

Simon de Visscher Université catholique de Louvain ***

Johan Alwall (SLAC) - Fabio Maltoni (UCL)

26/03/09 - NIKHEF - TH seminar

Introduction

- Jet matching/merging
- Detailed study of matching impact

Heavy particles and QCD radiations

- LHC: a QCD machine!
 - Radiation: not part of the "main" process but could be important
 - additional jets
 - transverse boost

- Trustable MC simulation is crucial for shape prediction, final state definitions, ...
 - SM: ttbar+jets, W/Z+jets,...
 - Beyond the SM: new strongly interacting particles?

B UCL Matrix Element vs Parton Showers for multi-jets events

- Matrix-Element
 - Needed for multi-jet description
 - A limited number of partons
 - Valid when partons are well separated in the phase-space

- Parton Showers
 - Needed for realistic studies
 - Any number of partons
 - Valid when partons are collinear/softs

 We need both approaches to simulate physics from high scale down to hadronization scale (~I GeV)

What happens if ME and PS are used without control?

• Example: tt + 2 partons vs tt + 1 partons

ME and PS overlap If you add all multiplicities: wrong cross-section.

The principle of the jet matching

 To avoid overlap: one parton ⇔ one jet (except for highest multiplicity sample)

 define a cutoff (different definitions are possible) to separate ME and PS phase-spaces and use a matching technique

What is available on the market?

CKKW and MLM

- CKKW (reweighting method) [Catani,Krauss,Kuhn,Webber]
 - Control the showers: no additionnal resolvable radiation
 ⇒ I parton gives I jet (no double counting)
 ⇒ revealed to cont/overt by the probability of baying periods.

 \Rightarrow reweight event/event by the probability of having no resolvable emission (Sudakov form factor)

- MLM (not reweight, but reject) [Mangano]
 - No control of the showers, but match jets (PS level) with partons (ME level): rejection method
 - Three versions: MLM (Mangano), Kt MLM (Mrenna, Alwall), Shower-kt (Alwall).

• A real test of Kt MLM: W+ jets at Tevatron

UCL

 Possibility of a theoretical validation for most of SM processes:ttbar,W/Z, photon+jets,... we come to that in a while...

• Additional difficulty: double counting due to resonances

UCL

• Additional difficulty: double counting due to resonances

UCL

If Go's on resonance: double counting with

with $go \rightarrow dr + q$ in pythia

Additional difficulty: double counting due to resonances

UCL

If Go's on resonance: double counting with

with $go \rightarrow dr + q$ in pythia

Additional difficulty: double counting due to resonances

with $go \rightarrow dr + q$ in pythia

UCL

Additional difficulty: double counting due to resonances

with $go \rightarrow dr + q$ in pythia

UCL

How to control the matched simulation?

UCL

 Differential jet rates (N+I→N): scale at which and events passes from a N+I to a N jet configuration while clustered

J.Alwall, SdV, F. Maltoni . JHEP 0902:017

Sensitivity to showers

First study (without matching): Plehn, Rainwater and Skands, Phys.Lett. B645 (2007) 217-221

- Matching implies that jets kinematics are ruled by ME calculations above the cutoff
 - \Rightarrow physical distributions at large Pt should be less sensitive to shower parametrization:
 - Shower evolution variable: Q^2 , P_T^2 ,...
 - Starting scales: from low values ("wimpy") to high values ("power") showers...
 - additional tunes...

The IS radiation in Pythia only

Case of gluino production done "a la Pythia "(2→2):
 Pt distribution of extra-jets

UCL

The IS radiation with ME + Pythia

UCL

 Case where gluinos are produced with ME calculation with up to 2 jets with MG/ME (2→2,3,4)

Shape prediction

~SPSIa→ gluinos~600 GeV squarks~560 GeV neutralino~100 GeV

A classical case: SUSY vs SM

• The classical case illustrated @ SPSIa: $(2 \rightarrow 2)$

A classical case: SUSY vs SM

• The classical case illustrated @ SPSIa $(2 \rightarrow 2,3,4)$

The false gluino case

• Let's say nature produces squark pairs at 600 GeV

Conclusion: we don't have only squarks!

The false gluino case

• Let's say nature produces squark pairs at 600 GeV

The degenerate case

- If $m_{\tilde{g}} \sim m_{LSP}$:
 - Jets from gluinos are soft
 - small MET

- \Rightarrow gluinos "disappear"!
- impact of matching is huge since jets are almost exclusively ISR

0.2

0.1

P_T (GeV)

MET (GeV)

- To simulate multi-jets events inclusive samples, need a matching technique
- Matching in SUSY possible after solving double counting arising from the presence of resonances
- Sensitivity of extra-jet kinematics to showers parametrization is strongly reduced
- Eliminates some major problems for critical cases

J.Alwall, SdV, F. Maltoni . JHEP 0902:017

Thanks for you attention! ③

Back-up slides

Kt-MLM in more details

- Main steps are
 - With MadEvent: generate events with a minimal distance in the phase-space between the partons
 - Perform showering using Pythia
 - Match each jet with a parton using the cutoff as maximal distance (except for highest multiplicity events)
 - if $N(jet) \neq N(parton) \rightarrow reject$
 - For clustering algos, the distance definition is Kt instead of Cone (MLM [Mangano])

Validation [SdV, P.Demin]

- MatchChecker: <u>http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Software/MatchChecker</u>
 - Draw differential jet rates, kinematic, MET, Ht
 - with detailed contribution of each multiplicity
 - in comparison plots if more than one production
 - Produces a rootfile with all global histos for further use
 - Produces a complete report with everything inside