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Motivation
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From data to theory: the inverse problem

Lagrangian
L(p1,p2,...) Data 

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

For a given signature, try to identify an 
excess of events  over the expected number 

of background events (counting analysis)

generation of MC events

data analysis

Try to identify an excess of events and
 identify the underlying theory 
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pp → Z’ → e+e- pp → gg,gq,qq→ jets + MET~~ ~~ ~~

an “easy” example

measurement of the properties 
of the new fields has to proceed 
with more complex observables

a “tough” example

properties of the Z’ can be studied 
by analyzing one observable at the 
time (mass⟷minv(e+,e-), spin⟷Ωe)

From data to theory: the inverse problem

Several model-independent techniques 
have been introduced to  handle the 
measurement of properties of 
decay chains with missing ET at hadron 
colliders (end-point region, MT2, ....)

The matrix element method corresponds 
to a different approach, as it makes use of  
strong theoretical assumptions
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The matrix element method
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• kinematic method: discriminator built on one or several 
reconstructed observables, e.g. the invariant mass of two leptons

• matrix element method: likelihood method built on the matrix 
elements  |Mα|2 associated with the theoretical assumptions 
α=h1,h2 ... using the complete kinematics of the events

Basic idea

1.  compute the distribution of events with 
respect to d=m(e+,e-) under B-only and S
+B hypotheses,

2.  compare with the distribution of exp. 
events with respect to d
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• so the matrix element method is a standard likelihood 
procedure, with the probability density distribution provided by 
the hard scattering amplitude

Basic idea

Define a per-event 
probability using matrix 

elements

Evaluate the probability 
for each event under the 

hypotheses α=h1,h2,...

Combine the weights 
into one likelihood

P (x|α) wi(α) = P (xi|α) L(α)

:  kinematics of the reconstructed event

: theoretical assumption

x

α
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• imagine we have a ideal detector that reconstruct 

ME method for an ideal detector

- all the final state objects

- at the scale Q= scale of the hard interaction

- with an infinite resolution
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  : matrix element 
under the signal hypothesis

• under these conditions,  consider the following Higgs search at 
the Tevatron: 

ME method for an ideal detector

µ+

µ−

b

b̄

Z

h

q

q̄

signal

in this analysis, an event x corresponds to                                  

µ+

µ−

b

b̄

Z
q

q̄

background

Define a per-event 
probability using matrix 

elements

pµ+ , pµ− , pb, pb̄

MS MB : matrix element under 
the background hypothesis

P (x|B) =
φ(x)
σB

|MB(x)|2P (x|S) =
φ(x)
σS

|MS(x)|2
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ME method for an ideal detector

Evaluate the probability 
for each event under the 

hypotheses α=S or B
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background events
signal events

d(x) =
[
1 +

P (x|B)
P (x|S)

]−1

d is an optimal discriminator based on the phase-space distribution of the events
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ME method for an ideal detector

Combine the weights 
into one likelihood

Given N experimental events, you can test the S+B 
hypothesis versus the B-only hypothesis 

If  s,b =expected numbers of signal and background events is known, 
you can also use this information to improve the discriminating power

Likelihood for the B-only hypothesis:

Likelihood for S+B hypothesis:

The likelihood ratio is the most discriminating variable for this test

see K. Cranmer, T. Plehn, Eur. Phys. J. C 51, 415-420

Pois(N |b)
N∏

i=1

P (xi|B)

Pois(N |s+ b)
N∏

i=1

[sP (xi|S) + bP (xi|B)]/(s+ b)
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ME method for a real experiment 

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   missing energy 

some particles escape from the detector 
without any interaction (neutrino, wimp, ...)
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ME method for a real experiment 

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

∆(t1, t2) = exp
{
−

∫ t1

t2

dt′

t′

∫
dz

αs(t′)
2π

P (z)
}

2.   showering/hadronization effects

a high energy collision is a multi-scale process, but a fixed-order matrix 
element provides a relevant description only for the hard scale Q 

hard scattering showering hadronization

matrix element at 
fixed order in αs

physics

description tool 

Q ~1 GeV

Sudakov form factors simulation model
tuned to the data

non-branching probability between scales t1 and t2

t3t2t1
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ME method for a real experiment 

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

3.   experimental resolution/reconstruction algorithm 

the final state objects (hadrons, leptons) are 
reconstructed with a finite resolution
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ME method for a real experiment

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   missing energy P(x,α) must be summed over the 
unobserved degrees of freedom

convolute with a
 transfer function W(x,y)

y

reconstruction
analysis

detector 
resolution

showering/
hadronization

parton-level 
event

x W

 0

 0.04

 0.08

-30 -15  0  15  30

ex: transfer function
 on jet energy

Ep-Ej (GeV)

2.   showering/hadronization effets

3.   experimental resolution/reconstruction algorithm 

Saturday 4 December 2010



• real detector: we need to marginalize over unconstrained 
information and to convolute with the resolution function W for 
the measured quantities

ME method for a real experiment

transfer function
extracted from 
MC simulation

tree-level 
matrix element 

integration on the 
parton-level phase-space 

the probability density P(x| α) is normalized to 1    

∫
dxW (x, y) = 1normalization:

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)
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First ME analysis at the Tevatron

Top-quark mass measurement from     production in hadron collisions

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

D0, 2006; CDF 2007.

semi-leptonic channel

dileptonic channel

D0, 2007; CDF 2007.

Examples of Matrix Element analyses

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

MadWeight – p. 8

[DO Phys. Rev. D75 092005, 2006]

tt̄

 Significant improvement for the measurement 
of the top-quark mass
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Evaluation of the weights

Saturday 4 December 2010



Practical Evaluation of the weights

highly non-uniform, 
especially in the presence 

of resonances

highly non-uniform, especially when 
the resolution associated with a 
reconstructed quantity xi is high:

yi-xi

σexp.

pi

pj

sij=(pi+pj)2

Breit-Wigner distr. in sij

when the dimension of the phase-space is large, this structure 
in “peaks” complicates the numerical evaluation of the weights

 0

 0.04

 0.08

-30 -15  0  15  30

need for an algorithm that is sufficiently fast (large number of 
weights must be evaluated)

P (x, α) ∝
∫

dφy |M |2(y) W (x,y)
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1. basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: 

Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

E =
1
N

N∑

n=1

f(zn)

0
0

1

1

I =
∫

V
dz f(z)

 0
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 1
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Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

0
0

1

1

S2 = var(f) =
1

N − 1

N∑

n=1

[f(zn)− E]2

 0
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 0  0.2  0.4  0.6  0.8  1

1. basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N∑

n=1

f(zn)

I =
∫

V
dz f(z)
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Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

0
0

1

1

S2 = var(f) =
1

N − 1

N∑

n=1

[f(zn)− E]2

S large poor convergence
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1. basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N∑

n=1

f(zn)

I =
∫

V
dz f(z)
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Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

0
0

1

1

2. importance sampling:
∫

dz f(z) =
∫

f [P−1(z′)]
p[P−1(z′)]

dz′ =
∫

f(z)
p(z)

p(z)dz

p(z) = Jac[P (z)]z′ = P (z),

if           distributed according to           thenp(z){zn}

E → 1
N

N∑

n=1

f(zn)
p(zn)

 0  0.2  0.4  0.6  0.8  1
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new integrand
new integr. 
measure

S2 → 1
N − 1

N∑

n=1

[
f(zn)
p(zn)

− E

]2

1. basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N∑

n=1

f(zn)

I =
∫

V
dz f(z)

3. adaptive Monte Carlo integration:

p(z) = p1(z1)p2(z2) . . . pd(zd) (grid)

optimized using an iteration procedureS is decreased if p(z) ≈ f(z)/E
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Adaptive Monte Carlo integration

z1

z2

variables z1, z2:

the grid cannot be adjusted efficiently to the 
shape of the integrand because the strength of 
the “peak” in the integrand is not controlled by a 
single variable of integration

z1’z2’

the efficiency of the adaptive MC integration depends on the choice of 
variables of integrations

variables z1’, z2’:

the probability density along z1’ (= variable that 
controls the strength of the “peak”) can be 
adapted to probe the integration region where 
the integrand is the largest

z2

z1
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New phase-space mappings

adaptive MC integration can be used for the computation of the 
weights, as we know where the “peaks” lie:

for a given decay chain and a given transfer function, one needs to 
construct new parametrizations of the phase-space measure

block A

block E

block D

CS B

1

2

11 (ν)

3

4 5

10 (ν)

6 8

7

9

Figure 7: Illustration of the decomposition of the phase-space into blocks for a specific decay
chain.

map the invariant mass of each intermediate particle shown as a dashed line, the angles

of all the visible particles (labeled by an index ranging from 3 to 9) and the energies of

the visibles particles labeled by an index ranging from 3 to 6. Once all these variables

have been generated, the kinematics of each block and the associated phase-space weight

is computed by ordering the blocks backward in time. First the equations that define the

kinematics of blocks A and E are solved, so that the momentum of each leg in these blocks

is defined. Once the kinematics of block E is determined, we can solve the equations that

define the kinematics of block D. Finally, as all the legs in the blocks A, E and D have

definite momenta, we can solve the equations that determine the variables in the CS. The

formulas that are used to fill the kinematics in each block and compute the jacobian factors

are given in the Appendix.

This approach is generalized to the case of an arbitrary decay chain in our code. Any

variable of integration in a phase-space parametrization that can potentially be used in our

code enters into one of the three following categories.

1. The variable controls the strength of a resolution function. If the resolution function

is a δ distribution, the variable is fixed to the value associated with the experimental

event. Otherwise, the grid is adapted such that the variable is generated according

to a probability density that reproduces approximately the shape of the resolution

function.

2. The variable controls the strength of a propagator enhancement. In this case, the

variable can be generated according to a probability density that reproduces exaclty

the shape of the propagator by applying a well-known analytic change of variable.

3. The variable is either the polar or the azimuthal angle of a missing particle. In this

case, the variable is generated according to a uniform distribtion in the interval [0,π]

or [0, 2π] at the first iteration. The grid is adapted at each iteration to approximate

the optimal probability density.

– 17 –

yi-xi

σexp.pi

pj

sij=(pi+pj)2

Breit-Wigner distr. in sij

 0

 0.04

 0.08

-30 -15  0  15  30

Resolution function in yi

this is done automatically through the 
decomposition of the standard phase-
space parametrization into blocks of 

kinematics variables subject to 
specific changes of variables 
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for specific processes, there is no parametrization of the phase-space 
measure that maps all the peaks simultaneously                        

Multi-channel integration

example: over-constrained system

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

z2’z1’

z1’

z3’

z2’
z3’

dφ = β1dφ1 + β2dφ2 + β3dφ3

where the     ’s assign the importance of each 
channel point by point in the phase-space:

fsharp(z1’)

fsharp(z2’)

fsharp(z3’)

decomposition into 3 channels:

β

β1 =
fsharp(z′

2)fsharp(z′
3)∑

i<j fsharp(z′
i)fsharp(z′

j)

and similarly for β2, β3

this multichannel decomposition has been generalized and automated in 
our algorithm to arbitrary processes
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M
W

MadWeight: how does it work ?

inputs

output

process transfer
function

 collider,
th. hypoth.

exp.
events

matrix
element

phase-space
generator

M
G

weights

M
W

MW
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MadWeight: how does it work ?

inputs process transfer
function

 collider,
th. hypoth.

exp.
events

example: pp→ tt̄
semi-leptonic

infinite resolution
except for Ejet

LHC, 
sm, with mt in

 [160 GeV, 185 GeV]

20 signal events 
with mt=170 GeV

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

 844

 846

 848

 850

 852

 854

 856

 160  165  170  175  180  185

-l
n

(L
)

mt (GeV)

L(mt) ∝
∏

i

P (xi|mt)

output: likelihood as a function of mt
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Applications
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obj. # 1(exp.): serve future measurements based on the matrix 
element method by providing a tool that is 

• public: see http://madgraph.hep.uiuc.edu

• tested: many checks by reproducing known quantities such as 
volumes of integrations, total cross sections, ...

• updated with users’ feedback

• suitable for improvements of either the formulation of the 
method itself (e.g. effects of higher order corrections in QCD) 
or the integration techniques

MadWeight: applications

current analysis: search for a sm light Higgs at the Tevatron 
(in collaboration with H. Wolf)
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obj. # 2 (exp. + th.): serve future analyses aimed at providing a better 
control of the potentially large systematic uncertainties (from both 
exp. and theoretical sources)

in particular matrix element method makes use of leading-order 
theory information in its fully differential form

➔ important to have a control of the impact of higher-order 
corrections on the method 

MadWeight: applications

see  J. Alwall,  A. Freitas, O.  Mattelaer  arXiv:1010.2263
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obj. # 3 (pheno): assess what is the maximum significance that can be 
achieved in a given analysis:

the ME method offers the possibility to optimize the discriminating 
power between different theoretical hypotheses, and therefore 
provides a way to estimate an upper-bound on the significance of a 
specific exp. analysis at a given luminosity 

I will illustrate this with two examples 
 

MadWeight: applications
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Application 1: testing spin hypotheses

Disentangling different spin hypotheses in decay chain with missing ET 

t→ H+b vs. t→W+b
t

t̄

H+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

t

t̄

W+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

we set 

(keep only the spin
correlation effects)

backgroundsignal

mH ≈ mW

Possible discriminators: 

• keeping only information                 
from PT(τ):

D(x) =
σ−1

H
dσH
dpT,τ

σ−1
H

dσH
dpT,τ

+ σ−1
W

dσW
dpT,τ

• matrix element method 
(keeps all information): D(x) =

PH(x)
PH(x) + PW (x)
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Application 1: testing spin hypotheses

Disentangling different spin hypotheses in decay chain with missing ET 

t→ H+b vs. t→W+b

• discriminator: 

• “data”: 240 signal events 
760 background events
fraction of signal events: 

Rin=24%
RD

 0
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pseudo-data
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 0  0.2  0.4  0.6  0.8  1

χ2

r = fraction of signal events

Figure 11: (a) Expected normalized distribution of events with respect to the discriminant variable
d built upon the pT weight for a pure signal sample (solid histogram) and for a pure backgound sam-
ple (dashed histogram). The error bars are the distribution associated with the pseudo-experiment
sample. (b) χ2 values associated with the fit of the pseudo-experiment data to the theoretical
prediction parametrized by the faction r of signal events.

to use a standard phase-space generator that is optimized for the computation of cross

sections.

The expected normalized-to-one distribution of events with respect to the discriminant

variable d built upon the pT weights in Eq. (4.7) are displayed in Fig. (11) for a sample of

pure signal events (solid histogram) and for a sample of pure background events (dashed

histrogram). These distributions show a very narrow peak at d = 0.5. The comparison with

the distribution of events with respect to the matrix-element-based discriminant displayed

in Fig. 10 demonstrates that the discriminant power is substantially reduced when only

the information on the transverse momentum of the τ + is retained. The normalized-to-

one distribution associated with the pseudo-experiment sample is represented by the blue

dots. This distribution can be parametrized as a superposition of the signal and backgound

distributions. The χ2 values of the corresponding fit as a function of the fraction of signal

events are shown in Fig. 11, (b). We find r = 0.28 ± 0.23%.

4.3 Smuon pair production at the LHC

Over the last 15 years, there has been a tremendous amount of work devoted to new

techniques for mass reconstruction of new particles that might be produced at the LHC.

In most scenarios, the hypothetical new physics states are not expected to be directly

observed experimentally, i.e. they appear as intermediate states in specific decay chains or

they escape from the detector without interacting with it. Hence their mass can only be

reconstructed indirectly, by making a number of assumptions on the decay chain at work.

By increasing the number of assumptions, the information that can be extracted from the

decay chain is also increased. However, due to the lack of constraints on physics beyond

the standard model, the proposed techniques have to be general enough, at least if they

are aimed at reconstructing the mass of new hypothetical particles in the early stages of

investigation. Also, the limited knowledge of the detector has to be taken into account. In

– 26 –
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r = fraction of signal events

D(x) =
σ−1

H
dσH
dpT,τ

σ−1
H

dσH
dpT,τ

+ σ−1
W

dσW
dpT,τ

Analysis based on the pT weight:

By fitting the event density distribution of the pseudo data by a superposition of the 
expected distributions for the signal and for the background, we get  

reconstructed fraction of signal events (Rout) = 28±24%

χ2
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Figure 10: (a) Expected normalized distribution of events with respect to the discriminant d
built upon the matrix element weight for a pure signal sample (solid histogram) and for a pure
backgound sample (dashed histogram). The error bars are the distribution associated with the
pseudo-experiment sample, assuming that the statistical error on the number N of events in a
given bin is given by

√
N . (b) χ2 values associated with the fit of the pseudo-experiment data to

the theoretical prediction parametrized by the faction r of signal events.

distributions and allow us to distinguish them. One can take advantage of this difference

to find out the fraction of signal events in the pseudo-experiment sample.

The normalized-to-one distribution associated with the pseudo-experiment sample as

a function of the discriminant variable d is also displayed in Fig. 10. The fraction of signal

events in the pseudo-experiment sample can be estimated by fitting the points [Pdata(d)]

with the curve

Pdata(d) = rPS(d) + (1 − r)PB(d), (4.6)

and minimizing the χ2 with respect to the parameter r that represents the fraction of signal

events in the pseudo-experimental sample. The best fit is obtained for r = 24 ± 9%, in

agreement with the true fraction of signal events.

In the above analysis, we have shown –within our simplifying assumptions– that the

spin correlations effects at the reconstructed level are still strong enough to extract the

fraction of signal events. We have made use of the complete reconstructed information

in the evaluation of the matrix element weights. One may also investigate whether there

is a more inclusive observable that would capture most of the spin correlation effects.

One potential candidate is the pT of the τ+. Restricting the experimental input to this

observable amounts to flattening the transfer functions associated with each particle in the

final state except the τ+. Under our assumption of perfect resolution for τ +, the matrix

element weight then reduces to a normalized cross section differential in pT (τ+)

PS,B(x) →
1

σS,B

dσS,B

dpT
(pT (τ+)) (4.7)

In other words, we would like to determine to which extend the pT spectrum of the τ+

provides an event-by-event weight that is as discriminant as the matrix element weight.

The advantage of the weights defined in Eq. (4.7) is that their evaluation only requires

– 25 –
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r = fraction of signal events

Application 1: testing spin hypotheses

Disentangling different spin hypotheses in decay chain with missing ET 

t→ H+b vs. t→W+b

• discriminator: 

• “data”: 240 signal events 
760 background events
fraction of signal events: 

Rin=24%
RD

Analysis based on the matrix element weight:

D(x) =
PH(x)

PH(x) + PW (x)

χ2

The discriminating power is substantially improved.  The fit of the distribution 
associated with the pseudo-data gives:   

reconstructed fraction of signal events (Rout) = 24±9%
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Application II: mass reconstruction

Consider the following symmetric decay chain 

reconstructed

reconstructed

missing

missing
m1

m2

m1

m2

assuming a pure sample of 
signal events, is it possible to 
reconstruct both m1 and m2 ?

for limited statistics, kinematic methods can only 
reconstruct the quantity (m12-m22)/2m1

Saturday 4 December 2010



Q:  assuming that the masses m1 and m2 are the only unknown, what 
is the maximum significance that can be achieved in measuring these 
masses at a given luminosity ?

Application II: mass reconstruction

pp→ (µ̃+
r → µ+χ̃1)(µ̃−r → µ−χ̃1)

Let us consider a specific example: 

• keeping only information                 
from pT(μ+), M(μ+, μ-)

• matrix element method 
(keeps all information):

possible discriminators: 

P (x|µ̃r, χ̃1) = matrix element weight 

sample of 50 events 
with mµ̃r = 150 GeV

mχ̃1 = 100 GeV

(m2
µ̃r
−m2

χ̃1
)/2mµ̃r = 42 GeV

P (x|µ̃r, χ̃1) = σ−1 dσ

dpTµ
(pTµ|mµ̃r , mχ̃1)× σ−1 dσ

dMµµ
(Mµµ|mµ̃r , mχ̃1)
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Application II: mass reconstruction

• matrix element method 
(keeps all information)

• keeping only information                 
from pT(μ+), M(μ+, μ-)

Let us consider a specific example: 

pp→ (µ̃+
r → µ+χ̃1)(µ̃−r → µ−χ̃1)

Q:  assuming that the masses m1 and m2 are the only unknown, what 
is the maximum significance that can be achieved in measuring these 
masses at a given luminosity ?

sample of 50 events 
with mµ̃r = 150 GeV

mχ̃1 = 100 GeV
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• the matrix element method is a powerful technique to maximize 
the significance of a specific measurement

• I presented generic algorithm to evaluate the weights appearing 
in the matrix element method

• the corresponding tool (MadWeight) is aimed at providing a 
dynamical reference framework for future analyses, that is 
convenient for improvements of both the method itself and the 
integration techniques 

• directions of future investigations include

- new measurements based on the ME method

- a better understanding of the systematics of theoretical origin

- study of the maximum significance that can be achieved in 
specific measurements    

Conclusion & perspectives
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