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• Why yet another tool..?
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• Example:

• Conclusion

- How to add a new sector to the SM



• In general, a new model is given by a Lagrangian, 
containing all the particles and their mutual 
interactions.

• At some point, one would like to compare the 
model with experiment.

Why yet another tool..?

Needs in general some hard 
calculations:
- cross-sections
- decay rates
- radiative corrections



• Fortunately, several tools are available to do the 
calculations

Why yet another tool..?

- MC generators (MadGraph, CalcHep, CompHEP,                 
AMEGIC++)
- FeynArts,...

New model Existing tools
(Lagrangian, new 
particles,...)

(Programming language, 
files containing the new 
particles and 
interactions,...)



• Mathematica® based package that calculates Feynman 
rules from a Lagrangian.

• No special requirements on the form of the 
Lagrangian.

• Particle types supported so far: scalars, fermions 
(Dirac and Majorana), vectors, spin-2, ghosts.

FeynRules



• The FR model file contains all the information about the 
model:

FeynRules

- Particles & fields
- Parameters (masses, coupling constants,...)
- mixing matrices
- etc.

• The syntax of the FR model-files is an extension of syntax 
used in FeynArts.

• Feynman rules are calculated by Mathematica using the 
information from the model-file and the Lagrangian.

• The vertices can be exported into a TeX-file.



• The informations given in the model-file, together with 
the vertices obtained by FR, is generic enough to allow 
for an interface to other existing tools.

• FR creates all files needed to run the new model just by 
knowing the FR model-file and the Lagrangian.

• Interfaces available so far

FeynRules

- FeynArts
- MadGraph/MadEvent (CD, M. Herquet)
- CalcHep/CompHep (CD, N. Christensen)
- Sherpa (CD, S. Schumann)



Lagrangian

FeynArts

Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

FeynRules

...MadGraph CalcHep Sherpa



Validation

• Standard model: 29 key-processes tested against the stock version

- FeynArts 
- MadGraph
- CalcHep/CompHep: both in unitary and Feynman gauge
- Sherpa:  Validation procedure in progress

• 3-site model: 222 key-processes tested in CalcHep/CompHep



Validation
• Standard model: 29 key-processes tested against the stock version

...



Validation
• 3-site model: 222 key-processes tested in CalcHep/CompHep

...
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Example: The Hill model
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7 SM SCALAR AND EXTRA SINGLET(S)

J. J. VAN DER BIJ
Institut für Physik, Albert-Ludwigs Universität Freiburg, H. Herderstr. 3,

79104 Freiburg i.B., Deutschland

I discuss the question whether it is possible that the LHC will find no signal for the Higgs

particle. It is argued that in this case singlet scalars should be present that could play an
important role in astroparticle physics. A critical view at the existing electroweak data shows
that this possibility might be favored over the simplest standard model. In this case one needs
the ILC in order to study the Higgs sector.

1 Introduction

The standard model gives a good description of the bulk of the electroweak data. Only a sign
of the Higgs particle is missing at the moment. The Higgs field is necessary in order to make
the theory renormalizable, so that predictions are possible and one can really speak of a theory.
A complete absence of the Higgs field would make the theory non-renormalizable, implying
the existence of new strong interactions at the TeV scale. Therefore one is naively led to the
so-called no-lose theorem 1. This theorem says that when one builds a large energy hadron
collider, formerly the SSC now the LHC, one will find new phyics, either the Higgs particle or
otherwise new strong interactions. Since historically no-theorems have a bad record in physics
one is naturally tempted to try to evade this theorem. So in the following I will try to find ways
by which the LHC can avoid seeing any sign of new physics.

At the time of the introduction of the no-lose theorem very little was known about the
Higgs particle. Since then there have been experiments at LEP, SLAC and the Tevatron, that
give information on the Higgs mass. Through precise measurements of the W-boson mass and
various asymmetries one can get constraints on the Higgs mass. The Higgs mass enters into
the prediction of these quantities via radiative corrections containing a virtual Higgs exchange.
Moreover at LEP-200 the direct search gives a lower limit of 114.4GeV. The situation regarding
the precision tests is not fully satisfactory. The reason is that the Higgs mass implied by

vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
mixing even if all the scalars are light. If one starts with an interaction of the form HΦ†Φ,
where H is the new singlet Higgs field and Φ the standard model Higgs field, no interaction
of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
model, having only two extra parameters.

The simplest model is the Hill model:

L = −
1

2
(DµΦ)†(DµΦ) −

1

2
(∂µH)2 −

λ0

8
(Φ†Φ − f2

0 )2 −
λ1

8
(2f1H − Φ†Φ)2 (7)

Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:

Dσσ(k2) = cos2(α)/(k2 + m2
−) + sin2(α)/(k2 + m2

+) (9)

The generalization to an arbitrary set of fields Hk is straightforward, one simply replaces the
singlet-doublet interaction term by:

LHΦ = −
∑ λk

8
(2fkHk − Φ†Φ)2 (10)

This will lead to a number of (fractional) Higgs bosons Hi with reduced couplings gi to the
standard model particles such that

∑

i

g2
i = g2

SM (11)
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of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
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vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
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of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
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expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
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Because these two particles have the quantum numbers of the Higgs particle, but only reduced
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description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
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as the counting of parameters is concerned this is the most minimal extension of the standard
model, having only two extra parameters.

The simplest model is the Hill model:
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Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:

Dσσ(k2) = cos2(α)/(k2 + m2
−) + sin2(α)/(k2 + m2

+) (9)

The generalization to an arbitrary set of fields Hk is straightforward, one simply replaces the
singlet-doublet interaction term by:

LHΦ = −
∑ λk

8
(2fkHk − Φ†Φ)2 (10)

This will lead to a number of (fractional) Higgs bosons Hi with reduced couplings gi to the
standard model particles such that

∑

i

g2
i = g2

SM (11)
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LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
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the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
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SM Higgs

Hill field

• The mass matrix of the two scalars is

f0 = 246GeV

f1 = 400GeV

λ0 = 0.1
λ1 = 0.25

〈Φ〉 =
(

0
f0

)

〈H〉 =
f2
0

2f1

MH =
(

(λ0 + λ1)f2
0 −λ1f0f1

−λ1f0f1 λ1f2
1

)

1

Just use Mathematica to diagonalize the matrix...

The Hill model



• Mass eigenvalues:

• Mass eigenstates:

f0 = 246GeV

f1 = 600GeV

λ0 = 0.12
λ1 = 0.25

〈Φ〉 =
(

0
f0

)

〈H〉 =
f2
0

2f1

MH =
(

(λ0 + λ1)f2
0 −λ1f0f1

−λ1f0f1 λ1f2
1

)

m1 = 78, 5GeV

m2 = 325, 99GeV

h1 = h cos α + H sinα

h2 = −h sinα + H cos α

Φ =
(

0
f0 + h

)

α = 0, 60321

1
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λ0 = 0.12
λ1 = 0.25

〈Φ〉 =
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0
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(
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(
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1

f0 = 246GeV

f1 = 600GeV

λ0 = 0.12
λ1 = 0.25

〈Φ〉 =
(

0
f0

)

〈H〉 =
f2
0

2f1

MH =
(

(λ0 + λ1)f2
0 −λ1f0f1

−λ1f0f1 λ1f2
1

)

m1 = 78, 5GeV

m2 = 326GeV

h1 = h cos α + H sinα

h2 = −h sinα + H cos α

Φ =
(

0
f0 + h

)

α = 0, 60321

1

The Hill model



The Hill model
• Consequences:

- All SM Higgs (Yukawa, gauge) couplings get doubled.

f0 = 246GeV

f1 = 600GeV

λ0 = 0, 1
λ1 = 0, 25
LI = e ψ̄γµψ Aµ

〈0|e ψ̄γµψ Aµ|a†ψ̄a†ψa†A〉

e ū(p1)γµu(p2) εµ(p3) eix(p2+p3−p1)

ieγµ

tt̄h → tt̄h1, tt̄h2

yt√
2

→ yt sinα√
2

,
yt cos α√

2
h1h1h2 : − cos αλ1(f1 cos2 α + 3f0 sinα cos α− 2f1 sin2 α)

1

- All SM Higgs couplings get modified (mixing angle).

f0 = 246GeV

f1 = 600GeV

λ0 = 0, 1
λ1 = 0, 25
LI = e ψ̄γµψ Aµ

〈0|e ψ̄γµψ Aµ|a†ψ̄a†ψa†A〉

e ū(p1)γµu(p2) εµ(p3) eix(p2+p3−p1)

ieγµ

tt̄h → tt̄h1, tt̄h2

yt√
2

→ yt sinα√
2

,
yt cos α√

2
h1h1h2 : − cos αλ1(f1 cos2 α + 3f0 sinα cos α− 2f1 sin2 α)

1

- New self-couplings among h1 and h2.

f0 = 246GeV

f1 = 600GeV

λ0 = 0, 1
λ1 = 0, 25
LI = e ψ̄γµψ Aµ

〈0|e ψ̄γµψ Aµ|a†ψ̄a†ψa†A〉

e ū(p1)γµu(p2) εµ(p3) eix(p2+p3−p1)

ieγµ

tt̄h → tt̄h1, tt̄h2

yt√
2

→ yt sinα√
2

,
yt cos α√

2
h1h1h2 : − cos αλ1(f1 cos2 α + 3f0 sinα cos α− 2f1 sin2 α)

1
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- All SM Higgs couplings get modified (mixing angle).
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- New self-couplings among h1 and h2.
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LI = e ψ̄γµψ Aµ
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Lots of things need to be changed in the SM 
implementation to get the Hill model!

Let FeynRules do the job!



Model building with FeynRules
• Step 1: Add all the parameters of the new sector to the model file:

vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
mixing even if all the scalars are light. If one starts with an interaction of the form HΦ†Φ,
where H is the new singlet Higgs field and Φ the standard model Higgs field, no interaction
of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
model, having only two extra parameters.

The simplest model is the Hill model:

L = −
1

2
(DµΦ)†(DµΦ) −

1

2
(∂µH)2 −

λ0

8
(Φ†Φ − f2

0 )2 −
λ1

8
(2f1H − Φ†Φ)2 (7)

Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:

Dσσ(k2) = cos2(α)/(k2 + m2
−) + sin2(α)/(k2 + m2

+) (9)

The generalization to an arbitrary set of fields Hk is straightforward, one simply replaces the
singlet-doublet interaction term by:

LHΦ = −
∑ λk

8
(2fkHk − Φ†Φ)2 (10)

This will lead to a number of (fractional) Higgs bosons Hi with reduced couplings gi to the
standard model particles such that

∑

i

g2
i = g2

SM (11)
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of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
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Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:
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vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
mixing even if all the scalars are light. If one starts with an interaction of the form HΦ†Φ,
where H is the new singlet Higgs field and Φ the standard model Higgs field, no interaction
of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
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Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:

Dσσ(k2) = cos2(α)/(k2 + m2
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The generalization to an arbitrary set of fields Hk is straightforward, one simply replaces the
singlet-doublet interaction term by:
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vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
mixing even if all the scalars are light. If one starts with an interaction of the form HΦ†Φ,
where H is the new singlet Higgs field and Φ the standard model Higgs field, no interaction
of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
model, having only two extra parameters.
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Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
describe this situation. One is to say that one has two Higgs fields with reduced couplings g to
standard model particles:

g− = gSM cos(α), g+ = gSM sin(α) (8)

Because these two particles have the quantum numbers of the Higgs particle, but only reduced
couplings to standard model particles one can call them fractional Higgs particles. The other
description, which has some practical advantages is not to diagonalize the propagator, but simply
keep the σ − σ propagator explicitely. One can ignore the H − σ and H −H propagators, since
the H field does not couple to ordinary matter. One simply replaces in all experimental cross
section calculations the standard model Higgs propagator by:
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The generalization to an arbitrary set of fields Hk is straightforward, one simply replaces the
singlet-doublet interaction term by:
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Cosine of the mixing angle



Model building with FeynRules
• Step 1: Add all the parameters of the new sector to the model file:

vector-boson fusion channel with jet-tagging. Assuming the invisible branching ratio to be large
and assuming the Higgs boson not to be heavy, as indicated by the precision tests, one still
finds a significant signal 26. Of course one cannot study this Higgs boson in great detail at the
LHC. For this the ILC would be needed, where precise measurements are possible in the channel
e+e− → ZH.

3.3 Mixing: fractional Higgses

Somewhat surprisingly it is possible to have a model that has basically only singlet-doublet
mixing even if all the scalars are light. If one starts with an interaction of the form HΦ†Φ,
where H is the new singlet Higgs field and Φ the standard model Higgs field, no interaction
of the form H3, H4 or H2Φ†Φ is generated with an infinite coefficient 27. At the same time
the scalar potential stays bounded from below. This means that one can indeed leave these
dimension four interactions out of the Lagrangian without violating renormalizability. This is
similar to the non-renormalization theorem in supersymmetry that says that the superpotential
does not get renormalized. However in general it only works with singlet extensions. As far
as the counting of parameters is concerned this is the most minimal extension of the standard
model, having only two extra parameters.

The simplest model is the Hill model:
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Working in the unitary gauge one writes Φ† = (σ, 0), where the σ-field is the physical standard
model Higgs field. Both the standard model Higgs field σ and the Hill field H receive vacuum
expectation values and one ends up with a two-by-two mass matrix to diagonalize, thereby
ending with two masses m− and m+ and a mixing angle α. There are two equivalent ways to
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Phenomenology with FeynRules
• Now we are ready to do some phenomenology...

• Let’s consider the following process in the framework of Hill 
model

At a CoM energy of 500GeV.

f0 = 246GeV

f1 = 600GeV

λ0 = 0.12
λ1 = 0.25

〈Φ〉 =
(

0
f0

)

〈H〉 =
f2
0

2f1

MH =
(

(λ0 + λ1)f2
0 −λ1f0f1

−λ1f0f1 λ1f2
1

)

m1 = 78, 5GeV

m2 = 326GeV

h1 = h cos α + H sinα

h2 = −h sinα + H cos α

Φ =
(

0
f0 + h

)

α = 0, 60321
e+e− → Zbb̃ → µ+µ− bb̃

1

• Let’s first have a look at the one-loop corrections.

Use FeynArts



• The results obtained by FeynRules can be easily exported to 
FeynArts:

• This produces a FeynArts model-file which can be read by FeynArts.
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• The results obtained by FeynRules can be easily exported toMC 
generators:

• This produces all the files needed to implement the Hill model into 
an MC. Let’s have a look at our process!
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Diagrams by MadGraph  e+ e- -> m+ m- b b~  
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Phenomenology with MadGraph
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Phenomenology with CalcHep
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Conclusion
• FeynRules is a Mathematica®-based package to extract Feynman 

rules from a lagrangian.

- FeynArts
- MadGraph/MadEvent
- CalcHep/CompHep
- Sherpa
- ...

• The code can be downloaded from 
http://europa.fyma.ucl.ac.be/feynrules

• The output of FeynRules is completely generic and can be easily 
interfaced to other available codes.

• Available interfaces:

http://europa
http://europa
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Abstract

We develop a simple description of models where electroweak symmetry breaking is
triggered by a light composite Higgs, which emerges from a strongly-interacting sector
as a pseudo-Goldstone boson. Two parameters fully characterize these models: mρ,
the mass scale of the new resonances and gρ, their coupling. An effective low-energy
Lagrangian approach proves to be useful for LHC and ILC phenomenology below the
scale mρ. We identify two classes of operators: those that are genuinely sensitive to the
new strong force and those that are sensitive to the spectrum of the resonances only.
Phenomenological prospects for the LHC and the ILC include the study of high-energy
longitudinal vector boson scattering, strong double-Higgs production and anomalous
Higgs couplings. We finally discuss the possibility that the top quark could also be a
composite object of the strong sector.

equations of motion this term can, however, be rewritten as
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m2
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[
m2

HHα + λH†HHα + yf(FLfR)α
]2

, (12)

corresponding to effects that are all subleading to more direct corrections from the strong

sector.

For completenes we should also list the dimension-6 operators involving only covariant

derivatives and field strengths
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As we show in the appendix A, see eq. (117), the three operators in eq. (13) can be generated

at tree level through the exchange of massive vectors transforming respectively as a weak

triplet, as a singlet and as a color octet. Their coefficients are therefore in general of order

1/(gρmρ)2. The two operators in eq. (14) cannot arise at tree level in minimally-coupled

theories. For instance O3W contributes to the magnetic dipole and to the electric quadrupole

of the W . They are thus generally expected with a coefficient ∼ 1/(4πmρ)2.

2.3 The SILH effective Lagrangian

We now basically have all the ingredients to write down the low-energy dimension-6 effective

Lagrangian. We will work under the assumption of a minimally coupled classical Lagrangian

at the scale mρ.
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Lagrangian. We will work under the assumption of a minimally coupled classical Lagrangian

at the scale mρ.

Using the rules described in sect. 2.2, we obtain a low-energy effective action for the

leading dimension-6 operators involving the Higgs field of the form

LSILH =
cH

2f 2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f 2

(
H†←→DµH

)(
H†←→D µH

)

−
c6λ

f 2

(
H†H

)3
+

(
cyyf

f 2
H†Hf̄LHfR + h.c.

)

+
icW g

2m2
ρ

(
H†σi←→DµH

)
(DνWµν)

i +
icBg′

2m2
ρ

(
H†←→DµH

)
(∂νBµν)

+
icHW g

16π2f 2
(DµH)†σi(DνH)W i

µν +
icHBg′

16π2f 2
(DµH)†(DνH)Bµν

+
cγg′2

16π2f 2

g2

g2
ρ

H†HBµνB
µν +

cgg2
S

16π2f 2

y2
t

g2
ρ

H†HGa
µνG

aµν . (15)
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Getting Feynman rules

Particle content:
   - Spin 2 graviton, KK-scalars
   - Fermions
   - Scalars
   - Gauge bosons
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Abstract

We consider the novel Kaluza-Klein (KK) scenario where gravity propa-
gates in the 4 + n dimensional bulk of spacetime, while gauge and matter
fields are confined to the 3 + 1 dimensional world-volume of a brane configu-
ration. For simplicity we assume compactification of the extra n dimensions
on a torus with a common scale R, and identify the massive KK states in the
four-dimensional spacetime. For a given KK level !n there are one spin-2 state,
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decouple and that the spin-0 states only couple through the dilaton mode. We
then derive the interacting Lagrangian for the KK states and Standard Model
fields, and present the complete Feynman rules. We discuss some low energy
phenomenology for these new interactions for the case when 1/R is small com-
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• Lagrangian coupling the fermions to the graviton and the KK-
scalar:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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• Very complicated structure as far as Feynman rules are 
concerned, but we are only a few steps away from the Feynman 
rules...

Getting Feynman rules



• Step 1: Add all the parameters in the lagrangian to the model file:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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• Step II: Add all the particles in the lagrangian to the model file:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −
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4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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ν = ηνρΓµ
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The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.
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where e = det(e a
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ν ηab = gµν , γµ = eµ

aγ
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covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab
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be solved in terms of the vierbein,
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2
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a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ
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b (∂ρecσ −∂σecρ)e
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2
ψiγµDνψ +
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e a
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The Lagrangian for a level-$n KK state coupled to fermions is
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F(κ) =
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[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is
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∂µ∂ρAρAν

+
ω

2
m2
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ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
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LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
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µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
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µ can
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ωµab =
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(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ
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µ . (41)
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µν = −ηµν(ψiγρDρψ − mψψψ) +
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ψiγµDνψ +
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ψiγνDµψ

+
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∂ρ(ψiγρψ) −
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4
∂µ(ψiγνψ) −
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4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a
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2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1
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[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is
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AAµAν

+
h̃#n
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(
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+
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ξ
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The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e
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µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2
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+
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(
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2
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)
−
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ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −
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4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is
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V(κ) = −

1

8
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+
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2
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ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
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µ can
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a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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