Johan Alwall

Why Matching? Matching schemes

Results

Conclusions

Matching of Matrix Elements and Parton Showers with MadEvent and Pythia

Johan Alwall

SLAC

LoopFest '07, Fermilab, April 18, 2007

Johan Alwall

Why Matching? Matching schemes Results

Conclusions

Outline

1 Why Matching?

3 Results

Johan Alwall

Why Matching?

Matrix elements vs. parton showers

- Parton showering Matrix element generators
- Matching schemes
- Results
- Conclusions

Why Matching? - Matrix elements vs. parton showers

Matrix elements

- Fixed order calculation
- 2 Limited number of particles
- Valid when partons are hard and well separated
- Quantum interference correct
- Needed for multi-jet description

Parton showers

- Resums large logs
- O No limit on particle multiplicity
- Valid when partons are collinear and/or soft
- Partial quantum interference through angular ordering
- Needed for hadronization/ detector simulation

Matrix element and Parton showers complementary approaches Both necessary in high-precision studies of multijet processes Need to combine them without double-counting!

Johan Alwall

Why Matching?

Matrix elements vs. parton showers

Parton showering

Matrix element generators

Matching schemes

Results

Conclusions

- \bullet QCD strahlung from soft/collinear emission approximation
- Evolves down from hard interaction scale to hadronization scale/initial state hadron scale
- Sudakov form factors gives non-branching probability between scales

$$\Delta^{\mathrm{LL}}(t_1, t_2) = \exp\left\{-\int_{t_2}^{t_1} \frac{dt'}{t'} \int_{\epsilon(t)}^{1-\epsilon(t)} dz \frac{\alpha_s(t)}{2\pi} \widehat{P}(z)\right\}$$

• t_2 distribution from $-\frac{d\Delta(t1,t2)}{dt_2}$

Parton showering

- z distribution from QCD splitting functions $P_{a \rightarrow bc}(z)$
- For initial state radiation (backward evolution), extra factor of $f(x, t_2)/f(x, t_1)$ at each splitting to account for parton content at different scales
- Different choice of evolution variable t in different generators

Pythia: Q^2 (old), p_T^2 (new) – Herwig $E^2\theta^2$ – Ariadne p_T^2 (2 \rightarrow 3)

Johan Alwall

Why Matching?

Matrix elements vs. parton showers Parton showering

Matrix element generators

- Matching schemes
- Results
- Conclusions

Matrix element generators

Use complete matrix element

Diagrams for $u\bar{d} \rightarrow e^+ \nu_e u\bar{u}g$ by MadGraph

- Get appropriate description for well separated jets (away from collinear region)
- Get interference effects/correlations correctly

Examples: MadGraph/MadEvent, Alpgen, HELAC, Sherpa

Johan Alwall

Why Matching?

Matching schemes

CKKW matching MLM matching Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

Matching schemes

The simple idea behind matching

- Use matrix element description for well separated jets, and parton showers for collinear jets
- Phase-space cutoff to separate regions

This allows to combine different jet multiplicities from matrix elements without double counting with parton shower emissions

Difficulties

- Get smooth transition between regions
- No/small dependence from precise cutoff
- No/small dependence from largest multiplicity sample

How to accomplish this

Two solutions so far:

- CKKW matching
- MLM matching

(Interesting newcomer: SCET M. Schwartz)

Johan Alwall

Why Matching?

Matching schemes

CKKW matching

MLM matching Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

CKKW matching

Catani, Krauss, Kuhn, Webber [hep-ph/0109231], Krauss [hep-ph/0205283]

Imitate parton shower procedure for matrix elements

- Choose a cutoff (jet resolution) scale d_{ini}
- Generate multiparton event with d_{min} = d_{ini} and factorization scale d_{ini}
- **O** Cluster event with k_T algorithm to find "parton shower history"
- Use $d_i \simeq k_T^2$ in each vertex as scale for α_s
- Weight event with NLL Sudakov factor Δ(d_j, d_{ini})/Δ(d_i, d_{ini}) for each parton line between vertices i and j (d_j can be d_{ini})
- Shower event, allowing only emissions with k_T < d_{ini} ("vetoed shower")
- For highest multiplicity sample, use $\min(d_i)$ of event as d_{\min}

Boost-invariant k_T measure:

$$\begin{cases} d_{iB} = p_{T,i}^2 \\ d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) F_{ij} \\ F_{ij} = \cosh(\eta_i - \eta_j) - \cos(\phi_i - \phi_j) \end{cases}$$

Johan Alwall

Why Matching?

Matching schemes

CKKW matching

MLM matching Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

Sudakov reweighting

Telescopic product – in the example:

 $egin{aligned} & [\Delta_q(d_3,d_{ ext{ini}})]^2 \, rac{\Delta_g(d_2,d_{ ext{ini}})}{\Delta_g(d_1,d_{ ext{ini}})} \ & imes \Delta_q(d_1,d_{ ext{ini}})\Delta_q(d_1,d_{ ext{ini}}) \end{aligned}$

Vetoed showers

- Start shower for parton at scale of mother node (*cf.* upper scale for Sudakov suppression)
- Veto (forbid) emissions with $d > d_{ini}$, but continue shower as if emission happened
- Allow emissions below $d_{\rm ini}$

Johan Alwall

Why Matching?

Matching schemes

CKKW matching

MLM matching Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

PDF factors in the Krauss algorithm

Want to account for probability of PS configuration in ME correction weight

For ISR process shown, get PS probability:

$$egin{aligned} &\Delta_q(t,t_{ ext{ini}})^2\Delta_g(t1,t_{ ext{ini}})\Delta_g(t2,t_{ ext{ini}})\ & imesrac{q(x_2,t_{ ext{ini}})}{q(x_2,t)}rac{q(x_1/z_1z_2,t_{ ext{ini}})}{q(x_1/z_1z_2,t_2)}\ & imesrac{q(x_1/z_1z_2,t_2)}{q(x_1/z_1,t_1)}rac{lpha_s(t_2)}{2\pi}rac{P_{qq}(z_2)}{z_2}\ & imesrac{q(x_1/z_1,t_1)}{q(x_1,t)}rac{lpha_s(t_1)}{2\pi}rac{P_{qq}(z_1)}{z_1} \end{aligned}$$

 x/z_1z_2 t_2

gives, combined with LO cross-section $q(x_1, t)\bar{q}(x_2, t)d\hat{\sigma}_{q\bar{q} \rightarrow ll}$:

$$d\sigma_{DY+gg} = \Delta_q(t, t_{\text{ini}})^2 \Delta_g(t1, t_{\text{ini}}) \Delta_g(t2, t_{\text{ini}}) q(x'_1, t_{\text{ini}}) \bar{q}(x_2, t_{\text{ini}})$$
$$\times \frac{\alpha_s(t_1)}{2\pi} \frac{\alpha_s(t_2)}{2\pi} \frac{P_{qq}(z_1)}{z_1} \frac{P_{qq}(z_2)}{z_2} d\hat{\sigma}_{q\bar{q} \to \parallel}(\hat{s}/z_1 z_2)$$

Red: Correction weight Blue: PDFs Green: $d\hat{\sigma}_{q\bar{q} \rightarrow llgg}^{PS}(x'_1 = \frac{x_1}{z_1 z_2}, x_2)$

Johan Alwall

Why Matching?

Matching schemes

CKKW matching

MLM matching Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

- For final-state showers (e⁺e⁻collision): Combination of NLL Sudakov factors and vetoed NLL showers guarantees independence of q_{ini} to NLL order
- For initial-state showers: No proof but seems to work ok (Sherpa)
- Problem in practice: No NLL shower implementation! (Sherpa uses Pythia-like showers and adapted Sudakovs)

Differential $0 \rightarrow 1$ jet rate by Sherpa in $pp \rightarrow Z + \text{jets}$ for three different cutoffs d_{ini} , compared to averaged reference curve [hep-ph/0503280]

Johan Alwall

Why Matching?

Matching schemes

CKKW matching MLM matching

Differences between CKKW and MLM Matching schemes in MadEvent

Results

Conclusions

MLM matching

M.L. Mangano [2002, Alpgen home page, hep-ph/0602031]

Use parton shower to choose events

- Generate multiparton event with cut on jet $p_{T\min}$, η_{\max} and ΔR_{\min} , and factorizations scale = "central scale" (e.g. transverse mass)
- **2** Cluster event (according to color) and use k_T^2 for α_s scale
- Shower event (using Pythia or Herwig) starting from fact. scale
- Collect showered partons in cone jets with same ΔR_{\min} and $p_{T_{cut}} > p_{T_{\min}}$
- Keep event only if each jet matched to one parton (ΔR(jet, parton < 1.5ΔR)

• For highest multiplicity sample, allow extra jets with $p_T < p_{Tmin}^{\rm parton}$

Discard

Keep only if highest

Johan Alwall

Why Matching?

Matching schemes

CKKW matching MLM matching

Differences between CKKW and MLM

Matching schemes in MadEvent

Results

Conclusions

Differences between CKKW and MLM

- CKKW scheme: Assumes intimate knowledge of and modifications to parton shower. Needs analytical form for parton shower Sudakovs.
- MLM scheme: Effective Sudakov suppression directly from parton shower
- However: MLM not sensitive to parton types of internal lines (remedied by pseudoshower approach, see below)
- Factorization scale: In CKKW jet resolution scale, in MLM central scale. Not clear (?) which is better.
- Highest multiplicity treatment less obvious in MLM than in CKKW

CKKW with pseudoshowers

Lönnblad [hep-ph/0112284] (ARIADNE) Mrenna, Richardsson [hep-ph/0312274]

- Apply parton shower stepwize to clustered event, reject event if too hard emission
- Apply vetoed parton shower as in the CKKW approach

Johan Alwall

Why Matching?

- Matching schemes
- CKKW matching MLM matching Differences between CKKW and MLM

Matching schemes in MadEvent

Results

Conclusions

Matching schemes in MadEvent

- J.A. et al. [in preparation] (cf. Mrenna, Richardsson [hep-ph/0312274])
 - CKKW scheme (for Sherpa showers) (with S. Höche)
 - MLM scheme (Pythia showers)
 - MLM scheme with k_T jet clustering (Pythia showers)
 - Event rejection at parton shower level (work in progress)

Details of MadEvent k_T MLM scheme

- **O** Generate multiparton event with jet measure cutoff d_{\min}
- **2** Cluster event (according to diagrams) and use k_T for α_s scale
- Shower event with Pythia starting from highest clustering scale (= factorization scale)
- **9** Perform jet clustering with k_T algorithm with $d_{\rm cut} > d_{\min}$
- Match clustered jets to partons $(d(\text{jet}, \text{parton}) < d_{\text{cut}})$
- O Discard events where jets not matched
- For highest multiplicity sample, jets matched if d(jet, parton) < d_{min}(parton, parton)

Johan Alwall

Why Matching?

Matching schemes

Results

Results 1: W^{\pm} + jets

Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC Results 4: QCD jets at LHC

Conclusions

Results 1: W^{\pm} + jets

- Important background (especially at the Tevatron)
- Only one hard scale
- Mainly initial state radiation
- Implemented by all matching softwares

 p_T of W^{\pm} by MadEvent + Pythia in $p\bar{p} \rightarrow W$ + jets at the Tevatron, $d_{\rm cut} = 10 \text{ GeV}$ (top), 30 GeV (bottom).

Note:

Pure Pythia shower (without matrix element corrections) below cut.

P_{Tw} (GeV)

Johan Alwall

Why Matching?

Matching schemes

Results Results 1: W[±] + jets

Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC Results 4: QCD jets at LHC

Conclusions

Comparison between codes

J.A. et al. [hep-ph/soon]

Alpgen+Herwig, Ariadne, Helac+Pythia, MadEvent+Pythia, Sherpa

Johan Alwall

Matching schemes

Results

Results 1: W^{\pm} + jets

Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC Results 4: QCD iets at LHC

Conclusions

W^{\pm} + jets comparison plots: Jet E_T for LHC

Johan Alwall

Why Matching?

Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC

Results 4: QCD jets at LHC Conclusions

Results

iets

W^{\pm} + jets comparison plots: Jet η for LHC

Johan Alwall

Why Matching?

Matching schemes

Results

Results 1: W^{\pm} + jets Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC Results 4: QCD jets at LHC

Conclusions

Results 2: Top pairs + jets at LHC

J.A., S. de Vissher et al. [in preparation]

One of the most important backgrounds to new physics at the LHC p_T of the $t\bar{t}$ pair – indicator of jet activity/hardness

Johan Alwall

Why Matching?

Matching schemes

Results

Results 1: W^{\pm} + jets Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC Results 4: QCD jets at LHC

Conclusions

Differential jet rates (once again) to check smoothness over transition $+ % \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) +$

Differential $0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 3$ jet rates at parton level by MadEvent + Pythia in $p\bar{p} \rightarrow t\bar{t} + j$ ets at the LHC, $d_{\rm cut} = 25$ GeV (top), 60 GeV (bottom). No top decays.

Johan Alwall

Why Matching?

Matching schemes

Results

Results 1: W^{\pm} + jets Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC

Results 4: QCD jets at LHC

Conclusions

Results 3: Gluino pairs at LHC

Work in progress using new scheme

600 GeV mass gluino pair production (SPS1a) at LHC

Differential $0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 3$ jet rates at parton level by MadEvent + Pythia in $p\bar{p} \rightarrow \tilde{g}\tilde{g}$ + jets at the LHC, $d_{\rm cut} = 40$ GeV, compared to default Pythia showers (red curve). No gluino decays.

Johan Alwall

Why Matching?

Matching schemes

Results

Results 1: W^{\pm} + jets Comparison between codes

Results 2: Top pairs + jets at LHC

Results 3: Gluino pairs at LHC

Results 4: QCD jets at LHC

Conclusions

Results 4: QCD jets at LHC

Work in progress using new scheme

Pure QCD jets - difficult since no fixed hard scale

Steeply falling p_T spectra – Pythia showers (red curve) seems to give OK shape description with the correct starting scale (p_T^2 of jets)

Johan Alwall

- Why Matching? Matching schemes
- Results
- Conclusions

Conclusions

- Matrix elements and parton showers complementary descriptions of parton production:
 - ME needed to describe hard and widely separated jets
 - PS needed for very high multiplicities / substructure of jets / evolution to hadronization scale
- For realistic description of multijet backgrounds necessary to combine descriptions: Matching!
- Important backgrounds: Z/W^{\pm} + jets, $t\bar{t}$ + jets, $W^+W^-/ZZ/W^{\pm}Z$ + jets, pure QCD
- Also interesting to study jet structure of signal, e.g. WBF
- Comparison with other codes done!
- Validation with Tevatron data underway
- MadGraph/MadEvent can do it more studies underway!

Visit us – generate processes – generate events on http://madgraph.phys.ucl.ac.be http://madgraph.roma2.infn.it http://madgraph.hep.uiuc.edu

Johan Alwall

Why Matching?

Matching schemes

Results

Conclusions

BACKUP SLIDES

Johan Alwall

Why Matching? Matching schemes Results

Conclusions

MadGraph/MadEvent

A user-driven matrix element generator and event generator

Madgraph (T.Stelzer and W.F.Long - 1994)

- Matrix element generation
- Identifies all Feynman diagrams and creates Fortran code for the matrix element squared (calls HELAS routines)
- Handles tree-level processes with many particles in the final state
- Keeps full spin correlations / interference

MadEvent (F.Maltoni and T.Stelzer - 2003)

- Phase space integration and event generation
- Uses the MadGraph output and diagram information
- Efficient phase space integration using the technique Single-Diagram-Enhanced multichannel integration

$$f_i = \frac{\left|A_{\text{tot}}\right|^2}{\sum_i \left|A_i\right|^2} \left|A_i\right|^2$$

• Algorithm parallell in nature - optimal for clusters!

Johan Alwall

- Why Matching?
- Matching schemes
- Results
- Conclusions

More about MadGraph/MadEvent

- Models
 - Implemented by default: SM, SUSY, 2HDM, Higgs EFT
 - Framework for easy implementation of new models
 - Soon to come: MadRules (MG files from Lagrangian)
- Tools
 - Pythia and PGS interface for shower/hadronization and detector simulation
 - MadAnalysis, ExRootAnalysis
 - BRIDGE (Reece, Meade): Decay of particles in any MadGraph model
- Complete simulation chain available: from hard scale physics to detector simulation! (MadGraph/MadEvent Pythia PGS)
- Web-based generation or download code
- Three public clusters:
 - Belgium (http://madgraph.phys.ucl.ac.be)
 - Italy (http://madgraph.roma2.infn.it)
 - US (http://madgraph.hep.uiuc.edu)

Johan Alwall

Why Matching? Matching schemes Results

Conclusions

large angle first

 \Rightarrow hardness not

ordered

coherence inherent

gaps in coverage

ME merging messy

 $q \rightarrow q\overline{q}$ simple

not Lorentz invariant

⇒ "hardness" ordered coherence brute force covers phase space ME merging simple g → qq simple not Lorentz invariant

ISR: $m^2
ightarrow -m^2$

ISR: $\theta \rightarrow \theta$

Sherpa like Pythia - New Pythia shower similar to Ariadne

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $\begin{array}{l} \mathbf{g} \rightarrow \mathbf{q} \overline{\mathbf{q}} \text{ messy} \\ \text{Lorentz invariant} \end{array}$

Johan Alwall

Why Matching? Matching schemes Results

Conclusions

