \to \tilde{t}_1 \tilde{\bar{t}}_1 ggg$	$(0.3712 \pm 0.0037 \ (1.00\%)) \times 10^{-8}$	3	$10 \times 10 \mathrm{k}$	18	0.764
$e^+e^- \to Z \to \tilde{g}\tilde{g}ggg$	$(0.1584 \pm 0.0020 \ (1.23 \ \%)) \times 10^{-1}$	2	$10 \times 10 \mathrm{k}$	9	0.753
$\mu^+\mu^- \to H \to gggg$	$(0.1404 \pm 0.0005 \ (0.34 \ \%)) \times 10^{-7}$	1	$10 \times 50 \mathrm{k}$	2	0.559
$\mu^+\mu^- \to H \to ggggg$	$(0.2575 \pm 0.0018 \ (0.69 \ \%)) \times 10^{-8}$	1	$10 \times 50 \mathrm{k}$	4	0.165
$\mu^+\mu^- \to H \to gggggg$	$(0.1186 \pm 0.0008 \ (0.70 \ \%)) \times 10^{-9}$	1	$10 \times 350 \mathrm{k}$	9	0.031


Compared to Born (without optimization relevant to separate treatment of different integration channels), error is 1.9-4.5 times larger with the same statistics*

CERN PhenClub, September 2009

* 2 exceptions; ttbbg: 7 & ttgggg: 9 4

