

MADLOOP5 Going Beyonder

VALENTIN HIRSCHI EPFL

4TH SEPTEMBER 2012

PRESENTATION HP2^4@MPI MÜNICH

- NLO challenges and **aMC@NLO** philosophy
- Implementation details
- Speed and stability benchmark study
- Future plans and closing words

MADGRAPH@NLO OVERVIEW

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

3

OBJECTIVES FOR MADGRAPH5 AT NLO

Automation and Flexibility

Minimize hand work while maximizing applicability. Also automation provides reliability by avoiding bugs.

Unique framework and user-friendly

It only takes to know how to efficiently use one single program to do all NLO phenomenology. User-guidance and on-the-fly checks insure reliable results.

Stable and fast enough for relevant processes
 No huge cluster needed.
 LesHouches wish list(s) covered.

Valentin Hirschi, 4th september 2012

Fixed-order NLO contributions have two parts

Valentin Hirschi, 4th september 2012

HP2@MPI

Fixed-order NLO contributions have two parts

$$\sigma^{\text{NLO}} = \int_m d^{(d)} \sigma^V +$$

Virtual part

- Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but needs to be efficiently implemented
- MadLoop5 in MG5 takes care of this piece

Valentin Hirschi, 4th september 2012

Fixed-order NLO contributions have two parts

+

 $\sigma^{\rm NLO} = \int d^{(d)} \sigma^V +$

- Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but needs to be efficiently implemented
- MadLoop5 in MG5 takes care of this piece

Real emission part

- Automated for different methods
- Challenge is the systematic extraction of singularities
- MadFKS5 in MG5 takes care of this piece

Valentin Hirschi, 4th september 2012

HP2@MPI

 $d^{(d)}\sigma^R +$

Fixed-order NLO contributions have two parts

+

 $\sigma^{\text{NLO}} = \int d^{(d)}\sigma^V +$

- Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but needs to be efficiently implemented
- MadLoop5 in MG5 takes care of this piece

Real emission part

- Automated for different methods
- Challenge is the systematic extraction of singularities
- MadFKS5 in MG5 takes care of this piece

Valentin Hirschi, 4th september 2012

HP2@MPI

+

 $d^{(d)}\sigma^R$

AMC@NLO

TOWARDS FULL AUTOMATION

MADLOOP IN MG4 WHAT IT COULD NOT DO

✓ No four-gluon vertex at born level :

All born contribution must factorize the same power of all coupling orders.
 No finite-width effects of unstable massive particles also appearing in the loop.
 / × Handle BSM model or/and EW corrections.

Valentin Hirschi, 4th september 2012

WHAT ML4 COULD DO

- Running time: Two weeks
 on a 150+ node cluster
- * Proof of efficient EPS handling with $Zt\bar{t}$
- Successful cross-check against known results
- Large K-factors sometimes
- * No cuts on b, robust numerics with small P_T

	Process	μ	n_{lf}	Cross section (pb)	
				LO	NLO
a.1	$pp \rightarrow t\bar{t}$	m_{top}	5	123.76 ± 0.05	162.08 ± 0.12
a.2	$pp \rightarrow tj$	m_{top}	5	34.78 ± 0.03	41.03 ± 0.07
a.3	$pp \rightarrow tjj$	m_{top}	5	11.851 ± 0.006	13.71 ± 0.02
a.4	$pp \rightarrow t\bar{b}j$	$m_{top}/4$	4	25.62 ± 0.01	30.96 ± 0.06
a.5	$pp \rightarrow t \bar{b} j j$	$m_{top}/4$	4	8.195 ± 0.002	8.91 ± 0.01
b.1	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e$	m_W	5	5072.5 ± 2.9	6146.2 ± 9.8
b.2	$pp {\rightarrow} (W^+ {\rightarrow}) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6
b.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^-$	m_Z	5	1007.0 ± 0.1	1170.0 ± 2.4
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- j$	m_Z	5	156.11 ± 0.03	203.0 ± 0.2
b.6	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-jj$	m_Z	5	54.24 ± 0.02	56.69 ± 0.07
c.1	$pp ightarrow (W^+ ightarrow) e^+ \nu_e b ar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t \bar{t}$	$m_W + 2m_{top}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- b \bar{b}$	$m_Z + 2m_b$	4	9.459 ± 0.004	15.31 ± 0.03
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- t \bar{t}$	$m_Z + 2m_{top}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002
c.5	$pp \to \gamma t \bar{t}$	$2m_{top}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003
d.1	$pp \rightarrow W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03
d.2	$pp \rightarrow W^+W^- j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008
d.3	$pp \mathop{\rightarrow} W^+ W^+ jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005
e.1	$pp {\rightarrow} HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003
e.2	$pp {\rightarrow} HW^+ j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002
e.4	$pp \rightarrow HZ j$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001
e.5	$pp \rightarrow H t \bar{t}$	$m_{top} + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003
e.6	$pp \rightarrow H b \bar{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006
e.7	$pp \rightarrow Hjj$	m_H	5	1.104 ± 0.002	1.036 ± 0.002

Valentin Hirschi, 4th september 2012

MADGRAPH 5 SPECS

• High-level language: Python

• Complex data-structures allow for very general objects while keeping speed where needed.

- Involved algorithms => Performance increase
- Built-in testing suite => Reliability
- User-interface and automatic doc. => User friendly
- Flexible and Modular => Developer friendly All-in-one distribution

Valentin Hirschi, 4th september 2012

AMC@NLO

FULL AUTOMATION...

... in MadGraph5 v2.0!

NOMENCLATURE

But this separation is now transparent to the users!

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

11

IMPLEMENTATION

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

12

MADLOOP5 IN MG5 V2.0

FRIEND OF USERS

Process generation

- import model <model_name>-<restrictions>
- generate <process> <amp_orders_and_option> [<mode>=<pert_orders>] <squared_orders>
- output <format> <folder_name>
- 👌 launch
- * Examples, starting from a blank MG5 interface.
 - Very simple one:

```
[ 1.54s ] generate g g > t t~ [virt=QCD]
[ 1.18s ] output
[ 44 ms*] launch
```

- * With options specified:
 - [0.01s] import model loop_sm-no_bmass
 - [0.01s] set complex_mass_scheme
 - [22.8s] generate g g > W+ W- b b~ / z h a QED=2 [virt=QCD] QCD=6 WEIGHTED=14
 - [14.0s] output standalone MyProc
 - [17.1s*] launch
 - * time per phase-space point, summed over helicities and colors.

Valentin Hirschi, 4th september 2012

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \to \gamma \to u\bar{u}$:

* Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \rightarrow \gamma \rightarrow u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \to \gamma \to u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process
- Tags are associated to each cut-diagram. Those whose tags are mirror and/or cyclic permutations of tags of diagram already in the loop-basis are taken out.

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \to \gamma \to u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process
- Tags are associated to each cut-diagram. Those whose tags are mirror and/or cyclic permutations of tags of diagram already in the loop-basis are taken out.
- Additional custom filter to eliminate tadpoles and bubbles attached to external legs.

Valentin Hirschi, 4th september 2012

MADGRAPH

THE EVOLUTIVE WAY OF COMPUTING TREE-DIAGRAMS

- First generates all tree-level Feynman Diagrams
- Compute the amplitude of each diagram using a chain of calls to HELAS subroutines

• Finally square all the related amplitude with their right color factors to construct the full LO amplitude

Valentin Hirschi, 4th september 2012

CUTTOOLS

OR HOW TO COMPUTE LOOPS WITHOUT DOING SO

CutTools uses the OPP method for loop reduction at the integrand level

$$\bar{q}^2 = q^2 + \tilde{q}^2 \qquad (q \cdot \tilde{q}) = 0 \qquad N(q) = 0$$

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2, \quad p_0 \neq 0.$$

$$\int d^{(d)}\sigma^V = \int d^{(4+\epsilon)} \left(A(\bar{q}) + \tilde{A}(\bar{q}) \right)$$

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \left(\tilde{A}(\bar{q}) \to \mathbf{R2} \right)$$

- R2 can be obtained with a tree-level-like computation with special Feynman-Rules.
- Evaluation of N(q) for different specific q's allows to algebraically obtain the coefficients a, b, c and d
- * Reconstruction of the \tilde{q} dependance of the numerator gives the cut-constructible part R1 of the finite part of the virtual amplitude

Valentin Hirschi, 4th september 2012

$$= \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3}) + \tilde{d}(q;i_{0}i_{1}i_{2}i_{3}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2}) + \tilde{c}(q;i_{0}i_{1}i_{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}$$

$$+ \sum_{i_{0}}^{m-1} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] \prod_{i \neq i_{0}}^{m-1} D_{i}$$

$$+ \tilde{P}(q) \prod_{i}^{m-1} D_{i}$$

Finite part = CC + R1 + R2

HANDLING BSM MODELS

UFO MODELS @ NLO

Additional features in UFO@NLO:

CouplingOrder

- expansion_order
- hierarchy

CTVertices

$$\begin{split} \texttt{V_GGZA} &= \texttt{CTVertex}(\texttt{name} = `\texttt{V_GGZA'}, \\ \texttt{particles} &= [\texttt{P.G}, \texttt{P.G}, \texttt{P.Z}, \texttt{P.A}], \\ \texttt{color} &= [`\texttt{Tr}(1,2)`], \\ \texttt{lorentz} &= [\texttt{L.R2_GGVV}], \\ \texttt{lorentz} &= [\texttt{L.R2_GGVV}], \\ \texttt{loop_particles} &= [[[\texttt{P.u}], [\texttt{P.c}], [\texttt{P.t}]], [[\texttt{P.d}], [\texttt{P.s}], [\texttt{P.b}]]], \\ \texttt{couplings} &= \{(0,0,0): \texttt{C.R2_GGZAup}, (0,0,1): \texttt{C.R2_GGZAdown}\}, \end{split}$$

counterterm

attribute to Parameters and Particles

 $\texttt{Param.GS.counterterm} = \{(\texttt{1}, \texttt{0}, \texttt{0}): \texttt{CTParam.G_UVq.value}, \\$

- (1, 0, 1): CTParam.G_UVb.value,
- (1,0,2): CTParam.G_UVt.value,
- $(1,0,3): CTParam.G_UVg.value\}$

CTParameters

Valentin Hirschi, 4th september 2012

HP2@MPI

type = 'R2')

AUTOMATIC LANGUAGE-INDEPENDENT OUTPUT OF HELICITY AMPLITUDE

O. Mattelaer et al. , arXiv:1108.2041 [hep-ph]

Valentin Hirschi, 4th september 2012

HP2@MPI

FROM UFO TO MG5

ALOHA translate a UFO Lorentz structure

VVVV6 = Lorentz(name = 'VVVV6', spins = [3, 3, 3, 3], structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

into pseudo-HELAS subroutine in a chosen language

 $\begin{aligned} & \text{VERTEX} = \text{COUP}^*(\text{ (V4(1)}^*(\text{ (V2(1)}^*(\text{ (0, -1)}^*(\text{V3(2)}^*\text{V1(2)})) \\ \$ + (0, -1)^*(\text{V3(3)}^*\text{V1(3)}) + (0, -1)^*(\text{V3(4)}^*\text{V1(4)})) + (\text{V1(1)}^*(\text{ (0, 1)}) \\ \$ *(\text{V3(2)}^*\text{V2(2)}) + (0, 1)^*(\text{V3(3)}^*\text{V2(3)}) + (0, 1)^*(\text{V3(4)}^*\text{V2(4)}))))) \\ \$ + ((\text{V4(2)}^*((\text{V2(2)}^*(\text{ (0, -1)}^*(\text{V3(1)}^*\text{V1(1)}) + (0, 1)^*(\text{V3(3)}^*\text{V1(3)})) \\ \$ + (0, 1)^*(\text{V3(4)}^*\text{V1(4)})) + (\text{V1(2)}^*(\text{ (0, 1)}^*(\text{V3(1)}^*\text{V2(1)}) + (0, \\ \$ - 1)^*(\text{V3(3)}^*\text{V2(3)}) + (0, -1)^*(\text{V3(4)}^*\text{V2(4)}))))) + ((\text{V4(3)}^*((\text{V2(3)} \\ \$ * (0, -1)^*(\text{V3(1)}^*\text{V1(1)}) + (0, 1)^*(\text{V3(2)}^*\text{V1(2)}) + (0, 1)^*(\text{V3(2)}^*\text{V2(2)})) \\ \$ * (0, -1)^*(\text{V3(4)}^*\text{V2(4)})))) + (\text{V4(4)}^*((\text{V2(4)}^*((0, -1)^*(\text{V3(1)} \\ \$ * \text{V1(1)}) + (0, 1)^*(\text{V3(2)}^*\text{V1(2)}) + (0, 1)^*(\text{V3(3)}^*\text{V1(3)}))) + (\text{V1(4)} \\ \$ * ((0, 1)^*(\text{V3(1)}^*\text{V2(1)}) + (0, -1)^*(\text{V3(2)}^*\text{V2(2)}) + (0, -1)^*(\text{V3(3)} \\ \$ * \text{V2(3)}))))))) \\ \text{END} \end{aligned}$

Available in Python, C++ and F77

ALOHA available as a standalone release

Valentin Hirschi, 4th september 2012

NEW ON ALOHA

• ALOHA is optimizing the way it does analytical computation

Model name	Loading time, new ALOHA	Loading time, old ALOHA
SM	1.2 s	3 s
MSSM	1.4 s	5 s
Randall-Sundrum	90 s	15 min

- Abbreviation usage improves compilation and running time (up to 40%)
- Possibility to create ALOHA subroutine from the MG5 shell

mg5> output aloha FFV1_3

• New Outputs/Options in progress (Expected in the v2.0 public release)

Quadruple precision, Feynman Gauge, Spin 3/2, Complex Mass Scheme, Open Loops techniques, anomalous couplings

Valentin Hirschi, 4th september 2012

HP2@MPI

OPTIMIZATIONS

• Summing over helicities first, then reducing the matrix element squared.

$$\mathcal{M} = \sum_{l=loop} 2\Re(\sum_{h=hel} \operatorname{CT}[\int \frac{d^D q \mathcal{N}_{l,h}}{D_0 D_1 \cdots D_{n-1}}] \mathcal{A}_h^*]) \implies \mathcal{M} = \sum_{l=loop} 2\Re(\operatorname{CT}[\int d^D q \frac{\sum_{h=hel} \sum_{b=born} \mathcal{N}_{l,h} \mathcal{A}_{b,h}^*}{D_0 D_1 \cdots D_{n-1}}])$$

Also grouping together diagrams with the same denominator structures.

- → Result: Number of OPP calls decreases from Nloops x Nhels to Nloop_topology !
- Exploit the open-loops^[F.Cascioli, P.Maierhöfer, S.Pozzorini] technology.
 - → Faster numerator evaluations.
 - → Optimal recycling of the loop wavefunctions.
 - → Remains flexible as ALOHA outputs the building blocks [Work by O.Mattelaer].
- Automatically numerically detect zero and CP-dependent helicity configurations.
- Efficient reconstruction the missing L-cut propagator. Numerator 2 times faster for the massless fermion loops and 3 times for massive ones.

Overall speedup of a factor 10+ w.r.t MLA

Valentin Hirschi, 4th september 2012

Valentin Hirschi, 4th september 2012

• Recycling wavefunction accross helicity configurations

 e^{-} $O[p_3, \sigma_3, W(4)]$ $I[p_1, \sigma_1, W(1)]$ $MO[W(1), W(2), \alpha_W, W(3)]$ $OV[W(5), W(4), W(3), \alpha_W, \text{Res}]$ $O[p_2, \sigma_2, W(2)]$ $I[p_4, \sigma_4, W(5)]$ \bar{q}

Ex. The same JIO[e+,e-] can be used for the two helicity configs of q q~

Thanks to open-loops, the loop wavefunctions can also be recycled.

• Recycling wavefunction accross helicity configurations

Ex. The same JIO[e⁺,e⁻] can be used for the two helicity configs of q q~

Thanks to open-loops, the loop wavefunctions can also be recycled.

• Grouping diagrams with similar denominator structures

$$\int d^{D}q \frac{\mathcal{N}_{A}(q)}{\bar{D}_{1}\bar{D}_{12}\bar{D}_{123}\bar{D}_{1234}} + \int d^{D}q \frac{\mathcal{N}_{B}(q)}{\bar{D}_{1}\bar{D}_{12}\bar{D}_{1234}}$$
$$\int \mathcal{N}_{A}(q) + \mathcal{N}_{B}(q)D_{123}$$

 $= \int d^{D}q \frac{1}{\bar{D}_{1}\bar{D}_{12}\bar{D}_{122}\bar{D}_{1224}}$

A given triangle and its corresponding box can be reduced at once!

Ex: g g > g g would require only six calls to OPP, one per box topology!

But tedious book-keeping and also needs care with dimensionality.

Only useful if dominated by OPP!

Valentin Hirschi, 4th september 2012

• Recycling wavefunction accross helicity configurations

Ex. The same JIO[e⁺,e⁻] can be used for the two helicity configs of q q~

Thanks to open-loops, the loop wavefunctions can also be recycled.

• Grouping diagrams with similar denominator structures

$$\int d^D q \frac{\mathcal{N}_A(q)}{\bar{D}_1 \bar{D}_{12} \bar{D}_{123} \bar{D}_{1234}} + \int d^D q \frac{\mathcal{N}_B(q)}{\bar{D}_1 \bar{D}_{12} \bar{D}_{1234}}$$

 $= \int d^D q \frac{\mathcal{N}_A(q) + \mathcal{N}_B(q)D_{123}}{\bar{D}_1\bar{D}_{12}\bar{D}_{123}\bar{D}_{1234}}$

A given triangle and its corresponding box can be reduced at once!

Ex: g g > g g would require only six calls to OPP, one per box topology!

But tedious book-keeping and also needs care with dimensionality.

Only useful if dominated by OPP!

• Linking MadLoop5 vs Tensor Integral Reduction (TIR).

Valentin Hirschi, 4th september 2012

SPEED AND STABILITY

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

23

BENCHMARK WITH A CASE STUDY

Four families of $2 \rightarrow 2,3,4$ processes with n=0,1,2 gluons

- $u u \sim \rightarrow t t \sim + ng$
- $u u \sim \rightarrow W^+ W^- + ng$
- u d~ \rightarrow w⁺ g + ng
- g g \rightarrow t t \sim + ng

Same choice as in arXiv:1111:5206

Aim of the study

- Performance of processes of interest from LesHouches wish list
- Benchmark choice common among many codes: easier comparison
- Study of MadLoop5 scaling with leg multiplicity.

Running environnement

- Intel i5 2.8 GHz, only one core exploited
- gfortran -00, similar results with gfortran -05 and ifort

Valentin Hirschi, 4th september 2012

Seminar @ DESY

CODE GENERATION

Process	Exe. size [MB]	t _{code} [s]	
u u~ → t t~	3.4	9.1	
$u u \sim \rightarrow W^+ W^-$	3.5	12.4	
u d∼ → w+ g	3.5	13.9	
gg→tt~	3.6	12.8	
u u~ → t t~ g	3.7	18	
u u~ → w+ w- g	3.9	35	
u d~ → w+ g g	3.8	24	
gg→tt~g	4.2	62	
u u~ → t t~ g g	4.8	180	
u u~ → w ⁺ w ⁻ g g	4.8	204	
u d~ → w⁺ g g g	5.2	254	
gg→tt~gg	9.9*	1230	
u d~ → w ⁺ gggg	24**	9370	

Executable size: a few MB Mild scaling with multiplicity.

Generation time < 1 hour Not a limiting factor.

> Could generate u d~ \rightarrow w⁺ g g g g or even g g \rightarrow g g g g

*,**: Color + helicity data = 25MB , 191 MB

Valentin Hirschi, 4th september 2012

SPEED OF ONE-LOOP AMPLITUDES

COLOR SUMMED, WITH OPP

Process	t _{pol} [ms]	n _{hel}	t _{unpol} [ms]
u u~ → t t~	0.52	3 /16	0.72
$u u \sim \rightarrow W^+ W^-$	0.43	10/36	1.00
u d∼ → w+ g	0.87	6 /24	1.51
gg→tt~	2.51	6 /16	5.42
u u~ → t t~ g	7.44	16 /32	27.5
u u~ → w+ w- g	9.3	36 /72	81.8
u d∼ → w⁺ g g	13.5	12/48	36.9
gg→tt~g	40.8	32 /32	381
u u~ → t t~ g g	142	32 /64	1010
u u∼ → w+ w- g g	166	72 /144	2820
u d∼ → w⁺ g g g	260	24/96	1'310
gg→tt~gg	826	64 /64	16'900
u d~ → w ⁺ g g g g	9400	48 /192	90'900

Polarized timing competitive $t_{2\rightarrow 2}: t_{2\rightarrow 3}: t_{2\rightarrow 4} \leq 1:40:800 \text{ ms}$

Unpolarized timing Good enough for $2 \rightarrow 3$ Might need further improvement for $2 \rightarrow 4$

Higher multiplicity $2 \rightarrow 5$ generation feasible

But evaluation is slow, so only useful to cross-check other codes (Ex. gg→gggg successfully cross-checked vs NGluon^[S. Badger])

Valentin Hirschi, 4th september 2012

LINEAR SCALING WITH # LOOP DIAGS

HIGHER RANK LOOPS APPEARING AT LARGER MULTIPLICITIES ARE NO OBSTACLE!

MadLoop5 polarized eval. time per PS point

NUMERICAL STABILITY WITH OPP

DOUBLE PRECISION IS NOT ALWAYS ENOUGH!

Stability probed by two methods:

- Loop reading direction : $D_0D_1...D_{n-1}D_n \rightarrow D_nD_{n-1}...D_1D_0$
 - \Rightarrow Advantage: The coefficients of N(q) need not be recomputed.
- Two PS point rotations : $(E,x,y,z) \rightarrow (E,z,-x,-y)$ and $(E,x,y,z) \rightarrow (E,-z,y,x)$

Fraction of points with less than 3 digits accuracy:

Further investigation necessary for $2 \rightarrow 4$.

Valentin Hirschi, 4th september 2012

NUMERICAL STABILITY WITH OPP

2 > 4, PROBLEMS AHEAD...

Stability plot for g g \rightarrow t \overline{t} +ng

Uniformly distributed points with $\sqrt{s} = 1$ TeV, $p_t > 50$ GeV and $\Delta R_{ij} > 0.5$

Valentin Hirschi, 4th september 2012

NUMERICAL STABILITY WITH OPP

QUADRUPLE PRECISION SOLVES

- → In general, accuracy is **worse** than with Tensor Integral Reduction
- → Quadruple precision <u>cures</u> the Unstable PS (UPS) points but...
 - ... is 100 times slower! (This is for complete qd, but double-double would be only 8 times slower)
 So 1% of UPS is already enough to double the integration time.
 - ... a very (very) small fraction of the points will remain unstable.
 What to do with these Exceptional PS points (EPS)?
- → Need to assess that the stability tests used are accurate.
- → Also need to investigate possible correlation between small weight of the ME and the unstability of its evaluation.

Valentin Hirschi, 4th september 2012

MADLOOP V4 TO V5

GREAT IMPROVEMENTS

 \checkmark = non-optimal | \checkmark = done optimally | X = not done | X = not done YET

Task	MadLoop V4	MadLoop V5
Generation of L-Cut diagrams, loop-basis selection	√-	√ ++
Color Factor computation	√-	1
Counter-term (UV/R2) diagrams generation	√-	1
Mixed order perturbation (generation level)	×	\checkmark
File output and run-time speed	√	√ ++
Drawing of Loop diagrams	×	1
4-gluon R2 computation	×	1
Automated parallel tests	×	1
Automatic output sanity checks (Ward, ε ⁻²)	\checkmark	1
EPS handling	√ (no qp)	√ - (qp)
Virtual squared	√-	\checkmark
Decay Chains	×	×
Automatic loop-model creation	×	×
Complex mass scheme and massive bosons in the loop	×	√/X

Valentin Hirschi, 4th september 2012

FUTURE PLANS AND CONCLUSION

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

32

NEXT ON PIPE-LINE

- Complete the Stability study of MadLoop5.
- Publicly release MadGraph5 v2.0!
- Exploit the tool for phenomenology studies.
- Implement a UFO loop model for **ElectroWeak corrections**.
- Implement some of the further optimizations discussed
- Automatic Loop UFO Model generation with FeynRules
- Decay chains specifications
- Case-study **SUSY** ? (If not already irrelevant by then)

Valentin Hirschi, 4th september 2012

THOUGHT-TO-BE FINAL WORD

BE READY TO TRY THE MADGRAPH V2.0 BY YOURSELF

MadLoop5 in MadGraph5 v2.0, a new 1-loop generator

- Numerical, diagrammatic, some recursive features
- Open-loops method exploited, *i.e.* loop-momentum polynomials
- PUBLIC release very soon (keep an eye on <u>launchpad.net/madgraph5</u>)

User-friendly, Automated, Flexible, Unique framework

- BSM model covered thanks to UFO and ALOHA flexibility.
- User-friendly thanks to MG5 interfaces.
- Fully automated, from the hard process output to event generation.

Fast, Stable

- Fast enough to cover today's processes of interest, $2 \rightarrow 4$ takes O(1s-3s)
- Stable thanks to quadruple precision when needed.

Valentin Hirschi, 4th september 2012

THANKS

🔴 🔿 🕥 🚺 MadGr	aph Home Page ×	2			
← → C ③ ma	dgraph.hep.uiuc.edu				☆ ੨
	Any opinions, findings, and conclusions	High En High En Ilinois This material is based upon work support or recommendations expressed in this material The Mad UC by the MG	ed by the National Science Foundation under Grant No. 0426 rial are those of the author(s) and do not necessarily reflect to Graph homepage L UIUC Fermi	1272. the views of the National Science Foundation	
	Generate Process Register	e processes of	<u>Cluster</u> <u>Downloads</u> <u>Status</u> (needs registration)	Wiki/Docs Admin	
To improve our web Please note the correct You can still use Ma	services we request that y ct reference for MadGrapl dGraph 4 <u>here</u> .	ou register. Registration 5, JHEP 1106(2011)12	is quick and free. You may regist 28, arXiv:1106.0522 [hep-ph].	ter for a password by clicking	here.

Code can be generated either by:	
I. Fill the form: Model: SM C LO Model descriptions Input Process: NLO Examples/format Example: p p > w+ j j QED=3, w+ > 1+ vl	We are very soon there!
p and j definitions: p=j=d u s c d~ u~ s~ c~ g	
sum over leptons: (I+ = e+, mu+ ta+; I- = e-, mu- ta-; vI = ve, vm, vt; vI~ = ve~, vm~,	, vt~ 🗘
Submit	

Valentin Hirschi, 4th september 2012

ADDITIONAL SLIDES

Valentin Hirschi, 4th september 2012

HP2@MPI

Friday, September 7, 2012

36

PROCESS DETAILS

Process	unpol t _{coef} / t _{tot}	pol t _{coef} / t _{tot}	n _{loops} / n _{loop_groups}
u u~ → t t~	42%	20%	8/14
$u u \sim \rightarrow W^+ W^-$	69%	21%	5/6
u d~ → w+ g	52%	16%	9/11
gg→tt~	66%	25%	26 / 45
u u~ → t t~ g	78%	18%	54 / 128
u u~ → w ⁺ w ⁻ g	91%	24%	40 / 98
u d∼ → w⁺ g g	69%	17%	61 / 144
g g → t t~ g	92%	29%	164 / 556
u u~ → t t~ g g	88%	22%	374 / 1530
u u~ → w+ w- g g	95%	25%	260 / 1108
u d∼ → w⁺ g g g	84%	20%	405 / 1827
g g → t t~ g g	97%	35%	1168 / 7356
u d~ → w⁺ g g g g	94%	21%	3255 / 25666

Valentin Hirschi, 4th september 2012

DEFAULT VS OPEN-LOOP TIMINGS

MadLoop5 opt vs default polarized eval. time per PS point

Valentin Hirschi, 4th september 2012