Automatic Generation of Quarkonium Amplitudes in NRQCD

Lunch seminar 14 November 2007

Pierre Artoisenet

Center of Particle Physics and Phenomenology

Université Catholique de Louvain

Automatic Generation of Quarkonium Amplitudes in NRQCD - p.

- Introduction: the heavy quarkonium system
- MadOnia: a new code for quarkonium production
- Illustration
- Ongoing studies: J/ψ and Υ hadroproduction
- Conclusion and Perspectives

Introduction: the heavy quarkonium system

Automatic Generation of Quarkonium Amplitudes in NRQCD - p

charmonium: $c\bar{c}$ bound state ($\frac{v^2}{c^2} \approx 0.3$)

b bottomonium: $b\overline{b}$ bound state ($\frac{v^2}{c^2} \approx 0.1$)

experimental observation

- $\mathcal{Q}(1^{--}) \rightarrow l^+ l^-$
 - very clean signature in hadron colliders
 example: J/\u03c6 production at the Tevatron II (\u03c6 s = 1.96 TeV)

experimental observation

- $\mathcal{Q}(1^{--}) \rightarrow l^+ l^$
 - s can be used as a probe for exclusive measurement example: $e^+e^- \rightarrow \psi(2S) \rightarrow J/\psi\eta$ (A. Lopez eta al, PRL 99 122001 (2007))

- experimental observation
 - $\mathcal{Q}(1^{--}) \rightarrow l^+ l^-$
 - $\chi_{c,b}$ states can be observed through radiative decays (E transitions)

- experimental observation
 - $\mathcal{Q}(1^{--}) \rightarrow l^+ l^-$
 - $\chi_{c,b}$ states can be observed through radiative decays (E transitions) Example 1: measurement of χ_c decays at Cleo

 χ_{cj} decays to $\gamma\gamma$, $\pi\pi$, KK, $\eta^{(')}\eta^{(')}$, baryon/anti-baryon, multibody final states (H. Mahlke, Charmonium results from Cleo)

experimental observation

- $\mathcal{Q}(1^{--}) \rightarrow l^+ l^-$
- $\chi_{c,b}$ states can be observed through radiative decays (E transitions) Example 2: $p\bar{p} \rightarrow \chi_c + X$, $\chi_c \rightarrow J/\psi\gamma$

$$\Delta M = m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-)$$

F. Abe et al., Phys. Rev. Lett. 79, 578

Theoretical aspects

aim: factorize the non perturbative effects in a process-independent way

Theoretical aspects

Color Singlet Model

$$\sigma_{\mathcal{Q}} = \sigma(c\bar{c}(^{2S+1}L_J^{[1]}))|\psi(0)|^2$$

the perturbative $c\bar{c}$ pair has the same quantum numbers "as in the bound state".

Color Evaporation Model

$$\sigma_{onium} = \frac{1}{9} \int_{2m_c}^{2m_D} \frac{\sigma_{c\bar{c}}}{dm} dm, \quad \sigma_{\mathcal{Q}} = \rho_{\mathcal{Q}} \sigma_{onium}$$

the perturbative $c\bar{c}$ pair is created without any constrain.

Non relativistic QCD

$$\sigma(\mathcal{Q}) = \sum_{n} \hat{\sigma}(c\bar{c}(n)) \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle_{\Lambda}$$

the perturbative $c\bar{c}$ pair is a priori in an arbitrary state n, but $c\bar{c}(n) \rightarrow \mathcal{Q} \sim v^{f(n,\mathcal{Q})}$

NRQCD factorization

Factorization at the level of the squared amplitude:

soft partons (X) are included in the long distance part \rightarrow the intermediate $Q\bar{Q}$ pair can be in a color-octet state

MadOnia: a new code for quarkonium production

Automatic Generation of Quarkonium Amplitudes in NRQCD - p.

The purpose of MadOnia

expression of cross sections within NRQCD:

$$\sigma(ij \to Q + X) = \sum_{n} \hat{\sigma}(ij \to Q\bar{Q}(n) + X) \langle \mathcal{O}^{Q}(n) \rangle_{\Lambda}$$

• $\langle \mathcal{O}^{\mathcal{Q}}(n) \rangle$ are the long distance matrix elements

• $\hat{\sigma}(i+j \rightarrow Q\bar{Q}(n)+X)$ are the short distance cross sections

MadOnia: automatic tree-level computation of $\hat{\sigma}(ij \rightarrow Q\bar{Q}(n) + X)$

(1) open quark amplitude (MadGraph)

(2) projected amplitude (MadOnia)

(3) phase-space integration (unweighting \rightarrow MC event generator)

Capabilities and Validation

capabilities:

universality: MadOnia generates any helicity amplitude

$$\mathcal{M}\left(ij \to Q\bar{Q}\left({}^{2S+1}L_J^{[c]}\right) + X\right)$$

at tree-level, for any model that can be implemented in MadGraph

- It keeps track of quantum numbers on event-by-event basis → events ready for showering and hadronization (in particular, calculation in terms of color-ordered amplitudes).
- $Q\bar{Q}'$ production: the quark and the anti-quark can be of different flavour (such as B_c)
- double quarkonium production (ex: $e^+e^- \rightarrow J/\psi\eta_c$)

Capabilities and Validation

- validation:
 - gauge invariance has been checked
 - charge conjugation conservation:

$$A({}^{1}S_{0}^{[1]} + (2k+1)\gamma) = 0$$
$$A({}^{3}S_{1}^{[1]} + (2k)\gamma) = 0$$
$$A({}^{1}P_{1}^{[1]} + (2k)\gamma) = 0$$
$$A({}^{3}P_{1}^{[1]} + (2k)\gamma) = 0$$
$$A({}^{3}P_{0,2}^{[1]} + (2k+1)\gamma) = 0$$

comparison with analytical amplitudes point by point in the phase space

$$ij \rightarrow Qk$$

with i, j, k = quarks or gluons, for all S- and P-wave states, color-singlet and color-octet transitions

Automatic Generation of Quarkonium Amplitudes in NRQCD - p. 7

example: B_c production from e^+e^-

Automatic Generation of Quarkonium Amplitudes in NRQCD - p. 2

example: B_c production from e^+e^-

Automatic Generation of Quarkonium Amplitudes in NRQCD – p.

example: B_c production from e^+e^-

enter the process: fill the input file proc_card.dat

Begin PROCESS # This is TAG. Do not modify this line

e+e->bc~cb~[3S11]	@O	# First Process				
QCD=99	# Max QCD	couplings				
QED=2	# Max QED	couplings				
end_coup	# End the	couplings input				
e+e->bc~cb~[1S01]	@1	# Second Process				
QCD=99	# Max QCD	couplings				
QED=2	# Max QED	couplings				
end_coup	# End the	couplings input				
done	# this te	lls MG there are no more procs				
# End PROCESS # T	his is TAG	. Do not modify this line				
#****************	*****	****************				
# Model informatic	n	,				
#*************************************	*****	********				
# Begin MODEL # T	his is TAG	. Do not modify this line				
sm						
# End MODEL # T	his is TAG	. Do not modify this line				

example: B_c production from e^+e^-

enter the process: fill the input file proc_card.dat

Begin PROCESS # This is TAG. Do not modify this line

example: B_c production from e^+e^-

-Ey

enter the process: fill the input file proc_card.dat

Begin PROCESS # This is TAG. Do not modify this line

e+e->bc~cb~[3S11]	©0	# First Process				
QCD=99	# Max QCD	couplings				
QED=2	# Max QED	couplings				
end_coup	# End the	couplings input				
e+e->bc~cb~[1S01]	@1	# Second Process				
QCD=99	# Max QCD	couplings				
QED=2	# Max QED	couplings				
end_coup	# End the	couplings input				
done	# this te	lls MG there are no more procs				
# End PROCESS # 1	`his is TAG *********	. Do not modify this line *******************************				
# Model informatio	on					
#*****	*****	******				
# Begin MODEL # 1	his is TAG	. Do not modify this line				
sm						
# End MODEL # 1	his is TAG	. Do not modify this line				

example: B_c production from e^+e^-

enter the process: fill the input file proc_card.dat

Begin PROCESS # This is TAG. Do not modify this line

e+e->bc cb [3S11]	@0	# First	Process

QCD=99	#	Max	QCD	couplings	1
JED=2	#	Max	QED	couplings	
end coup	#	End	the	couplings	input

e+e->bc~cb~[1S01]	@1	#	Second	Process

- QCD=99 # Max QCD couplings
- QED=2 # Max QED couplings
- end_coup # End the couplings input

done # this tells MG there are no more procs

End MODEL # This is TAG. Do not modify this line

example: B_c production from e^+e^-

enter the process: fill the input file proc_card.dat

Begin PROCESS # This is TAG. Do not modify this line

e+e->bc cb [3511]	1	gU		# First Process
QCD=99	#	Max	QCD	couplings
QED=2	#	Max	QED	couplings
end_coup	#	End	the	couplings input

e+e->bc~cb~[1S01]		01	# Second Proc	
QCD=99	#	Max	QCD	couplings
QED=2	#	Max	QED	couplings
end_coup	#	End	the	couplings input

done # this tells MG there are no more procs

End PROCESS # This is TAG. Do not modify this line

Automatic Generation of Quarkonium Amplitudes in NRQCD - p. 7

example: B_c production from e^+e^-

Output:

MadOnia generates a fortran code that gives the squared matrix element summed/averaged over polarization degrees of freedom at an arbitrary phase-space point:

$$\frac{1}{4} \sum_{\lambda_1, \dots, \lambda_5} |M(e^+(p_1)e^-(p_2) \to b(p_3)\bar{c}(p_4)B_c(p_5))|^2$$

• interface with a phase-space generator \rightarrow cross sections

 $\checkmark \quad J/\psi$ production from $\gamma\gamma$ collisions (Lep II, $\sqrt{s}=196~{\rm GeV})$

 $\checkmark \quad J/\psi$ production from $\gamma\gamma$ collisions (Lep II, $\sqrt{s}=196~{\rm GeV})$

 $\checkmark \quad J/\psi$ production from $\gamma\gamma$ collisions (Lep II, $\sqrt{s}=196~{\rm GeV})$

I J/ψ production from $\gamma\gamma$ collisions (Lep II, $\sqrt{s}=196~{
m GeV}$)

J/ ψ production from $\gamma\gamma$ collisions (Lep II, $\sqrt{s}=196~{
m GeV}$)

• J/ψ production from $\gamma\gamma$ collisions (LHC, $\sqrt{s}=14$ TeV)

Ongoing studies: J/ψ and Υ hadroproduction

Automatic Generation of Quarkonium Amplitudes in NRQCD – p.

inclusive production: current status

[from M. Kramer, Prog. Part. Nucl. Phys. 47: 141-201,2001.]

cross section in the fragmentation approximation

$$d\sigma_{J/\psi}(P) \simeq \int_0^1 dz d\sigma_c(\frac{P}{z}, \mu_{frag}) D_{c \to J/\psi}(z, \mu_{frag})$$

and similarly for the fragmentation from a gluon.

associated J/ψ production

$$p\bar{p} \rightarrow J/\psi c\bar{c}$$

motivation:

• situation in e^+e^- annihilation

Color transfer between the active charm-quark pair and one of the spectator charm quark might lead to an enhancement

associated J/ψ production

$$p\bar{p} \to J/\psi c\bar{c}$$

motivation:

includes topologies that are not taken into account in the fragmentation approximation

$$d\sigma_{\mathcal{Q}}(P) \simeq \int_0^1 dz d\sigma_{Q_i}(\frac{P}{z}, \mu_{frag}) D_{Q_i \to \mathcal{Q}}(z, \mu_{frag})$$

associated J/ψ production

$$p\bar{p} \to J/\psi c\bar{c}$$

motivation:

- it could be tested experimentally
- this new channel offers the opportunity to check the universality of the Long Distance Matrix Elements

associated J/ψ production

 $p\bar{p} \rightarrow J/\psi c\bar{c}$

dominant topologies in the region $P_T \gg m_c$:

associated J/ψ production

$$p\bar{p} \rightarrow J/\psi c\bar{c}$$

J/ψ polarization:

extracted from the angular distribution of the produced leptons

associated J/ψ production

$$p\bar{p} \rightarrow J/\psi c\bar{c}$$

angular separation $\Delta R(J/\psi, c)$:

associated J/ψ production

$$p\bar{p} \rightarrow J/\psi c\bar{c}$$

comparison with the fragmentation approximation:

ug_uddxbbx3S11

gg_gggbbx3S11

gux_uuxuxbbx3S11

dxg_uuxdxbbx3S11

uxux_uxuxgbbx3S11

uxg_uxddxbbx3S11

uxg_uxggbbx3S11

gu_uuuxbbx3S11

gdx_uuxdxbbx3S11

dux_uxdgbbx3S11

uxu_uuxgbbx3S11

uxg_uuxuxbbx3S11

uux_ddxgbbx3S11

uux_gggbbx3S11

subprocesses:

dg_uuxdbbx3S11 uxu_ddxgbbx3S11 uxd_uxdgbbx3S11 ug_uuuxbbx3S11 gux_uxggbbx3S11 gu_uddxbbx3S11 gu_uggbbx3S11

gd_uuxdbbx3S11 du_udgbbx3S11 uu_uugbbx3S11 ud_udgbbx3S11

uxu_gggbbx3S11 uxdx_uxdxgbbx3S11 udx_udxgbbx3S11

uux_uuxgbbx3S11 ug_uggbbx3S11

gux_uxddxbbx3S11

gg_uuxgbbx3S11

dxu_udxgbbx3S11

dxux_uxdxgbbx3S11

subprocesses:

dg_uuxdbbx3S11 uxu_ddxgbbx3S11 uxd_uxdgbbx3S11 ug_uuuxbbx3S11 gux_uxggbbx3S11 gu_uddxbbx3S11 gu_uggbbx3S11

uxu_gggbbx3S11 uxdx_uxdxgbbx3S11 uu_uugbbx3S11 ud_udgbbx3S11 udx_udxgbbx3S11

gd_uuxdbbx3S11 du_udgbbx3S11

gu_uuuxbbx3S11 ug_uddxbbx3S11 gdx_uuxdxbbx3S11_gux_uuxuxbbx3S11_ gg_gggbbx3S11 dux_uxdgbbx3S11 uxu_uuxgbbx3S11 dxg_uuxaxbox5S11 uxg_uuxuxbbx3S11 uxux_uxuxgbbx3S11 uux_ddxgbbx3S11 uxg_uxddxbbx3S11 uux_gggbbx3S11 uxg_uxggbbx3S11

uux_uuxgbbx3S11 ug_uggbbx3S11 gux_uxddxbbx3S11 gg_uuxgbbx3S11 dxu_udxgbbx3S11 dxux_uxdxgbbx3S11

≈ 2000 Feynman diagrams before projection

subprocesses:

dg_uuxdbbx3S11 uxu_ddxgbbx3S11 uxd_uxdgbbx3S11 ug_uuuxbbx3S11 gux_uxggbbx3S11 gu_uddxbbx3S11

gu_uggbbx3S11

gu_uuuxbbx3S11 ug_uddxbbx3S11 gdx_uuxdxbbx3S11_gux_uuxuxbbx3S11_ dux_uxdgbbx3S11 gg_gggbbx3S11 uxu_uuxgbbx3S11 axg_uuxaxbox5511 uxdx_uxdxgbbx3S11 uxg_uuxuxbbx3S11 uxux uxuxgbbx3S11 uux_ddxgbbx3S11 uxg_uxddxbbx3S11 uux_gggbbx3S11 uxg_uxggbbx3S11

uux_uuxgbbx3S11 ug_uggbbx3S11 gux_uxddxbbx3S11 gg_uuxgbbx3S11 dxu_udxgbbx3S11 dxux_uxdxgbbx3S11

≈ 2000 Feynman diagrams before projection

gd_uuxdbbx3S11

uxu_gggbbx3S11

du_udgbbx3S11

uu_uugbbx3S11

ud_udgbbx3S11

udx_udxgbbx3S11

Automatic Generation of Quarkonium Amplitudes in NRQCD - p. 2

Conclusion & Perspectives

- MadOnia is an amplitude generator for quarkonium production within NRQCD which is:
 - universal (new models can be defined)
 - user-friendly
 - flexible
- Examples of application:
 - ${}_{ }$ $\gamma \gamma
 ightarrow J/\psi + X$ at Lep II
 - $e^+e^- \rightarrow \eta_c + X$ at B factories
 - $p \bar{p}
 ightarrow J/\psi + c \bar{c}$ at the Tevatron
 - $p \bar{p}
 ightarrow \Upsilon + 3$ jets at the Tevatron

work in progress: event generator with interfaces to Pythia and Herwig