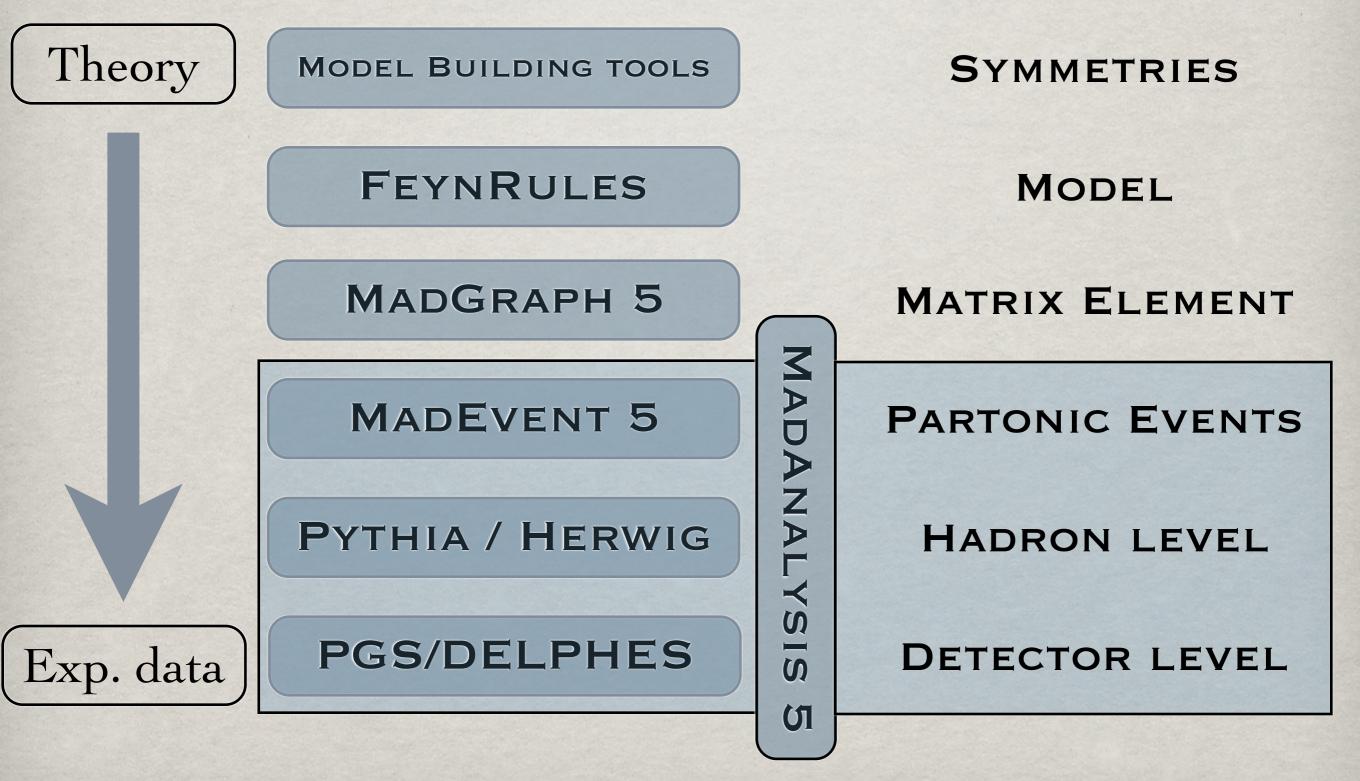


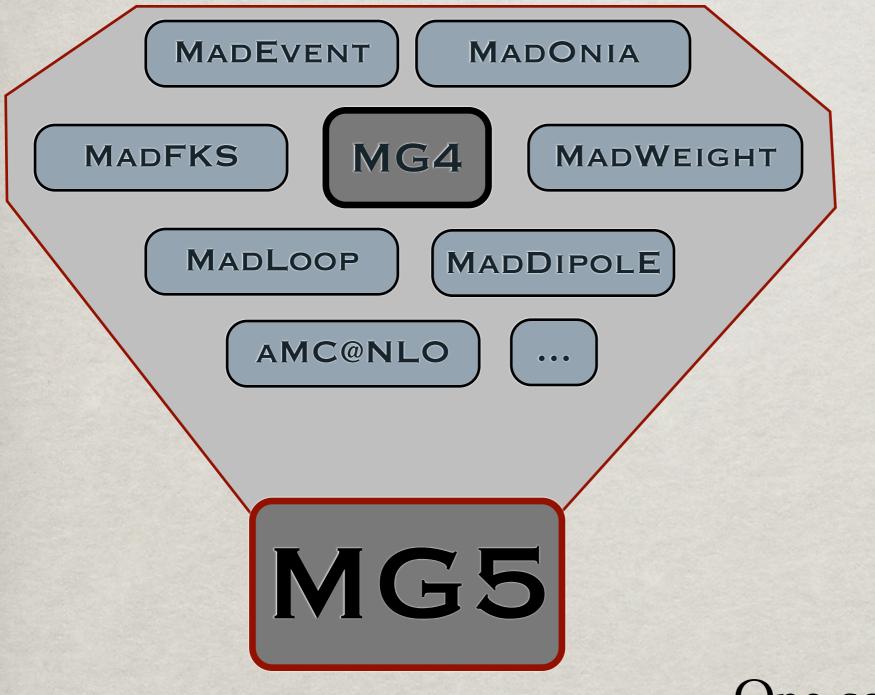
MADGRAPH5 Going Beyonder

Valentin Hirschi, EPFL

CORE MG5 TEAM


F. MALTONI (CP3), T. SLETZER (UIUC), O. MATTELAER (FNRS/CP3), J. ALWALL (FERMILAB)

MG5@NLO TEAM


V. H.(EPFL), M. ZARO (CP3), R. FREDERIX (UZH)

Special thanks to O. mattelaer and J. Alwall from whom many slides are inspired.

MG5, PIECE OF A WHOLE

A BIT OF HISTORY

1994 Core MG4 2002 MadEvent 2007 MadDipole 2008 MadOnia 2008 MadWeight **2009** MadFKS 2011 MadLoop **2011** MG5

One code, to rule them all!

MADGRAPH 5 SPECS

- High-level language: Python
 - Complex data-structures allow for very general objects while keeping speed where needed.
 - Involved algorithms => Performance increase
- Built-in testing suite => Reliability
- User-interface and automatic doc. => User friendly
- Flexible and Modular => Developer friendly All-in-one distribution

DEVELOPING PLATFORM

Name		Status	Last Modified	Last Commit
Ip:madgraph5 Series: trunk		Mature	2012-06-14	213. Change EWdim6 model accordingly to th
1p:madgraph5/2.0 Series: 2.0		Experimental	2012-03-12	181. merge with 1.4.3
Ip:~maddevelopers/madgraph5/GPU		Development	2012-06-15	220. first attempt to minimize the number
Ip:~maddevelopers/madgraph5/ML5_faster_merged_1.4.6		Development	2012-06-15	230. remove a not working security
Ip:~maddevelopers/madgraph5/FKS5_new_born		Development	2012-06-15	314. Fix in add_write_info.f related to th
Ip:~maddevelopers/madgraph5/new_color_ordering		Experimental	2012-06-15	240. Re-merge with 1.4.7 (fixes to cluster
p:-maddevelopers/madgraph5/1.4.7		Development	2012-06-15	233. Regenerate html pages after combine_runs
Ip:-maddevelopers/madgraph5/1.5.0		Development	2012-06-14	218. fix external use of aloha routine. im
Ip:~maddevelopers/madgraph5/4fermion		Development	2012-06-13	221. fix another id problem
Ip:~maddevelopers/madgraph5/FKS5	-	Development	2012-06-08	201. 1. Merged with latest push of this br
Ip:~maddevelopers/madgraph5/1.4.7_web		Development	2012-06-07	221. fix
1p:~maddevelopers/madgraph5/maddm		Development	2012-06-07	200. Fixed some more bugs. Improved test
Ip:~maddevelopers/madgraph5/WWW		Development	2012-06-07	8. merged
Ip:-maddevelopers/madgraph5/FKS5_merge_1.4.6		Development	2012-06-06	216. 1. Intermediate commit for the 1.5 me
Ip:-maddevelopers/madgraph5/negative_weights		Development	2012-06-06	216. Fixed forgotten DSIGN, fixed unit tes
Ip:-maddevelopers/madgraph5/faster_aloha		Development	2012-06-05	275. adding/modifying routine in order to
p:~maddevelopers/madgraph5/madweight		Development	2012-06-03	209. correct dimension of integration for
Ip:-maddevelopers/madgraph5/fr_decay		Development	2012-06-01	213. fix various problem (particles/anti-p
Ip:~maddevelopers/madgraph5/spin32		Development	2012-05-23	224. merge with 1.4.6
p:-maddevelopers/madgraph5/Feynman_gauge		Development	2012-05-23	206. merge with version 1.4.6
Ip:-maddevelopers/madgraph5/ML5_faster		Development	2012-05-22	212. 1. The whole skeletton for the open L
Ip:-maddevelopers/madgraph5/1.4.6	-	Development	2012-05-16	234. merge with 2.0
Ip:~maddevelopers/madgraph5/FKS5_new_born_ko		Development	2012-05-07	253. working on an imporving of the madfks
Ip:~maddevelopers/madgraph5/mg5-systematics		Development	2012-03-28	216. Updated README.systematics
Ip:~maddevelopers/madgraph5/usermodv5	0	Development	2012-03-24	225. merge with 1.4.3
Ip:~maddevelopers/madgraph5/NLO_EW		Development	2012-03-21	5. Upload
Ip:~maddevelopers/madgraph5/fermion_order_c_fix		Development	2012-03-09	221. Merged with old fix for inverted PID,
Ip:-maddevelopers/madgraph5/python_standalone		Development	2012-01-20	192. upgraded version
Ip:~maddevelopers/madgraph5/decay_calculator		Experimental	2011-12-13	192. Delete intermediate interactions thor
Ip:~maddevelopers/madgraph5/reweight_alpha_s_for_g_to_bbbar		Development	2011-05-12	141. Changed alpha_s reweighting in reweig

Valentin Hirschi, 19 June 2012

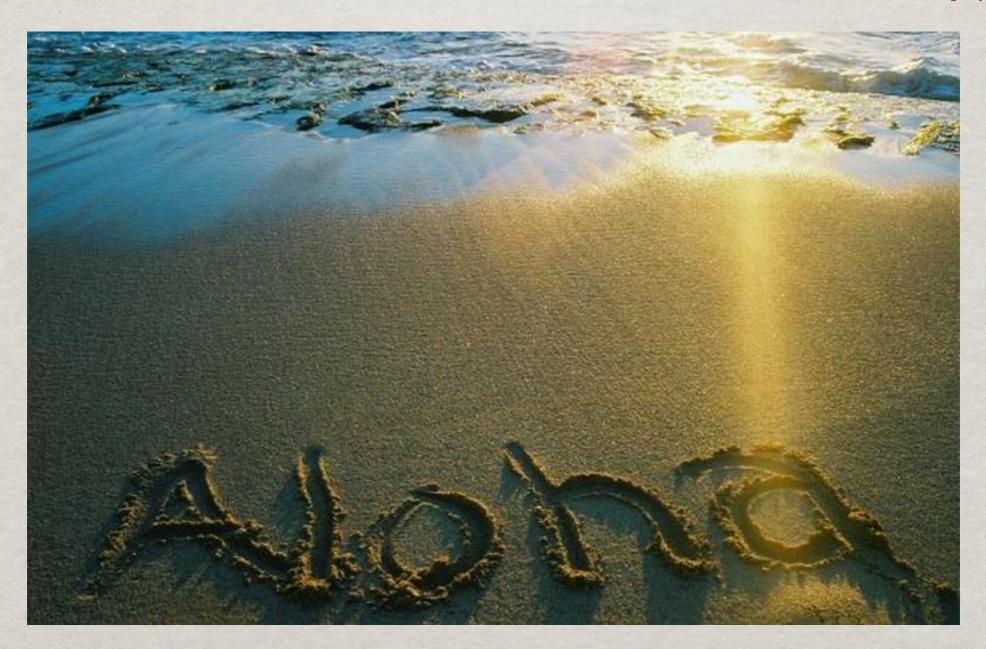
SUPPORTED MODELS

New and in the public release!

COLOR CODE

Planned / Ongoing progress

Done and will be made public for MG5 v2.0


EFFECTIVE THEORIES	N-LEGS VERTICES, VN
COLOR STRUCTURES	Sextets, EIJK, VIRTUALLY ALL
LORENTZ STRUCTURES	All, THANKS TO ALOHA
SPINS SUPPORTED	1, 1/2, (3/2), <mark>2</mark>
GAUGES	UNITARY, FEYNMAN
COMPLEX MASS SCHEME	AUTOMATIC MODEL CONVERSION AVAILABLE FOR NLO TOO!
MODEL WITH LOOP INFO	IMPORT UFO LOOP-MODELS
DECAY WIDTHS COMPUTATION	ON-THE-FLY WIDTHS COMPUTATION

LORENTZ STRUCTURES

ALL, THANKS TO ALOHA

AUTOMATIC LANGUAGE-INDEPENDENT OUTPUT OF HELICITY AMPLITUDE

O. Mattelaer et al., arXiv:1108.2041 [hep-ph]

FROM UFO TO MG5

ALOHA translate a UFO Lorentz structure

into pseudo-HELAS subroutine in a chosen language

 $\begin{aligned} & \text{VERTEX} = \text{COUP}^*(\text{(V4(1)*((V2(1)*((0, -1)*(V3(2)*V1(2)))} \\ & +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*((0, 1)) \\ & *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4)))))) \\ & +((V4(2)*((V2(2)*((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))) \\ & +(0, 1)*(V3(4)*V1(4))))+(V1(2)*((0, 1)*(V3(1)*V2(1))+(0, \\ & +1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+((V4(3)*((V2(3))) \\ & & *((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(2)) \\ & & *(1(4))))+(V1(3)*((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))) \\ & & & +(0, -1)*(V3(4)*V2(4))))))+(V4(4)*((V2(4)*((0, -1)*(V3(1)))) \\ & & & *V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(3)*V1(3))))+(V1(4)) \\ & & & *((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))+(0, -1)*(V3(3))) \\ & & & \text{ND} \end{aligned}$

Available in Python, C++ and F77

ALOHA available as a standalone release

NEW ON ALOHA

• ALOHA is optimizing the way it does analytical computation

Model name	Loading time, new ALOHA	Loading time, old ALOHA
SM	1.2 s	3 s
MSSM	1.4 s	5 s
Randall-Sundrum	90 s	15 min

- Abbreviation usage improves compilation and running time (up to 40%)
- Possibility to create ALOHA subroutine from the MG5 shell

mg5> output aloha FFV1_3

• New Outputs/Options in progress (not yet into the public release)

Quadruple precision, Feynman Gauge, Spin 3/2, Complex Mass Scheme, Open Loops techniques, anomalous couplings

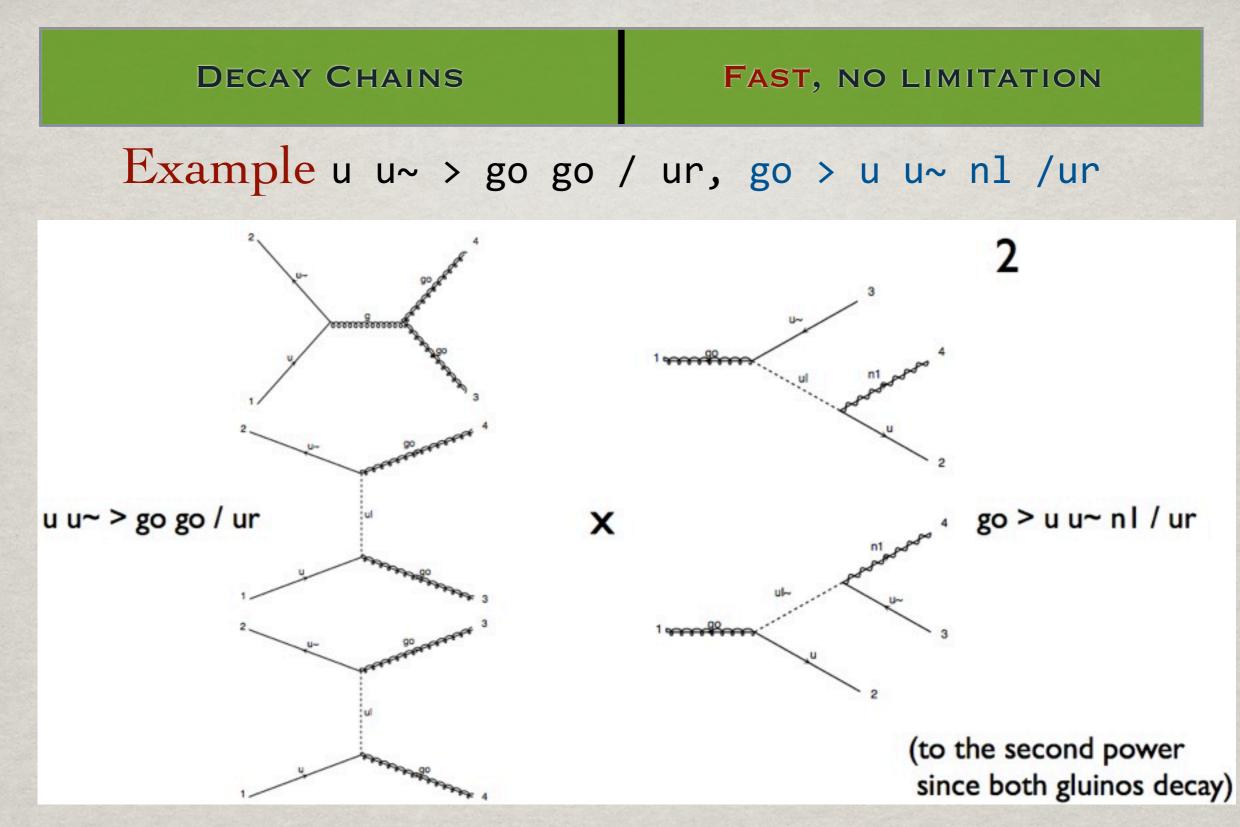
Valentin Hirschi, 19 June 2012

MATRIX ELEMENT GENERATION

DECAY CHAINS	FAST, NO LIMITATION
OUTPUT LANGUAGES	PYTHON, FORTRAN, C++
MADEVENT5	LESS CHANNELS, COMPACT
NLO, VIRTUAL	■MADLOOP5 USING OPP
NLO, REAL	■MADFKS5 FKS FORMALISM
RECURSION RELATIONS FOR MULTI-JETS	BG COLOR-ORDERED AMPS
GPU OUTPUT	Long-standing work

Valentin Hirschi, 19 June 2012

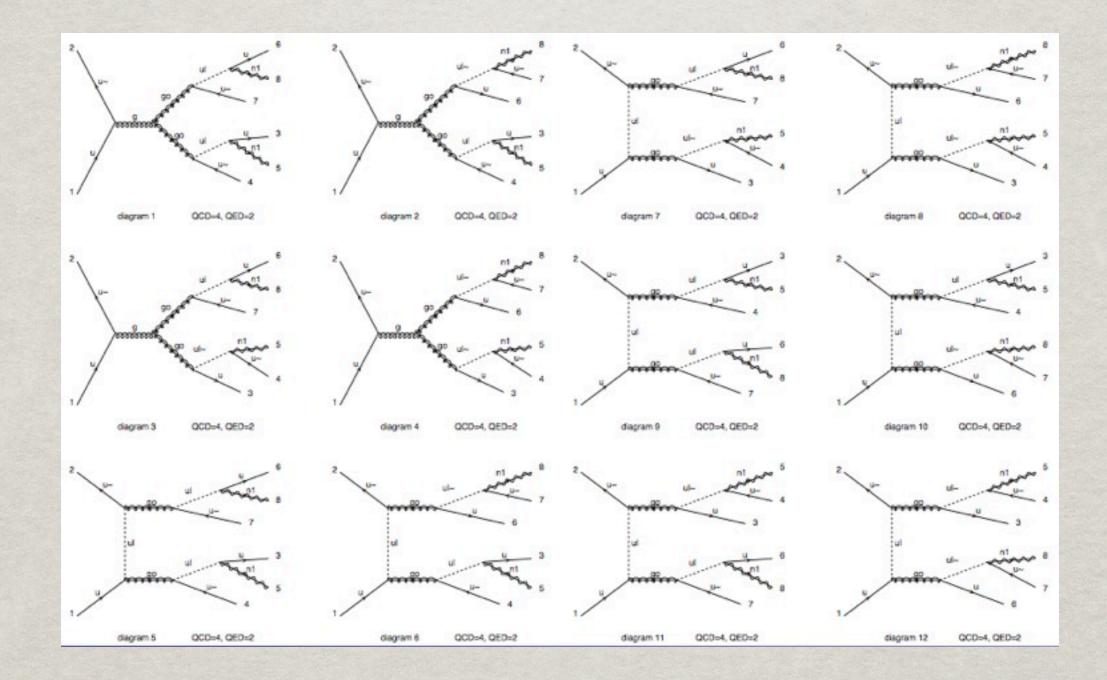
DIAGRAM GENERATION SPEED BENCHMARK


Process	MadGraph 4	MadGraph 5	Subprocesses	Diagrams
pp ightarrow jjjj	29.0 s	25.8 s	34	307
$pp ightarrow jjl^+l^-$	341 s	103 s	108	1216
$pp ightarrow jjje^+e^-$	1150 s	134 s	141	9012
$u ar{u} ightarrow e^+ e^- e^+ e^- e^+ e^-$	772 s	242 s	1	3474
gg ightarrow gggggg	2788 s	1050 s	1	7245
$pp ightarrow jj(W^+ ightarrow l^+ u_l)$	146 s	25.7 s	82	304
$pp \rightarrow t\bar{t}$ +full decays	5640 s	15.7 s	27	45
$pp ightarrow ilde{q}/ ilde{g} ~ ilde{q}/ ilde{g}$	222 s	107 s	313	475
→ 7 particle decay chain	383 s	13.9 s	1	6
$(gg ightarrow (\tilde{g} ightarrow u \bar{u} \tilde{\chi}_1^0) (\tilde{g} ightarrow u \bar{u} \tilde{\chi}_1^0)$	70 s	13.9 s	1	48
$pp ightarrow (\tilde{g} ightarrow jj \tilde{\chi}_1^0) (\tilde{g} ightarrow jj \tilde{\chi}_1^0)$	>> 10 ⁷ years	251 s	144	11008
$\zeta gg ightarrow (ilde{g} ightarrow u(ilde{u}_l ightarrow ar{u}(ilde{\chi}_2^0 ightarrow u(ilde{u}_l ightarrow ar{u}(ilde{\chi}_2^0 ightarrow ar{u}(ilde{\chi}_2^0 ightarrow ar{u}(ilde{u}_l ightarrow ar{u}(ilde{u}_l ightarrow ar{u}(ilde{u}_l ightarrow ar{u}(ilde{\chi}_2^0 ightarrow ar{u}(ilde{u}_l ightarrow ar{u}(ilde{u}) ightarrow ar$	$\rightarrow Z \tilde{\chi}_1^0)))(\tilde{g} \rightarrow u$	$u ilde{d} ilde{\chi}_1^-)$		

Very fast decay chains opening the way for new types of processes! MadEvent5 now able to handle such large decay chains. DECAY CHAINS

FAST, NO LIMITATION

pp>tt~w+, (t>w+b,w+>l+vl),(t~>w-b~,w->jj),w+>l+vl


- Separately generate core process and decays Combining them iteratively at the time of the output
- Retain full matrix element compatible with the decay So full width effect and full spin correlations
- However no interference with non-resonant diagrams.
 Description only valid close to pole mass
 Therefore cutoff at lm ± nΓl
- Madevent5 capable of handling decays as large as 2>14 !

yields...

DECAY CHAINS

FAST, NO LIMITATION

Tough bookkeeping ...

Valentin Hirschi, 19 June 2012

OUTPUT LANGUAGES

PYTHON, FORTRAN, C++

Python for fast user local checks of chosen processes

mg5> check p p > j j

28 processes checked in 6.636 s Gauge results: Process matrix BRS ratio Result q q > q q1.2407989312e+02 1.2138126173e-27 9.7825085655e-30 Passed g g > u u~ 2.3629996644e+00 1.9002508785e-31 8.0416891595e-32 Passed Summary: 2/2 passed, 0/2 failed Lorentz invariance results: Min element Max element Relative diff. Process Result 4.2713055572e+02 4.2713055572e+02 2.3954772746e-15 Passed q q > q q1.0314340809e+01 1.0314340809e+01 4.8222171854e-15 Passed g g > u u~ 5.8114902657e+01 5.8114902657e+01 1.9562424184e-14 Passed u u > u u UC>UC 1.5184393643e+01 1.5184393643e+01 1.2868426421e-15 Passed u d > u d6.7102369730e+00 6.7102369730e+00 5.2944682775e-16 Passed 1.0050745419e+00 1.0050745419e+00 4.2417315701e-14 Passed US>US 1.8741700240e-01 1.8741700240e-01 8.8857174941e-16 Passed us>cd d d > d d1.4179370573e+01 1.4179370573e+01 8.5188735607e-15 Passed 4.6071223798e+00 4.6071223798e+00 1.1567026180e-15 Passed ds > dsSummary: 9/9 passed, 0/9 failed Not checked processes: $g g > c c^{2}$, $g g > d d^{2}$, $g g > s s^{2}$, c c > c c, c d > cProcess permutation results: Process Min element Max element Relative diff. Result 1.3704079118e+02 1.3704079118e+02 2.0739598178e-16 Passed gg > gg7.3262576044e-01 7.3262576044e-01 1.5154026579e-15 Passed q q > u u~ 2.0931560511e+01 2.0931560511e+01 1.8670299544e-15 Passed u u > u u 1.7726210646e+00 1.7726210646e+00 0.000000000e+00 Passed UC>UC 4.1597645298e+00 4.1597645298e+00 1.7081321086e-15 Passed u d > u d1.0967268231e+00 1.0967268231e+00 0.000000000e+00 Passed U S > U S1.1260362474e-01 1.1260362474e-01 3.9438269493e-15 Passed us>cd d d > d d5,6082819971e+01 5,6082819971e+01 1,6470383568e-15 Passed ds > ds9.7692549705e+00 9.7692549705e+00 1.8183135201e-16 Passed Summary: 9/9 passed, 0/9 failed

Also be available for loops using slower compiled form

Valentin Hirschi, 19 June 2012

OUTPUT LANGUAGES

PYTHON, FORTRAN, C++

• C++ for neat interface with Pythia 8

Run exactly as if it was an internal Pythia standard process

Allows using Pythia for ANY 2>1,2,3 process in ANY model!

• F77 for the MadEvent output.

```
Sigma_sm_qq_ttx.h
```

#include "SigmaProcess.h"
#include "Parameters_sm.h"

```
using namespace std;
```

namespace Pythia8

// A class for calculating the matrix elements for // Process: u u~ > t t~ // Process: c c~ > t t~ // Process: d d~ > t t~ // Process: s s~ > t t~ // Process: s s~ > t t~

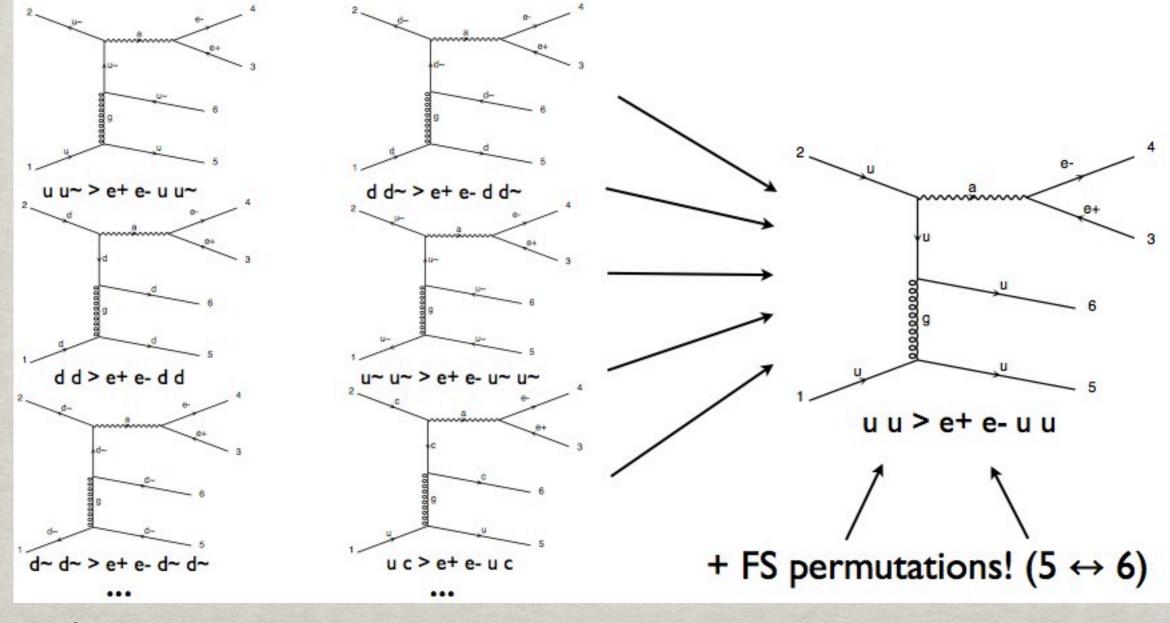
class Sigma_sm_qq_ttx : public Sigma2Process

public:

// Constructor.
Sigma_sm_qq_ttx() {}

```
// Initialize process.
virtual void initProc();
```

// Calculate flavour-independent parts of cross section.
virtual void sigmaKin();


```
// Evaluate sigmaHat(sHat).
virtual double sigmaHat();
```

```
// Select flavour, colour and anticolour.
virtual void setIdColAcol();
```

MADEVENT5

LESS CHANNELS, COMPACT

- Combine all processes with same initial/final state (color, spin, mass, width)
- Combine all channels with same pole structure (and permutations)

Valentin Hirschi, 19 June 2012

MADEVENT5

USER-FRIENDLY TOO

Example: The process p p > 11 j j has the following subprocess directories

content	gg>llqq	gq>llgq	qq>llgg	qq>llqq
# matrix elements	2	4	2	20
# integration channels	8	16	10	14

So only 48 integration channels in MG5 compared to the 486 in MG4!

- USER-FRIENDLY with neat 'install', 'launch' and 'help' commands
- Browser-based monitoring of the runs and results

Valentin Hirschi, 19 June 2012

MADEVENT5

INTERFACING TO MC TOOLS

MadEvent5 supervises the running of subsequent MC and Analysis tools • Pythia8, Delphes, PGS and MadAnalysis incorporated.

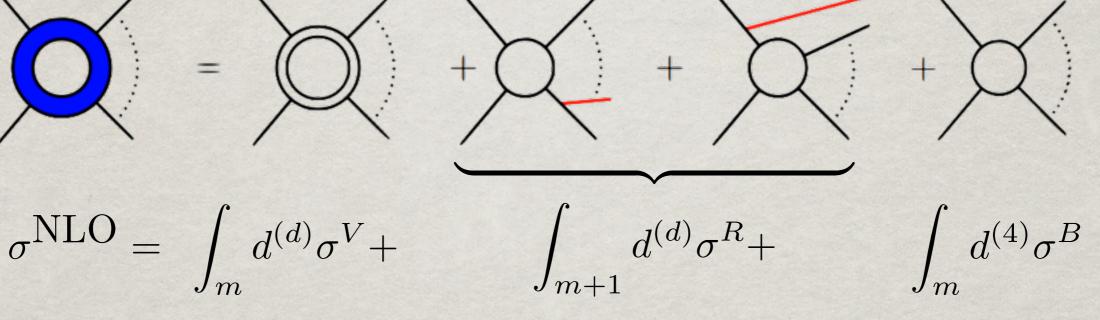
Matching implemented (CKKW / MLM), may be extended in the future

MadAnalysis5 soon interfaced within ME shell => One framework

EVENT GENERATION SPEED BENCHMARK

Generation of 10,000 unweighted events Computer: Sony Vaio TZ laptop / *128-core cluster

Process	Subpro	c. dirs.	Char	nnels	Directo	ory size	Event g	en. time
FIOCESS	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5
$pp ightarrow W^+ j$	6	2	12	4	79 MB	35 MB	3:15 min	1:55 min
$pp ightarrow W^+ jj$	41	4	138	24	438 MB	64 MB	9:15 min	4:19 min
$pp ightarrow W^+ j j j$	73	5	1164	120	842 MB	110 MB	21:41 min*	8:14 min*
$pp \rightarrow W^+ j j j j$	296	7	15029	609	3.8 GB	352 MB	2:54 h*	46:50 min*
$pp ightarrow W^+ j j j j j j$	-	8	-	2976	-	1.5 GB	-	11:39 h*
$pp ightarrow l^+ l^- j$	12	2	48	8	149 MB	44 MB	21:46 min	3:00 min
$pp ightarrow l^+ l^- jj$	54	4	586	48	612 MB	83 MB	2:40 h	11:52 min
$pp \rightarrow l^+ l^- j j j$	86	5	5408	240	1.2 GB	151 MB	49:18 min*	16:38 min*
$pp \rightarrow l^+ l^- j j j j$	235	7	65472	1218	5.3 GB	662 MB	7:16 h*	2:45 h*
$pp ightarrow tar{t}$	3	2	5	3	49 MB	39 MB	2:39 min	1:55 min
$pp ightarrow t ar{t} j$	7	3	45	17	97 MB	56 MB	10:24 min	3:52 min
pp ightarrow tt jj	22	5	417	103	274 MB	98 MB	1:50 h	32:37 min
$pp ightarrow t\bar{t}jjj$	34	6	3816	545	620 MB	209 MB	2:45 h*	23:15 min*


No problem running pp>tt~jj on a laptop!

Valentin Hirschi, 19 June 2012

MG5@LOOP TEASER

NLO BASICS

NLO contributions have two parts

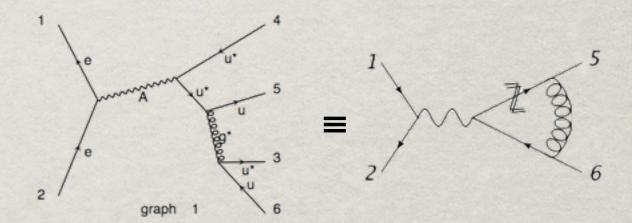
Virtual part

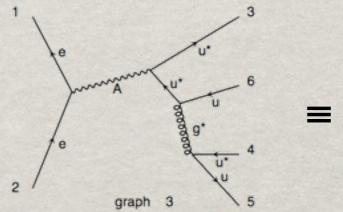
* Used to be bottleneck of NLO computations

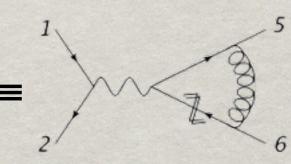
 This work brings automation using MadGraph5 exploiting the OPP implemented in CutTools. Real emission part

- Challenge is the systematic extraction of singularities
- FKS subtraction method implemented on MadGraph5

L-CUT DIAGRAMS


TREE DIAGRAM GENERATION ALGORITHMS AT WORK FOR LOOPS


• Loop diagrams are nothing but tree diagrams with two FS merged.


Take advantage of MG5 efficient tree-diagram generation

Filter out tadpoles and wf renorm. loops on the fly.

Disregard loop-particles already considered as L-Cut particles.

Valentin Hirschi, 19 June 2012

LO MG5 POWER BROUGHT TO NLO

- ANY SM process *can* be generated, including those with 4-gluon vertices
- *Expecting* ANY renormalizable loop-model to be handled by MG5.
- Mixed order perturbation expansion
- Quadruple-precision output available for handling unstable PS points.
- Complex mass scheme and Feynman gauge available (under checks)
- Automatic checks for internal consistency and vs independent codes.
- Easy implementation of optimizations at the output level:
 - ➡ Sum over color/hels before OPP calls.
 Done!
 - ➡ Open loops methods and diagram grouping Work in progress

MG5@LOOPS: RESULTS

1-loop process	Generat	ion time	Outpu	ıt size ¹	Compila	tion time	Runnin	g time ²
d d~ > u u~	3.5 s	5.378 s	68 Kb	268 Kb	0.8 s	2.996 s	2.2 ms	9.4 ms
d d~ > d d~ g	17.8 s	104.8 s	228 Kb	1.7 Mb	2.4 s	19.181 s	125 ms	0.74 s
d d~ > d d~ u u~	36.7 s	2094 s	372 Kb	3.3 Mb	4.1 s	45.02 s	291 ms	2.3 4 s
gg>gg	13.5 s	×	372 Kb	×	1.9 s	×	212 ms	×
gg>ggg	3 min 23s	×	180 Kb	×	15.7 s	×	10.2 s	×
gg>hh	4 s	×	28 Kb	×	0.5 s	×	44 ms	×
gg>ghh	11.4 s	×	64 Kb	×	1.0 s	×	1.16 s	×

²: Of the equivalent matrix.f file.

MG5@NLO = \blacklozenge , MadLoop (v4) = \diamondsuit

⁴: Per PS points, Color / Helicity summed amplitude.

	raph Home Page ×			
← → C ③ mi	dgraph.hep.uiuc.edu			ជ
	Any opinions, Endings, and conclusions		y Physics	
	>~~<	The MadGrap UCL UIU by the MG/ME De	h homepage	3
	Generate Process Register	<u>My</u> <u>Clu</u> <u>Tools Database</u> <u>Sta</u>		Wiki/Docs Admin
Please note the corre		ou register. Registration is quic 5, JHEP 1106(2011)128, arX		er for a password by clicking here.
Code can be general I. Fill the form: Model: SM Input Process: Exa		LO NLO W+> l+ vl		very soon there!

In the mean time, go check <u>http://amcatnlo.cern.ch/</u>

CONCLUSIONS, MG5...

... is a reliable and generic mature ME generator

... is flexible and modular for easy integration of new modules

... has a powerful user-friendly event generator linked to many analysis and MC tools (Pythia, PGS, MadAnalysis,...)

... aims at becoming an automated, competitive and self-contained NLO generator => (i.e. public aMC@NLO)

... v2.0 soon released with lots of new features!