QCD radiation in the production of heavy colored particles at the LHC

Simon de Visscher
Université catholique de Louvain

Johan Alwall (SLAC) - Fabio Maltoni (UCL)

26/03/09 - NIKHEF - TH seminar
Outline

• Introduction

• Jet matching/merging

• Detailed study of matching impact
Heavy particles and QCD radiations

- LHC: a QCD machine!

- Radiation: not part of the “main” process but could be important
 - additional jets
 - transverse boost

- Trustable MC simulation is crucial for shape prediction, final state definitions, ...

- SM: ttbar+jets, W/Z+jets,...

- Beyond the SM: new strongly interacting particles?
Matrix Element vs Parton Showers for multi-jets events

- **Matrix-Element**
 - Needed for multi-jet description
 - A limited number of partons
 - Valid when partons are well separated in the phase-space

- **Parton Showers**
 - Needed for realistic studies
 - Any number of partons
 - Valid when partons are collinear/softs

- We need both approaches to simulate physics from high scale down to hadronization scale (~1 GeV)
- What happens if ME and PS are used without control?

- Example: $tt + 2$ partons vs $tt + 1$ partons

2 partons (collinear)

2 partons

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

1 parton + no hard radiation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

1 parton + 1 hard radiation

ME and PS overlap

⇒ If you add all multiplicities: wrong cross-section.
To avoid overlap: one parton \Leftrightarrow one jet (except for highest multiplicity sample)

- ME: scale$>\$jet definition
- PS: scale$<\$jet definition

\Rightarrow define a cutoff (different definitions are possible) to separate ME and PS phase-spaces and use a matching technique
What is available on the market?

Showering
- HERWIG
- PYTHIA
- ARIADNE
- SHERPA

ME Generators
- ALPGEN
- HELAC
- MG/ME
- AMEGIC++
- ...

Matching Schemes
- MLM
 - Event Rejection based
 - Cone or Kt

- CKKW
 - Sudakov Reweighting
 - Shower veto
 - Kt clustering
• CKKW (reweighting method)

 - Control the showers: no additional resolvable radiation
 ⇒ 1 parton gives 1 jet (no double counting)
 ⇒ reweight event/event by the probability of having no
 resolvable emission (Sudakov form factor)

• MLM (not reweight, but reject)

 - No control of the showers, but match jets (PS level) with
 partons (ME level): rejection method

• Three versions: MLM (Mangano), Kt MLM (Mrenna, Alwall),
 Shower-kt (Alwall).
Does it work?

- A real test of Kt MLM: W+ jets at Tevatron

- Possibility of a theoretical validation for most of SM processes: $t\bar{t}$bar, W/Z, photon+jets,... we come to that in a while...

[MG Team]
Matching in BSM? One step forward...

- Additional difficulty: double counting due to resonances

Example: $\tilde{q}\tilde{q}jj$
Matching in BSM? One step forward...

- Additional difficulty: double counting due to resonances

Example: $\tilde{g}\tilde{g}jj$

If Go's on resonance:

double counting with

with $go \to dr+q$ in pythia
Matching in BSM? One step forward...

- Additional difficulty: double counting due to resonances

Example: $\tilde{q}\tilde{q}jj$

If Go's on resonance:

double counting with

$\text{with } \text{go} \rightarrow \text{dr} + q \text{ in pythia}$
Matching in BSM? One step forward...

- Additional difficulty: double counting due to resonances

Example: \(\tilde{q}\tilde{q}jj \)

If Go's on resonance:
- double counting with

\[\text{with } \text{go} \rightarrow \text{dr}+q \text{ in pythia} \]
Matching in BSM? One step forward...

- Additional difficulty: double counting due to resonances

Example: \(\widetilde{q}\widetilde{q}jj \)

If Go’s on resonance:
double counting with

with \(\text{go} \rightarrow \text{dr} + q \) in pythia

OK!
First time this is possible!
How to control the matched simulation?

- Differential jet rates \((N+1 \rightarrow N)\): scale at which and events passes from a \(N+1\) to a \(N\) jet configuration while clustered.

Determined by ME

Determined by PS

Transition from PS to ME regime is smooth

Log(Differential Jet Rate \(2 \rightarrow 1\))

- Transition from PS to ME regime is smooth
Detailed study of the matching impact

 ISR

 Physical cases

J. Alwall, SdV, F. Maltoni. JHEP 0902:017
Sensitivity to showers

- Matching implies that jets kinematics are ruled by ME calculations above the cutoff

 - ⇒ physical distributions at large Pt should be less sensitive to shower parametrization:

 - Shower evolution variable: Q^2, P_T^2, \ldots

 - Starting scales: from low values ("wimpy") to high values ("power") showers...

 - additional tunes...

The IS radiation in Pythia only

- Case of gluino production done “a la Pythia“ (2→2): Pt distribution of extra-jets
The IS radiation with ME + Pythia

- Case where gluinos are produced with ME calculation with up to 2 jets with MG/ME (2→2,3,4)
~SPS1a → gluinos~600 GeV
squarks~560 GeV
neutralino~100 GeV

Shape prediction

\[g \rightarrow \tilde{g} \rightarrow \tilde{d}_L \rightarrow j \rightarrow j \rightarrow \chi^0 \]

hard

soft

Hard
• The classical case illustrated @ SPS1a: $2 \rightarrow 2$
The classical case illustrated @ SPS1a (2→2,3,4)
The false gluino case

- Let's say nature produces squark pairs at 600 GeV

Conclusion: we don’t have only squarks!
Let's say nature produces squark pairs at 600 GeV

Unmatched qq + 25% qg: fits “data”

Unmatched qg, Mg = 700 GeV

Mis-interpretation: presence of gluinos!
The degenerate case

- If $m_{\tilde{g}} \sim m_{LSP}$:
 - Jets from gluinos are soft
 - small MET
- \Rightarrow gluinos “disappear”!
- impact of matching is huge since jets are almost exclusively ISR
• impact of matching is huge since jets are almost exclusively ISR
Summary

- To simulate multi-jets events inclusive samples, need a matching technique

- Matching in SUSY possible after solving double counting arising from the presence of resonances

- Sensitivity of extra-jet kinematics to showers parametrization is strongly reduced

- Eliminates some major problems for critical cases

J. Alwall, SdV, F. Maltoni. JHEP 0902:017
Thanks for your attention! 😊
Back-up slides
Tree-level+PS vs NLO calculations

G. Salam, M. Rubin

SDV, F. Maltoni
Kt-MLM in more details

- Main steps are
 - With MadEvent: generate events with a minimal distance in the phase-space between the partons
 - Perform showering using Pythia
 - Match each jet with a parton using the cutoff as maximal distance (except for highest multiplicity events)
 - if \(N(jet) \neq N(parton) \rightarrow \text{reject} \)
 - For clustering algos, the distance definition is \(Kt \) instead of Cone (MLM [Mangano])
Validation [SdV, P.Demin]

- MatchChecker: http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Software/MatchChecker

- Draw differential jet rates, kinematic, MET, Ht
 - with detailed contribution of each multiplicity
 - in comparison plots if more than one production

- Produces a rootfile with all global histos for further use

- Produces a complete report with everything inside