Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Conclusions

Matching of W+jets in MadEvent and Pythia

Johan Alwall

SLAC

Berkeley workshop on Boson + jets production March 27, 2008

SLAC Outline

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Conclusions

1 Jet matching – ME vs. PS

2 Jet matching schemes

15

3 Matching in MadGraph / MadEvent

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Conclusions

Matrix elements

- Fixed order calculation
- 2 Computationally expensive

Jet matching – ME vs. PS

- Limited number of particles
- Valid when partons are hard and well separated
- 6 Quantum interference correct
- Needed for multi-jet description

Parton showers

- Resums logs to all orders
- 2 Computationally cheap
- So limit on particle multiplicity
- Valid when partons are collinear and/or soft
- Partial quantum interference through angular ordering
- Needed for hadronization/ detector simulation

Matrix element and Parton showers complementary approaches Both necessary in high-precision studies of multijet processes

Need to combine without double-counting

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

CKKW matching MLM matching Differences between CKKW and MLM

Matching in MadGraph / MadEvent

Conclusions

Jet matching schemes

The simple idea behind matching

- Use matrix element description for well separated jets, and parton showers for collinear jets
- Phase-space cutoff to separate regions
- \implies No double-counting between jet multiplicities

Difficulties

- Get smooth transition between regions
- No/small dependence from precise cutoff
- No/small dependence from largest multiplicity sample

How to accomplish this

- CKKW matching (Catani, Krauss, Kuhn, Webber)
- MLM matching (M.L. Mangano)
- (Interesting newcomers: SCET Schwartz, GenEvA Bauer, Tackman, Thaler)

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

CKKW matching

MLM matching Differences between CKKW and MLM

Matching in MadGraph / MadEvent

Conclusions

CKKW matching

Catani, Krauss, Kuhn, Webber [hep-ph/0109231], Krauss [hep-ph/0205283]

Imitate parton shower procedure for matrix elements

- Choose a cutoff scale d_{ini}
- **2** Generate multiparton event with $d_{\min} = d_{\min}$
- Cluster event with k_T algorithm to find "parton shower history"
- Use $d_i \simeq k_T^2$ in each vertex as scale for α_s
- Weight event with Sudakov factor Δ(d_i, d_j) for each parton line between vertices i and j
- Shower event, allowing only emissions with k_T < d_{ini} ("vetoed shower")
- For highest multiplicity sample, use $min(d_i)$ of event as d_{ini}

Boost-invariant k_T measure:

$$\begin{cases} d_{iB} = p_{T,i}^2 \\ d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) R(i,j) \\ R(i,j) = \cosh \Delta \eta_{ij} - \cos \Delta \phi_{ij} \end{cases}$$

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

CKKW matching MLM matching Differences between CKKW and MLM

Matching in MadGraph / MadEvent

Conclusions

• Final-state showers:

Combination of NLL Sudakov factors and vetoed NLL showers guarantees independence of q_{ini} to NLL order

- Initial-state showers: Proof by example (Sherpa)
- Problem in practice: No NLL shower implementation! (Sherpa uses Pythia-like showers and adapted Sudakovs)

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

CKKW matching

MLM matching

Differences between CKKW and MLM

Matching in MadGraph / MadEvent

Conclusions

MLM matching

M.L. Mangano [2002, Alpgen home page, arXiv:0706.2569]

Use shower hardness to separate ME/PS

- **①** Generate multiparton event with cut on jet p_T , η and ΔR
- 2 Cluster event and use k_T^2 for α_s scale (as in CKKW)
- Shower event (using Pythia or Herwig)
- Collect showered partons in cone jets with p_{T,min}(jet) > p_{T,min}(parton)
- Keep event only if each jet corresponds to one parton ("matched")
- For highest multiplicity sample, allow extra jets with $p_T < p_{Tmin}^{\text{parton}}$

Keep

Discard unless highest multiplicity

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

CKKW matching MLM matching

Differences between CKKW and MLM

Matching in MadGraph / MadEvent

Conclusions

Differences between CKKW and MLM

- CKKW scheme: Assumes intimate knowledge of and modifications to parton shower. Needs analytical form for parton shower Sudakovs.
- MLM scheme: Effective Sudakov suppression directly from parton shower
- However: MLM not sensitive to parton types of internal lines (remedied by pseudoshower approach, see below)
- Factorization scale: In CKKW jet resolution scale, in MLM central scale.
- Highest multiplicity treatment less obvious in MLM than in CKKW
- MLM only for hadronic collisions (so far)

CKKW with pseudoshowers

Lönnblad [hep-ph/0112284] (ARIADNE) Mrenna, Richardsson [hep-ph/0312274]

- Apply parton shower stepwize to clustered event, reject event if too hard emission
- Apply vetoed parton shower as in the CKKW approach

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Old and New Pythia showers Impact of shower on matching $p_T(W)$ at the Tevatron Summary of

shower impact "Shower k_T " scheme

Conclusions

Matching in MadGraph / MadEvent

J.A. et al. [arXiv:0706.2569], [work in progress] (cf. Mrenna, Richardsson [hep-ph/0312274])

- CKKW scheme (for Sherpa showers) (with S. Höche)
- MLM scheme (Pythia showers, old & new)
- MLM scheme with k_T jets (Pythia showers, old & new)
- "Shower k_T scheme" (Pythia showers, new)

Details of MadEvent k_T MLM scheme

- **①** Generate multiparton event with k_T clustering cutoff d_{cut}
- 2 Cluster event and use k_T for α_s scale
- Shower event with Pythia
- Perform jet clustering with k_T algorithm, $d_{\min}(jet) > d_{cut}$
- Match clustered jets to partons $(d(jet, parton) < d_{min}(jet))$
- **6** Discard events where jets not matched
- For highest multiplicity sample, jets matched if d(jet, parton) < d_{min}(parton, parton)

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Old and New Pythia showers Impact of shower on matching $p_T(W)$ at the Tevatron Summary of

shower impact "Shower k_T " scheme

Conclusions

Advantages with k_T jets

- Immediate comparison with CKKW scheme
- One matching parameter $(d_{\min}^{jet} vs. p_{T,\min}, \Delta R_{\min})$
- Easy to check smoothness by plotting jet rates d_{jet}
- Allows to use "shower k_T scheme"
- Allows straightforward investigations of parton showers

Shower k_T scheme

- Keep/reject event based on k_T of hardest shower emission (as reported by Pythia)
- Highest multiplicity treatment as in CKKW, use min d_{parton} as cutoff
- No jet clustering
- No need of "fiducial region", can use $k_T^{\text{match}} = d_{\text{cut}}^{\text{ME}}$
- Need similar k_T definitions in ME and PS (only "new", p_T -ordered showers at present)

Matching ME+Pvthia

Johan Alwall

Jet matching -ME vs. PS

Matching in MadGraph / MadEvent

Old and New Pythia showers

Impact of shower on matching $p_T(W)$ at the Tevatron

Summary of shower impact "Shower k_T" scheme

Old and New Pythia showers

Parton showers

• Sudakov form factors for non-branching probability between scales

$$\Delta(t_1, t_2) = \exp\left\{-\int_{t_2}^{t_1} \frac{dt'}{t'} \int_{\epsilon(t)}^{1-\epsilon(t)} dz \frac{\alpha_s(t)}{2\pi} \widehat{P}(z)\right\}$$

- QCD splitting functions $P_{a \rightarrow b}(z)$ for z distribution
- Different choice of evolution variable t
 - \implies "Old" Pythia showers: Q^2
 - \implies "New" Pythia showers: p_T^2 (dipole-inspired)
- Can give quite different distributions

Differential $1 \rightarrow 2$ jet rate

Old showers smooth for small cutoff, new showers for larger cutoff

SLAC Summary of shower impact

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Old and New Pythia showers Impact of shower on matching $p_T(W)$ at the Tevatron

Summary of shower impact "Shower k_T " scheme

Conclusions

- Different showers have very different behavior, especially at low $k_{\mathcal{T}}$
- Strongly affects matching need different treatment (e.g. cutoffs) for different showers
- Matching stabilizes tail, but overall normalization is strongly affected by shower

 \Longrightarrow Normalizing overall cross section to e.g. NLO value dangerous

- $\bullet\,$ New pythia showers seem to agree better with W/Z data
 - but why "step" in matching for low k_T ?

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Old and New Pythia showers Impact of shower on matching $p_T(W)$ at the Tevatron

Summary of shower impact "Shower k_{T} "

scheme

Conclusions

"Shower k_T " scheme

Comparison with k_T and cone jet MLM schemes

Dependence on highest multiplicity

Surprisingly small dependence with "shower k_T " method!

Conclusions

Matching ME+Pythia

Johan Alwall

Jet matching – ME vs. PS

Jet matching schemes

Matching in MadGraph / MadEvent

Conclusions

- Have presented investigation of shower and scheme dependence for the benchmark case *W* + jets
- Shower dependence larger than expected (should be equivalent for small k_T ?)
- Needs care with e.g. cutoff values $(p_T \text{ or } k_T)$
- New "shower k_T " scheme presented, with many nice properties:
 - \longrightarrow More efficient than standard MLM since no "fiducial region" needed
 - \longrightarrow Agrees with MLM schemes
 - \longrightarrow Remarkable insensitivity to highest multiplicity sample
 - \longrightarrow No need for special treatment of e.g. top or b quarks
- So far only for "new" Pythia shower