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• Why yet another tool..?

• Model building with FeynRules

• Some examples:

 - How to get the Feynman rules of your new model

 - How to add a new sector to the SM

• Conclusion



• Since the 70’s, particle physics is governed the SM.

• The SM cannot be the final theory, because it leaves many 
unanswered questions (hierarchy problem, dark matter,...)

• By now, many extensions of the SM are available (SUSY, 
composite higgs,...), but only experiment can decide 
whether the model corresponds to reality or not.

Why yet another tool..?



• In general, a new model is given by a lagrangian, 
containing all the particles and their mutual 
interactions.

• At some point, one would like to compare the 
model with experiment.

Why yet another tool..?

Needs in general some hard 
calculations:
- cross-sections
- decay rates
- radiative corrections



• Fortunately, several tools are available to do the 
calculations

Why yet another tool..?

- MC generators (MadGraph, CalcHep, CompHEP,                 
AMEGIC++)
- FeynArts,...

New model Existing tools
(Lagrangian, new 
particles,...)

(Programming language, 
files containing the new 
particles and 
interactions,...)



• Mathematica© based package that calculates Feynman 
rules from a lagrangian.

• No special requirements on the form of the 
lagrangian.

• Particle types available so far: scalars, fermions (Dirac 
and Majorana), vectors, spin-2.

FeynRules



• The user has to write a model file, containing all the 
information contained in the model (except the 
Feynman rules)

FeynRules

- Particles & fields
- Parameters (masses, coupling constants,...)
- mixing matrices
- etc.

• The syntax of the FR model-files is an extension of syntax 
used in FeynArts.

• Feynman rules are calculated by Mathematica using the 
information from the model-file and the lagrangian.

• The vertices can be exported into a TeX-file.



• The informations given in the model-file, together with 
the vertices obtained by FR, is generic enough to allow 
for an interface to other existing tools.

• FR creates all files needed to run the new model just by 
knowing the FR model-file and the lagrangian.

• Interfaces available so far

FeynRules

- MadGraph/MadEvent
- FeynArts

New model Existing tools



Lagrangian

FeynArts

Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

FeynRules

...MadGraph



Getting Feynman rules

Particle content:
   - Spin 2 graviton, KK-scalars
   - Fermions
   - Scalars
   - Gauge bosons
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Kaluza-Klein States from Large Extra Dimensions

Tao Han(a), Joseph D. Lykken(b) and Ren-Jie Zhang(a)

(a)Department of Physics, University of Wisconsin, Madison, WI 53706
(b)Theory Group, Fermi National Accelerator Laboratory, Batavia, IL 60510

Abstract

We consider the novel Kaluza-Klein (KK) scenario where gravity propa-
gates in the 4 + n dimensional bulk of spacetime, while gauge and matter
fields are confined to the 3 + 1 dimensional world-volume of a brane configu-
ration. For simplicity we assume compactification of the extra n dimensions
on a torus with a common scale R, and identify the massive KK states in the
four-dimensional spacetime. For a given KK level !n there are one spin-2 state,
(n − 1) spin-1 states and n(n − 1)/2 spin-0 states, all mass-degenerate. We
construct the effective interactions between these KK states and ordinary mat-
ter fields (fermions, gauge bosons and scalars). We find that the spin-1 states
decouple and that the spin-0 states only couple through the dilaton mode. We
then derive the interacting Lagrangian for the KK states and Standard Model
fields, and present the complete Feynman rules. We discuss some low energy
phenomenology for these new interactions for the case when 1/R is small com-
pared to the electroweak scale, and the ultraviolet cutoff of the effective KK
theory is on the order of 1 TeV.

Published in Phys. Rev. D59, 105006 (1999).

[hep-ph/9811350]



• Lagrangian coupling the fermions to the graviton and the KK-
scalar:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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• Very complicated structure as far as Feynman rules are 
concerned, but we are only a few steps away from the Feynman 
rules...

Getting Feynman rules



• Step 1: Add all the parameters in the lagrangian to the model file:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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Getting Feynman rules



• Step II: Add all the particles in the lagrangian to the model file:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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νAµ)2/2ξ, with Γµν
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νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is
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V(κ) = −

1
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(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
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+
h̃#n
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(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
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2
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b −
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a e σ
b (∂ρecσ −∂σecρ)e
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4
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4
∂ν(ψiγµψ) , (42)
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e a
µ = δ a
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κ

2
(h a

µ + δ a
µ φ) . (43)
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[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
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+
ηµν

2
∂ρ(ψiγρψ) −
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4
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1

4
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where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is
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F(κ) =
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2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is
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+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
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2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
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+
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2
∂ρ(ψiγρψ) −
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4
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4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.

10

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
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aγ
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2
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a −
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2
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2
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2
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1

2
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+
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2
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4
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4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
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2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.
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LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
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ν ηab = gµν , γµ = eµ

aγ
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2
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µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab
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a −
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2
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b −
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+
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2
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+
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3ω
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∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
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νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
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The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by
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2
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a −
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2
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b −
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We find the conserved energy-momentum tensor
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µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
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1

2
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µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is
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2
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µν)ψ

]

+
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2
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4
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The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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Abstract

In this letter I discuss a class of extensions of the standard model that have
a minimal number of possible parameters, but can in principle explain dark
matter and inflation. It is pointed out that the so-called new minimal standard
model contains a large number of parameters that can be put to zero, without
affecting the renormalizability of the model. With the extra restrictions one
might call it the minimal (new) non minimal standard model (MNMSM). A
few hidden discrete variables are present. It is argued that the inflaton should
be higher-dimensional. Experimental consequences for the LHC and the ILC
are discussed.

With the latest developments from high energy colliders like LEP and the
Tevatron the standard model (SM) has been established up to the loop level.
Precision measurements leave only very little space for extensions, as these
tend to spoil the agreement with experiment due to a variety of effects, one of
the most important of which is the appearance of flavor-changing neutral cur-
rents. Even the most popular extension, namely the minimal supersymmetric
extension of the SM has to finely tune a number of parameters. This leaves
only one type of extensions that are safe, namely the singlet extensions. Ex-
perimentally right handed neutrinos appear to exist. Since these are singlets a
natural extension of the SM is the existence of singlet scalars too [1-9]. These
will only have a very limited effect on radiative corrections, since they appear
only in two-loop calculations [10,11].

The effects of singlets appear in two forms, one is the mixing with the SM
Higgs, the other is the possibility of invisible decay. In contrast to charged
fields these effects can be separated. It is actually possible to have a Higgs
model that has only Higgs-mixing. If one starts with an interaction of the
form HΦ†Φ, where H is the new singlet Higgs field and Φ the SM Higgs field,
no interaction of the form H3 or H4 is generated with an infinite coefficient [1].

1

model. The Lagrangian density is the following:

LScalar = LHiggs + LS + LInteraction (10)

LHiggs = −
1

2
DµΦ†DµΦ −

λ

8
(Φ†Φ − f 2)2 (11)

LS = −
1

2
∂µ

#S ∂µ
#S −

1

2
m2

S
#S2 −

λS

8N
(#S2)2 (12)

LInteraction = −
ω

4
√

N
#S2 Φ†Φ (13)

As before Φ = (σ + f + iπ1, π2 + iπ3) is the complex Higgs doublet of the SM
with the vacuum expectation value < 0|Φ|0 >= (f, 0), f = 246 GeV. Here,
σ is the physical Higgs boson and πi=1,2,3 are the three Goldstone bosons.
#S = (S1, . . . , SN) is a real vector with < 0|#S|0 >= #0. We consider this case,
where the O(N) symmetry stays unbroken, because we want to concentrate
on the effects of a finite width of the Higgs particle. Breaking the O(N) sym-
metry would lead to more than one Higgs particle, through mixing. After the
spontaneous breaking of the SM gauge symmetry the π fields become the
longitudinal polarizations of the vector bosons. In the unitary gauge one can
simply put them to zero. One is then left with an additional interaction in the
Lagrangian of the form:

LInteraction = −
ωf

2
√

N
#S2 σ (14)

This interaction leads to a decay into the #S particles, that do not couple to
other fields of the SM Lagrangian. On has therefore an invisible width:

ΓHiggs(invisible) =
ω2

32π

f 2

mHiggs
(1 − 4m2

S/m2
Higgs)

1/2 (15)

This width is larger than the SM width even for moderate values of ω, because
the SM width is strongly suppresed by the Yukawa coupings of the fermions.
Moreover one cannot exclude a large value of ω, which would lead to a wide
invisible Higgs. Limits on this model have been put by the LEP collaborations
in [17-19].

The general situation is thus, that after introducing singlets in the SM the
Higgs boson becomes of arbitrary shape and can have an arbitrary branching
ratio into invisible particles, where the invisible branching ratio depends on
the invariant mass point in the Higgs propagator. The only thing that stays
constant is the relative branching ratios into the SM decay products. Direct

5
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Abstract

In this letter I discuss a class of extensions of the standard model that have
a minimal number of possible parameters, but can in principle explain dark
matter and inflation. It is pointed out that the so-called new minimal standard
model contains a large number of parameters that can be put to zero, without
affecting the renormalizability of the model. With the extra restrictions one
might call it the minimal (new) non minimal standard model (MNMSM). A
few hidden discrete variables are present. It is argued that the inflaton should
be higher-dimensional. Experimental consequences for the LHC and the ILC
are discussed.

With the latest developments from high energy colliders like LEP and the
Tevatron the standard model (SM) has been established up to the loop level.
Precision measurements leave only very little space for extensions, as these
tend to spoil the agreement with experiment due to a variety of effects, one of
the most important of which is the appearance of flavor-changing neutral cur-
rents. Even the most popular extension, namely the minimal supersymmetric
extension of the SM has to finely tune a number of parameters. This leaves
only one type of extensions that are safe, namely the singlet extensions. Ex-
perimentally right handed neutrinos appear to exist. Since these are singlets a
natural extension of the SM is the existence of singlet scalars too [1-9]. These
will only have a very limited effect on radiative corrections, since they appear
only in two-loop calculations [10,11].

The effects of singlets appear in two forms, one is the mixing with the SM
Higgs, the other is the possibility of invisible decay. In contrast to charged
fields these effects can be separated. It is actually possible to have a Higgs
model that has only Higgs-mixing. If one starts with an interaction of the
form HΦ†Φ, where H is the new singlet Higgs field and Φ the SM Higgs field,
no interaction of the form H3 or H4 is generated with an infinite coefficient [1].

1

model. The Lagrangian density is the following:

LScalar = LHiggs + LS + LInteraction (10)

LHiggs = −
1

2
DµΦ†DµΦ −

λ

8
(Φ†Φ − f 2)2 (11)

LS = −
1

2
∂µ

#S ∂µ
#S −

1

2
m2

S
#S2 −

λS

8N
(#S2)2 (12)

LInteraction = −
ω

4
√

N
#S2 Φ†Φ (13)

As before Φ = (σ + f + iπ1, π2 + iπ3) is the complex Higgs doublet of the SM
with the vacuum expectation value < 0|Φ|0 >= (f, 0), f = 246 GeV. Here,
σ is the physical Higgs boson and πi=1,2,3 are the three Goldstone bosons.
#S = (S1, . . . , SN) is a real vector with < 0|#S|0 >= #0. We consider this case,
where the O(N) symmetry stays unbroken, because we want to concentrate
on the effects of a finite width of the Higgs particle. Breaking the O(N) sym-
metry would lead to more than one Higgs particle, through mixing. After the
spontaneous breaking of the SM gauge symmetry the π fields become the
longitudinal polarizations of the vector bosons. In the unitary gauge one can
simply put them to zero. One is then left with an additional interaction in the
Lagrangian of the form:

LInteraction = −
ωf

2
√

N
#S2 σ (14)

This interaction leads to a decay into the #S particles, that do not couple to
other fields of the SM Lagrangian. On has therefore an invisible width:

ΓHiggs(invisible) =
ω2

32π

f 2

mHiggs
(1 − 4m2

S/m2
Higgs)

1/2 (15)

This width is larger than the SM width even for moderate values of ω, because
the SM width is strongly suppresed by the Yukawa coupings of the fermions.
Moreover one cannot exclude a large value of ω, which would lead to a wide
invisible Higgs. Limits on this model have been put by the LEP collaborations
in [17-19].

The general situation is thus, that after introducing singlets in the SM the
Higgs boson becomes of arbitrary shape and can have an arbitrary branching
ratio into invisible particles, where the invisible branching ratio depends on
the invariant mass point in the Higgs propagator. The only thing that stays
constant is the relative branching ratios into the SM decay products. Direct
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Adding a new sector to the SM
• Step 1: Add all the parameters of the new sector to the model file:
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• Step II: Add all the particles of the new sector to the model file:



model. The Lagrangian density is the following:

LScalar = LHiggs + LS + LInteraction (10)

LHiggs = −
1

2
DµΦ†DµΦ −

λ

8
(Φ†Φ − f 2)2 (11)

LS = −
1

2
∂µ

#S ∂µ
#S −

1

2
m2

S
#S2 −

λS

8N
(#S2)2 (12)

LInteraction = −
ω

4
√

N
#S2 Φ†Φ (13)

As before Φ = (σ + f + iπ1, π2 + iπ3) is the complex Higgs doublet of the SM
with the vacuum expectation value < 0|Φ|0 >= (f, 0), f = 246 GeV. Here,
σ is the physical Higgs boson and πi=1,2,3 are the three Goldstone bosons.
#S = (S1, . . . , SN) is a real vector with < 0|#S|0 >= #0. We consider this case,
where the O(N) symmetry stays unbroken, because we want to concentrate
on the effects of a finite width of the Higgs particle. Breaking the O(N) sym-
metry would lead to more than one Higgs particle, through mixing. After the
spontaneous breaking of the SM gauge symmetry the π fields become the
longitudinal polarizations of the vector bosons. In the unitary gauge one can
simply put them to zero. One is then left with an additional interaction in the
Lagrangian of the form:

LInteraction = −
ωf

2
√

N
#S2 σ (14)

This interaction leads to a decay into the #S particles, that do not couple to
other fields of the SM Lagrangian. On has therefore an invisible width:

ΓHiggs(invisible) =
ω2

32π

f 2

mHiggs
(1 − 4m2

S/m2
Higgs)

1/2 (15)

This width is larger than the SM width even for moderate values of ω, because
the SM width is strongly suppresed by the Yukawa coupings of the fermions.
Moreover one cannot exclude a large value of ω, which would lead to a wide
invisible Higgs. Limits on this model have been put by the LEP collaborations
in [17-19].

The general situation is thus, that after introducing singlets in the SM the
Higgs boson becomes of arbitrary shape and can have an arbitrary branching
ratio into invisible particles, where the invisible branching ratio depends on
the invariant mass point in the Higgs propagator. The only thing that stays
constant is the relative branching ratios into the SM decay products. Direct

5

model. The Lagrangian density is the following:

LScalar = LHiggs + LS + LInteraction (10)

LHiggs = −
1

2
DµΦ†DµΦ −

λ

8
(Φ†Φ − f 2)2 (11)

LS = −
1

2
∂µ

#S ∂µ
#S −

1

2
m2

S
#S2 −

λS

8N
(#S2)2 (12)

LInteraction = −
ω

4
√

N
#S2 Φ†Φ (13)

As before Φ = (σ + f + iπ1, π2 + iπ3) is the complex Higgs doublet of the SM
with the vacuum expectation value < 0|Φ|0 >= (f, 0), f = 246 GeV. Here,
σ is the physical Higgs boson and πi=1,2,3 are the three Goldstone bosons.
#S = (S1, . . . , SN) is a real vector with < 0|#S|0 >= #0. We consider this case,
where the O(N) symmetry stays unbroken, because we want to concentrate
on the effects of a finite width of the Higgs particle. Breaking the O(N) sym-
metry would lead to more than one Higgs particle, through mixing. After the
spontaneous breaking of the SM gauge symmetry the π fields become the
longitudinal polarizations of the vector bosons. In the unitary gauge one can
simply put them to zero. One is then left with an additional interaction in the
Lagrangian of the form:

LInteraction = −
ωf

2
√

N
#S2 σ (14)

This interaction leads to a decay into the #S particles, that do not couple to
other fields of the SM Lagrangian. On has therefore an invisible width:

ΓHiggs(invisible) =
ω2

32π

f 2

mHiggs
(1 − 4m2

S/m2
Higgs)

1/2 (15)

This width is larger than the SM width even for moderate values of ω, because
the SM width is strongly suppresed by the Yukawa coupings of the fermions.
Moreover one cannot exclude a large value of ω, which would lead to a wide
invisible Higgs. Limits on this model have been put by the LEP collaborations
in [17-19].

The general situation is thus, that after introducing singlets in the SM the
Higgs boson becomes of arbitrary shape and can have an arbitrary branching
ratio into invisible particles, where the invisible branching ratio depends on
the invariant mass point in the Higgs propagator. The only thing that stays
constant is the relative branching ratios into the SM decay products. Direct

5

model. The Lagrangian density is the following:

LScalar = LHiggs + LS + LInteraction (10)

LHiggs = −
1

2
DµΦ†DµΦ −

λ

8
(Φ†Φ − f 2)2 (11)

LS = −
1

2
∂µ

#S ∂µ
#S −

1

2
m2

S
#S2 −

λS

8N
(#S2)2 (12)

LInteraction = −
ω

4
√

N
#S2 Φ†Φ (13)

As before Φ = (σ + f + iπ1, π2 + iπ3) is the complex Higgs doublet of the SM
with the vacuum expectation value < 0|Φ|0 >= (f, 0), f = 246 GeV. Here,
σ is the physical Higgs boson and πi=1,2,3 are the three Goldstone bosons.
#S = (S1, . . . , SN) is a real vector with < 0|#S|0 >= #0. We consider this case,
where the O(N) symmetry stays unbroken, because we want to concentrate
on the effects of a finite width of the Higgs particle. Breaking the O(N) sym-
metry would lead to more than one Higgs particle, through mixing. After the
spontaneous breaking of the SM gauge symmetry the π fields become the
longitudinal polarizations of the vector bosons. In the unitary gauge one can
simply put them to zero. One is then left with an additional interaction in the
Lagrangian of the form:

LInteraction = −
ωf

2
√

N
#S2 σ (14)

This interaction leads to a decay into the #S particles, that do not couple to
other fields of the SM Lagrangian. On has therefore an invisible width:

ΓHiggs(invisible) =
ω2

32π

f 2

mHiggs
(1 − 4m2

S/m2
Higgs)

1/2 (15)

This width is larger than the SM width even for moderate values of ω, because
the SM width is strongly suppresed by the Yukawa coupings of the fermions.
Moreover one cannot exclude a large value of ω, which would lead to a wide
invisible Higgs. Limits on this model have been put by the LEP collaborations
in [17-19].

The general situation is thus, that after introducing singlets in the SM the
Higgs boson becomes of arbitrary shape and can have an arbitrary branching
ratio into invisible particles, where the invisible branching ratio depends on
the invariant mass point in the Higgs propagator. The only thing that stays
constant is the relative branching ratios into the SM decay products. Direct

5

Adding a new sector to the SM
• Step III: The lagrangian describing the new sector (Unitary gauge)



The FeynArts interface
• The results obtained by FeynRules can be easily exported to 

FeynArts:

• This produces a FeynArts model-file which can be read by FeynArts.



The FeynArts interface



The MadGraph interface
• The results obtained by FeynRules can be easily exported to 

MadGraph:

• This produces a bunch of files, but let’s have a look at a some specific 
event...



The MadGraph interface

Diagrams by MadGraph  g g -> t t~ s1 s1  

G    

G    

t    

t    

Sk   
Sk   

t    

t    

H    

graph    1

1

2

  3

  4

  5

  6

G    

G    t    

t    

Sk   

Sk   

t    

t    H    

graph    2

1

2
  3

  4

  5

  6

G    

G    t    

t    

Sk   

Sk   

t    

t    

H    

graph    3

1

2
  3

  4

  5

  6

G    

G    

t    

t    

Sk   

Sk   

t    

t    H    

graph    4

1

2

  3

  4

  5

  6

G    

G    

t    

t    

Sk   
Sk   

t    

t    

H    

graph    5

1

2

  3

  4

  5

  6

G    

G    

t    

t    

Sk   

Sk   

t    

t    

H    

graph    6

1

2

  3

  4

  5

  6

G    

G    

t    

t    

Sk   
Sk   

G    t    

H    

graph    7

1

2

  3

  4

  5

  6

G    

G    

t    

t    

Sk   
Sk   

G    t    

H    

graph    8

1

2

  3

  4

  5

  6

Diagrams by MadGraph  c c~ -> t t~ s1 s1  

c    

c    

t    

t    

Sk   
Sk   

H    H    

H    

graph   17

1

2

  3

  4

  5

  6

c    

c    

t    

t    

Sk   
Sk   

Z    Z    

H    

graph   18

1

2

  3

  4

  5

  6

c    

c    

t    
t    

Sk   

Sk   

Sk   H    

H    

graph   19

1

2
  3

  4

  5

  6

c    

c    t    

t    

Sk   

Sk   

H    

Sk   H    

graph   20

1

2

  3

  4

  5

  6

c    

c    

t    

t    

Sk   

Sk   

H    

H    

graph   21

1

2
  3

  4

  5

  6



Conclusion
• FeynRules is a Mathematica©-based package to extract Feynman rules 

from a lagrangian.

• The output of FR is completely generic and can be easily interfaced to 
other available codes.

• FeynArts and MadGraph interfaces are already available.

• Planned interfaces: AMEGIC++ and CalcHEP... but we are open for any 
other suggestion.

• The first version will be released soon..!





Models
• Tested Models

- SM (with CKM mixing)
- Color-Octet scalars
- Large extra-dimensions (KK-graviton)
- Non linear sigma model
- Wess-Zumino & SUSY QED

• To be tested in the near future
- 2 HD
- SUSY QCD
- MSSM
- Any other crazy model around...


