

S. CATHOLICA HOUMNIENSIS.

FeynRules New models phenomenology made easy

Claude Duhr

March 11, 2008 MC4BSM

- Why yet another tool..?
- FeynRules

• Example:

- How to add a new sector to the SM

Conclusion

Why yet another tool..?

- In general, a new model is given by a Lagrangian, containing all the particles and their mutual interactions.
- At some point, one would like to compare the model with experiment.

- Needs in general some hard calculations:
- cross-sections
- decay rates
- radiative corrections

Why yet another tool..?

- Fortunately, several tools are available to do the calculations
 - MC generators (MadGraph, CalcHep, CompHEP, AMEGIC++)
 - FeynArts,...

FeynRules

- Mathematica® based package that calculates Feynman rules from a Lagrangian.
- No special requirements on the form of the Lagrangian.
- Particle types supported so far: scalars, fermions (Dirac and Majorana), vectors, spin-2, ghosts.

FeynRules

• The FR model file contains all the information about the model:

- Particles & fields
- Parameters (masses, coupling constants,...)
- mixing matrices
- etc.
- The syntax of the FR model-files is an extension of syntax used in FeynArts.
- Feynman rules are calculated by Mathematica using the information from the model-file and the Lagrangian.
- The vertices can be exported into a TeX-file.

- The informations given in the model-file, together with the vertices obtained by FR, is generic enough to allow for an interface to other existing tools.
- FR creates all files needed to run the new model just by knowing the FR model-file and the Lagrangian.
- Interfaces available so far
 - FeynArts
 - MadGraph/MadEvent (CD, M. Herquet)
 - CalcHep/CompHep (CD, N. Christensen)
 - Sherpa (CD, S. Schumann)

Validation

Standard model: 29 key-processes tested against the stock version

- FeynArts
- MadGraph
- CalcHep/CompHep: both in unitary and Feynman gauge
- Sherpa: Validation procedure in progress
- 3-site model: 222 key-processes tested in CalcHep/CompHep

Validation

Standard model: 29 key-processes tested against the stock version

	CalcHEP	CalcHEP	CalcHEP	CompHEP
Process	Stock	Feynman	Unitary	Feynman
gg−>gg	118910.	118910.	118910.	118910.
uū->gg	237.87	237.87	237.87	237.83
tt->gg	75.975	75.975	75.975	75.974
$e^{+}e^{-} -> \mu^{+}\mu^{-}$	0.45028	0.45028	0.45028	0.45021
tt->uū	22.113	22.113	22.113	22.114
uū->ss	11.6	11.6	11.6	11.599
$t\bar{t} \rightarrow W^+W^-$	19.91	19.91	19.91	19.91
tt->ZZ	1.3017	1.3017	1.3017	1.3017
ZZ -> ZZ	2.3797	2.3797	2.3797	2.3797
$W^+W^ > ZZ$	270.05	270.05	270.05	269.86
$W^+W^- \rightarrow W^+W^-$	1310.	1310.	1310.	1310.1
hh->hh	2.146	2.146	2.146	2.1456
hh->ZZ	65.714	65.714	65.714	65.714
$hh \rightarrow W^+W^-$	100.36	100.36	100.36	100.36

...

Validation

• 3-site model: 222 key-processes tested in CalcHep/CompHep

	Lanhep CalcHEP Feynman	Lanhep CalcHEP Unitary	FeynRules CalcHEP Feynman	FeynRules CalcHEP Unitary	FeynRules CompHEP Feynman
uū->gg	170.5	170.5	170.5	170.5	170.49
u'u'->gg	0.098763	0.098763	0.098763	0.098763	0.098761
tt->γZ	1.1233	1.1233	1.1233	1.1233	1.1233
$t \cdot \bar{t} -> \gamma Z$	0.033204	0.033204	0.033204	0.033204	0.033204
$t'\overline{t'} \rightarrow Z'Z'$	1.887	1.887	1.887	1.887	1.887
tb->ZW+ '	1.5603	1.5603	1.5603	1.5603	1.5604
eē->e'ē	0.093127	0.093127	0.093127	0.093127	0.093127
e'ē->u'ū	2.3603	2.3603	2.3603	2.3603	2.3603
$e\overline{v_e} \rightarrow \mu' \overline{v_{\mu}'}$	0.0005618	0.0005618	0.0005618	0.0005618	0.00056181
$e' \overline{v_e'} -> d' \overline{u'}$	2.5761	2.5761	2.5761	2.5761	2.5762
dd->dd	114310.	114310.	114310.	114310.	114310.
ZZ->Z'Z'	0	0	0	0	0
W⁺W⁻'->γZ	8.329	8.329	8.329	8.329	8.3288

Example: The Hill model

SM SCALAR AND EXTRA SINGLET(S)

J. J. VAN DER BIJ

Institut für Physik, Albert-Ludwigs Universität Freiburg, H. Herderstr. 3, 79104 Freiburg i.B., Deutschland

[arXiv:0707.0359]

$$L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - \frac{\lambda_{0}}{8} (\Phi^{\dagger} \Phi - f_{0}^{2})^{2}$$
$$-\frac{1}{2} (\partial_{\mu} H)^{2} - \frac{\lambda_{1}}{8} (2f_{1} H - \Phi^{\dagger} \Phi)^{2}$$

Example: The Hill model

SM SCALAR AND EXTRA SINGLET(S)

J. J. VAN DER BIJ

Institut für Physik, Albert-Ludwigs Universität Freiburg, H. Herderstr. 3,

To include this new sector in FeynArts and Monte Carlo's, you just need to add a few lines to the SM model file.

0359]

$$L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi)^{\dagger} - \frac{1}{8} (\Phi^{\dagger} \Phi - f_{0}^{2})^{2}$$
$$-\frac{1}{2} (\partial_{\mu} H)^{2} - \frac{\lambda_{1}}{8} (2f_{1} H - \Phi^{\dagger} \Phi)^{2}$$

The Hill model $L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - \frac{\lambda_0}{8} (\Phi^{\dagger} \Phi - f_0^2)^2$ **SM Higgs** $-\frac{1}{2}(\partial_{\mu}H)^{2} - \frac{\lambda_{1}}{8}(2f_{1}H - \Phi^{\dagger}\Phi)^{2}$ Hill field

 $\widehat{}$

 $f_0 = 246 GeV$ $f_1 = 600 GeV$ $\lambda_0 = 0, 1$ $\lambda_1 = 0, 25$

$$\begin{array}{l} \textbf{The Hill model} \\ L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) & -\frac{\lambda_0}{8} (\Phi^{\dagger} \Phi - f_0^2)^2 & \text{SM Higgs} \\ \\ -\frac{1}{2} (\partial_{\mu} H)^2 & -\frac{\lambda_1}{8} (2f_1 H - \Phi^{\dagger} \Phi)^2 & \text{Hill field} \end{array}$$

 If the SM Higgs acquires a vev, then the Hill field acquires a vev too.

$$\langle \Phi \rangle = \begin{pmatrix} 0 \\ f_0 \end{pmatrix} \quad \langle H \rangle = \frac{f_0^2}{2f_1}$$

$$\begin{aligned} & \text{The Hill model} \\ L &= -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - \frac{\lambda_0}{8} (\Phi^{\dagger} \Phi - f_0^2)^2 & \text{SM Higgs} \\ & -\frac{1}{2} (\partial_{\mu} H)^2 - \frac{\lambda_1}{8} (2f_1 H - \Phi^{\dagger} \Phi)^2 & \text{Hill field} \end{aligned}$$

• The mass matrix of the two scalars is

$$M_H = \begin{pmatrix} (\lambda_0 + \lambda_1) f_0^2 & -\lambda_1 f_0 f_1 \\ -\lambda_1 f_0 f_1 & \lambda_1 f_1^2 \end{pmatrix}$$

Just use Mathematica to diagonalize the matrix...

• Mass eigenvalues:

m_1		78, 5 GeV
m_2	=	326 GeV

• Mass eigenstates:

 $h_{1} = h \cos \alpha + H \sin \alpha$ $h_{2} = -h \sin \alpha + H \cos \alpha$ $\Phi = \begin{pmatrix} 0 \\ f_{0} + h \end{pmatrix} \qquad \alpha = 0,60321$

The Hill model

• Consequences:

- All SM Higgs (Yukawa, gauge) couplings get doubled. $t\bar{t}h \rightarrow t\bar{t}h_1, \quad t\bar{t}h_2$ - All SM Higgs couplings get modified (mixing angle). $\frac{y_t}{\sqrt{2}} \rightarrow \frac{y_t \sin \alpha}{\sqrt{2}}, \quad \frac{y_t \cos \alpha}{\sqrt{2}}$ - New self-couplings among h1 and h2.

 $h_1 h_1 h_2: \quad -\cos\alpha\lambda_1 (f_1 \cos^2\alpha + 3f_0 \sin\alpha\cos\alpha - 2f_1 \sin^2\alpha)$

The Hill model

• Consequences:

- All SM Higgs (Yukawa, gauge) couplings get doubled. $t\bar{t}h \rightarrow t\bar{t}h_1, \quad t\bar{t}h_2$

All CM Higgs couplings get modified (mixing angle)

Lots of things need to be changed in the SM implementation to get the Hill model! → Let FeynRules do the job!

 $h_1h_1h_2: \quad -\cos\alpha\lambda_1(f_1\cos^2\alpha + 3f_0\sin\alpha\cos\alpha - 2f_1\sin^2\alpha)$

Model building with FeynRules

• Step I:Add all the parameters of the new sector to the model file:

Model building with FeynRules

• Step I:Add all the parameters of the new sector to the model file:

Model building with FeynRules

• **Step II**:Add all the particles of the new sector to the model file:

Model building with FeynRules

• **Step III**: The lagrangian describing the new sector (Unitary gauge)

$$\Phi = \{0, h + f0\}$$

$$L = -\frac{1}{2} (D_{\mu} \Phi)^{\dagger} (D_{\mu} \Phi)$$

$$LHill = -1/2 del[H, mu]^2 - \lambda_0 (z^{\dagger} - z^{\dagger})^2$$

 $11/8 (2 f1 H - HC[\Phi] \cdot \Phi)^2$

$$\left(\frac{1}{2}\partial_{\rm mu}(H)^2\right) - \frac{1}{8}\ln(2\,{\rm fl}\,H - \Phi^{\dagger}.\Phi)^2$$

$$-\frac{\lambda_{0}}{8}(\Phi^{\dagger}\Phi - f_{0}^{2})^{2}$$
$$-\frac{1}{2}(\partial_{\mu}H)^{2}$$
$$-\frac{\lambda_{1}}{8}(2f_{1}H - \Phi^{\dagger}\Phi)^{2})$$

- Now we are ready to do some phenomenology...
- Let's consider the following process in the framework of Hill model

$$e^+e^- \to Zb\tilde{b} \to \mu^+\mu^-b\tilde{b}$$

At a CoM energy of 500GeV.

• Let's first have a look at the one-loop corrections.

Use FeynArts

 The results obtained by FeynRules can be easily exported to FeynArts:

WriteFeynArtsOutput ["HillModel.mod", {LSM + LHill}, FlavorExpand → SU2W]

--- FeynRules interface to FeynArts ---

C. Duhr, 2007

• This produces a FeynArts model-file which can be read by FeynArts.

Phenomenology with FeynRules

The results obtained by FeynRules can be easily exported toMC generators:

WriteMGOutput[LSM + LHill]

- - - FeynRules interface to MadGraph - - -

C. Duhr, M. Herquet

 This produces all the files needed to implement the Hill model into an MC. Let's have a look at our process!

The results obtained by FeynRules can be easily exported toMC generators:

WriteCHOutput[LSM + LHill]

- - - FeynRules interface to CalcHep - - -

Authors: N. Christensen, C. Duhr

 This produces all the files needed to implement the Hill model into an MC. Let's have a look at our process!

The results obtained by FeynRules can be easily exported toMC generators:

WriteSHOutput[LSM + LHill]

- - FeynRules interface to Sherpa - -
 - C. Duhr, S. Schumacher
- This produces all the files needed to implement the Hill model into an MC. Let's have a look at our process!

Phenomenology with FeynRules

Phenomenology with MadGraph m(b1,b2)

Phenomenology with CalcHep

Conclusion

- FeynRules is a Mathematica®-based package to extract Feynman rules from a lagrangian.
- The output of FeynRules is completely generic and can be easily interfaced to other available codes.
- Available interfaces:
 - FeynArts
 - MadGraph/MadEvent
 - CalcHep/CompHep
 - Sherpa
 - ...
- The code can be downloaded from http://europa.fyma.ucl.ac.be/feynrules

Example of how to get vertices

The Strongly-Interacting Light Higgs

G. F. Giudice^a, C. Grojean^{a,b}, A. Pomarol^c, R. Rattazzi^{a,d}

[hep-ph/0703164]

$$\frac{c_H}{2f^2}\partial^{\mu}\left(H^{\dagger}H\right)\partial_{\mu}\left(H^{\dagger}H\right) + \frac{c_T}{2f^2}\left(H^{\dagger}\overleftarrow{D^{\mu}}H\right)\left(H^{\dagger}\overleftarrow{D_{\mu}}H\right)$$
$$+ \frac{ic_{HW}g}{16\pi^2 f^2}(D^{\mu}H)^{\dagger}\sigma^i(D^{\nu}H)W^i_{\mu\nu} + \frac{ic_{HB}g'}{16\pi^2 f^2}(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$$

Getting Feynman rules

Î.

Getting Feynman rules

Particle 1 : Scalar, *H* Particle 2 : Vector, *Z* Particle 3 : Vector, *Z* Vertex: $\frac{1}{\mathbf{c}_{w}^{2} \mathbf{f} \mathbf{f}^{2} \pi^{2} \mathbf{s}_{w}^{2} \mathbf{v}} \mathbb{i} \mathbf{e} \left(\mathbf{c}_{w}^{2} + \mathbf{s}_{w}^{2}\right)$ $- \mathbf{c}_{HW} \mathbf{c}_{w}^{2} \mathbf{g} \mathbf{s}_{w} \mathbf{p}_{1}^{\mu_{2}} \mathbf{p}_{2}^{\mu_{3}} - \mathbf{c}_{HB} \mathbf{c}_{w} \mathbf{g}_{1} \mathbf{s}_{w}^{2} \mathbf{p}_{1}^{\mu_{2}} \mathbf{p}_{2}^{\mu_{3}} - \mathbf{c}_{HW} \mathbf{c}_{w}^{2} \mathbf{g} \mathbf{s}_{w} \mathbf{p}_{1}^{\mu_{3}} \mathbf{p}_{3}^{\mu_{2}} - \mathbf{c}_{HB} \mathbf{c}_{w} \mathbf{g}_{1} \mathbf{s}_{w}^{2} \mathbf{p}_{1}^{\mu_{3}} \mathbf{p}_{3}^{\mu_{2}} + \mathbf{32} \mathbf{c}_{T} \mathbf{c}_{w}^{2} \mathbf{e} \pi^{2} \mathbf{v}^{2} \eta_{\mu_{2},\mu_{3}} + \mathbf{32} \mathbf{c}_{T} \mathbf{e} \pi^{2} \mathbf{s}_{w}^{2} \mathbf{v}_{3} \mathbf{p}_{3}^{\mu_{2},\mu_{3}} + \mathbf{c}_{HW} \mathbf{c}_{w}^{2} \mathbf{g} \mathbf{s}_{w} \eta_{\mu_{2},\mu_{3}} \mathbf{p}_{1} \cdot \mathbf{p}_{2} + \mathbf{c}_{HB} \mathbf{c}_{w} \mathbf{g}_{1} \mathbf{s}_{w}^{2} \eta_{\mu_{2},\mu_{3}} \mathbf{p}_{1} \cdot \mathbf{p}_{2} + \mathbf{c}_{HB} \mathbf{c}_{w} \mathbf{g}_{1} \mathbf{s}_{w}^{2} \eta_{\mu_{2},\mu_{3}} \mathbf{p}_{1} \cdot \mathbf{p}_{3} + \mathbf{c}_{HB} \mathbf{c}_{w} \mathbf{g}_{1} \mathbf{s}_{w}^{2} \eta_{\mu_{2},\mu_{3}} \mathbf{p}_{1} \cdot \mathbf{p}_{3} \right)$

Getting Feynman rules

Particle 1 : Scalar , HParticle 2 : Vector , AParticle 3 : Scalar , HParticle 4 : Vector , WParticle 5 : Vector , W^{\dagger} Vertex:

 $\frac{1}{16 c_w ff^2 \pi^2 s_w^2 v^2}$ $i e^{2} (c_{HW} g s_{W}^{2} p_{1}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} + c_{HW} g s_{W}^{2} p_{2}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} +$ $\mathbf{c}_{\mathrm{HW}} \mathbf{c}_{\mathrm{w}}^{2} \mathbf{g} \mathbf{p}_{3}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} - \mathbf{c}_{\mathrm{HB}} \mathbf{c}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{p}_{3}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} - \mathbf{c}_{\mathrm{HB}} \mathbf{c}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{p}_{3}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} - \mathbf{c}_{\mathrm{HB}} \mathbf{c}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{g}_{1}^{\mu_{5}} \eta_{\mu_{3},\mu_{4}} - \mathbf{c}_{\mathrm{HB}} \mathbf{c}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{s}_{$ $c_{HW} c_w^2 g p_4^{\mu_5} \eta_{\mu_3,\mu_4} - c_{HW} g s_w^2 p_4^{\mu_5} \eta_{\mu_3,\mu_4}$ $c_{HW} g s_w^2 p_1^{\mu_4} \eta_{\mu_3,\mu_5} - c_{HW} g s_w^2 p_2^{\mu_4} \eta_{\mu_3,\mu_5} \mathbf{c}_{\mathrm{HW}} \mathbf{c}_{\mathrm{w}}^{2} \mathbf{g} \mathbf{p}_{3}^{\mu_{4}} \eta_{\mu_{3},\mu_{5}} + \mathbf{c}_{\mathrm{HB}} \mathbf{c}_{\mathrm{w}} \mathbf{g}_{1} \mathbf{s}_{\mathrm{w}} \mathbf{p}_{3}^{\mu_{4}} \eta_{\mu_{3},\mu_{5}} +$ $c_{HW} c_w^2 g p_5^{\mu_4} \eta_{\mu_3,\mu_5} + c_{HW} g s_w^2 p_5^{\mu_4} \eta_{\mu_3,\mu_5} +$ $\mathbf{c}_{\mathrm{HW}} \mathbf{c}_{\mathrm{w}}^{2} \mathbf{g} \mathbf{p}_{4}^{\mu_{3}} \eta_{\mu_{4},\mu_{5}} + \mathbf{c}_{\mathrm{HW}} \mathbf{g} \mathbf{s}_{\mathrm{w}}^{2} \mathbf{p}_{4}^{\mu_{3}} \eta_{\mu_{4},\mu_{5}}$ $c_{HW} c_w^2 g p_5^{\mu_3} \eta_{\mu_A,\mu_5} - c_{HW} g s_w^2 p_5^{\mu_3} \eta_{\mu_A,\mu_5}$

Kaluza-Klein States from Large Extra Dimensions

Tao Han^(a), Joseph D. Lykken^(b) and Ren-Jie Zhang^(a)

^(a) Department of Physics, University of Wisconsin, Madison, WI 53706
 ^(b) Theory Group, Fermi National Accelerator Laboratory, Batavia, IL 60510

[hep-ph/9811350]

Particle content:

- Spin 2 graviton, KK-scalars
- Fermions
- Scalars
- Gauge bosons

• Lagrangian coupling the fermions to the graviton and the KK-scalar:

$$\kappa^{-1} \mathcal{L}_{\mathrm{F}}^{\vec{n}}(\kappa) = \frac{1}{2} \Big[(\tilde{h}^{\vec{n}} \eta^{\mu\nu} - \tilde{h}^{\mu\nu,\vec{n}}) \overline{\psi} i \gamma_{\mu} D_{\nu} \psi - m_{\psi} \tilde{h}^{\vec{n}} \overline{\psi} \psi + \frac{1}{2} \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \tilde{h}^{\vec{n}} - \partial^{\nu} \tilde{h}^{\vec{n}}_{\mu\nu}) \psi \Big] + \frac{3\omega}{2} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - 2\omega m_{\psi} \widetilde{\phi}^{\vec{n}} \overline{\psi} \psi + \frac{3\omega}{4} \partial_{\mu} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} \psi .$$

$$(44)$$

 Very complicated structure as far as Feynman rules are concerned, but we are only a few steps away from the Feynman rules...

• **Step I**:Add all the parameters in the lagrangian to the model file:

$$M$Parameters = \{ g, k, om, \dots \}$$

$$\begin{split} \widehat{\kappa^{-1}} \widehat{\mathcal{C}}_{\mathrm{F}}^{\vec{n}}(\kappa) &= \frac{1}{2} \Big[(\widetilde{h}^{\vec{n}} \eta^{\mu\nu} - \widetilde{h}^{\mu\nu,\vec{n}}) \overline{\psi} i \gamma_{\mu} D_{\nu} \psi \\ &- m_{\psi} \widetilde{h}^{\vec{n}} \overline{\psi} \psi + \frac{1}{2} \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \widetilde{h}^{\vec{n}} - \partial^{\nu} \widetilde{h}_{\mu\nu}^{\vec{n}}) \psi \Big] \\ &+ \frac{3\omega}{2} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - 2\omega m_{\psi} \widetilde{\phi}^{\vec{n}} \overline{\psi} \psi \\ &+ \frac{3\omega}{4} \partial_{\mu} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} \psi \end{split}$$

Step II:Add all the particles in the lagrangian to the model file:

I.

• Step III: The lagrangian

$$\begin{split} \mathbf{LF} &= \mathbf{k} \left(1/2 \\ &\left((h[\rho, \rho] \text{ ME}[\mu, \nu] - h[\mu, \nu] \right) \\ &\left(I \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{de}[\psi, \nu] - g \text{ G}[\nu, a] \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{T}[a] \cdot \psi \right) - \\ &\text{mpsi } h[\mu, \mu] \text{ HC}[\psi] \cdot \psi + 1/2 \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \psi \\ &\left(\text{del}[h[\nu, \nu], \mu] - \text{del}[h[\mu, \nu], \nu] \right) \right) + \\ 3 \text{ om} / 2 \phi \left(I \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{del}[\psi, \mu] - g \text{ G}[\mu, a] \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{T}[a] \cdot \psi \right) - \\ 2 \text{ om mpsi } \phi \text{ HC}[\psi] \cdot \psi + 3 \text{ om} / 4 \text{ del}[\phi, \mu] \text{ I HC}[\psi] \cdot \text{Ga}[\mu] \cdot \psi \\ &\frac{3}{2} \text{ om} \phi \psi^{\dagger} \cdot \psi + \frac{3}{4} i \text{ om} \partial_{\mu}(\phi) \psi^{\dagger} \cdot \gamma^{\mu} \cdot \psi + \\ &\frac{3}{2} \text{ om} \phi \left(i \psi^{\dagger} \cdot \gamma^{\mu} \cdot \partial_{\mu}(\psi) - g \psi^{\dagger} \cdot \gamma^{\mu} \cdot T^{a} \cdot \psi \text{ G}_{\mu,a} \right) + \\ &\frac{1}{2} \left(\frac{1}{2} i \left(\partial_{\mu}(h_{\nu,\nu}) - \partial_{\nu}(h_{\mu,\nu}) \right) \psi^{\dagger} \cdot \gamma^{\mu} \cdot \psi - \text{mpsi } \psi^{\dagger} \cdot \psi \text{ h}_{\mu,\mu} + \\ &\left(i \psi^{\dagger} \cdot \gamma^{\mu} \cdot \partial_{\nu}(\psi) - g \psi^{\dagger} \cdot \gamma^{\mu} \cdot T^{a} \cdot \psi \text{ G}_{\nu,a} \right) \left(h_{\rho,\rho} \eta_{\mu,\nu} - h_{\mu,\nu} \right) \right) \end{split}$$

$$\kappa^{-1} \mathcal{L}_{\mathrm{F}}^{\vec{n}}(\kappa) = \frac{1}{2} \left[(h^{\vec{n}} \eta^{\mu\nu} - \tilde{h}^{\mu\nu,\vec{n}}) \overline{\psi} i \gamma_{\mu} D_{\nu} \psi \right] \\ - (m_{\psi} \tilde{h}^{\vec{n}} \overline{\psi} \psi) + \frac{1}{2} \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \tilde{h}^{\vec{n}} - \partial^{\nu} \tilde{h}^{\vec{n}}_{\mu\nu}) \psi \right] \\ + \frac{3\omega}{2} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + 2\omega m_{\psi} \widetilde{\phi}^{\vec{n}} \overline{\psi} \psi \\ + \frac{3\omega}{4} \partial_{\mu} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} \psi$$

n

Getting Feynman rules

Step IV: The FeynmanRules

FeynmanRules[LF]

Calculating vertices...

4 vertices obtained.

Step IV: The FeynmanRules

Vertex 2 Particle 1 : Spin 2, h

Particle 2 : Dirac, ψ

Particle 3 : Dirac , ψ^{\dagger}

Vertex:

$$-\frac{1}{8} i k \delta_{i_{2},i_{3}} \left(p_{1}^{\beta} \gamma^{\alpha}{}_{s_{3},s_{2}} + 2 p_{2}^{\beta} \gamma^{\alpha}{}_{s_{3},s_{2}} + p_{1}^{\alpha} \gamma^{\beta}{}_{s_{3},s_{2}} + 2 p_{2}^{\alpha} \gamma^{\beta}{}_{s_{3},s_{2}} - 2 p_{1}^{\alpha 2} \gamma^{\alpha 2}{}_{s_{3},s_{2}} \eta_{\alpha,\beta} - 4 p_{2}^{\gamma 2} \gamma^{\gamma 2}{}_{s_{3},s_{2}} \eta_{\alpha,\beta} + 4 \operatorname{mpsi} \delta_{s_{2},s_{3}} \eta_{\alpha,\beta}\right)$$

Step IV: The FeynmanRules

Step IV: The FeynmanRules

1

I.

• Step III: The lagrangian

$$\begin{split} \mathbf{LF} &= \mathbf{k} \left(1/2 \\ &\left((h[\rho, \rho] \text{ ME}[\mu, \nu] - h[\mu, \nu] \right) \\ &\left(I \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{de}[\psi, \nu] - g \text{ G}[\nu, a] \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{T}[a] \cdot \psi \right) - \\ &\text{mpsi } h[\mu, \mu] \text{ HC}[\psi] \cdot \psi + 1/2 \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \psi \\ &\left(\text{del}[h[\nu, \nu], \mu] - \text{del}[h[\mu, \nu], \nu] \right) \right) + \\ 3 \text{ om} / 2 \phi \left(I \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{del}[\psi, \mu] - g \text{ G}[\mu, a] \text{ HC}[\psi] \cdot \text{Ga}[\mu] \cdot \text{T}[a] \cdot \psi \right) - \\ 2 \text{ om mpsi } \phi \text{ HC}[\psi] \cdot \psi + 3 \text{ om} / 4 \text{ del}[\phi, \mu] \text{ I HC}[\psi] \cdot \text{Ga}[\mu] \cdot \psi \\ &\frac{3}{2} \text{ om} \phi \psi^{\dagger} \cdot \psi + \frac{3}{4} i \text{ om} \partial_{\mu}(\phi) \psi^{\dagger} \cdot \gamma^{\mu} \cdot \psi + \\ &\frac{3}{2} \text{ om} \phi \left(i \psi^{\dagger} \cdot \gamma^{\mu} \cdot \partial_{\mu}(\psi) - g \psi^{\dagger} \cdot \gamma^{\mu} \cdot T^{a} \cdot \psi \text{ G}_{\mu,a} \right) + \\ &\frac{1}{2} \left(\frac{1}{2} i \left(\partial_{\mu}(h_{\nu,\nu}) - \partial_{\nu}(h_{\mu,\nu}) \right) \psi^{\dagger} \cdot \gamma^{\mu} \cdot \psi - \text{mpsi } \psi^{\dagger} \cdot \psi \text{ h}_{\mu,\mu} + \\ &\left(i \psi^{\dagger} \cdot \gamma^{\mu} \cdot \partial_{\nu}(\psi) - g \psi^{\dagger} \cdot \gamma^{\mu} \cdot T^{a} \cdot \psi \text{ G}_{\nu,a} \right) \left(h_{\rho,\rho} \eta_{\mu,\nu} - h_{\mu,\nu} \right) \right) \end{split}$$

$$\kappa^{-1} \mathcal{L}_{\mathrm{F}}^{\vec{n}}(\kappa) = \frac{1}{2} \left[(h^{\vec{n}} \eta^{\mu\nu} - \tilde{h}^{\mu\nu,\vec{n}}) \overline{\psi} i \gamma_{\mu} D_{\nu} \psi \right] \\ - (m_{\psi} \tilde{h}^{\vec{n}} \overline{\psi} \psi) + \frac{1}{2} \overline{\psi} i \gamma^{\mu} (\partial_{\mu} \tilde{h}^{\vec{n}} - \partial^{\nu} \tilde{h}^{\vec{n}}_{\mu\nu}) \psi \right] \\ + \frac{3\omega}{2} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + 2\omega m_{\psi} \widetilde{\phi}^{\vec{n}} \overline{\psi} \psi \\ + \frac{3\omega}{4} \partial_{\mu} \widetilde{\phi}^{\vec{n}} \overline{\psi} i \gamma^{\mu} \psi$$

n

Getting Feynman rules

Step IV: The FeynmanRules

FeynmanRules[LF]

Calculating vertices...

4 vertices obtained.

Step IV: The FeynmanRules

Vertex 2 Particle 1 : Spin 2, h

Particle 2 : Dirac, ψ

Particle 3 : Dirac , ψ^{\dagger}

Vertex:

$$-\frac{1}{8} i k \delta_{i_{2},i_{3}} \left(p_{1}^{\beta} \gamma^{\alpha}{}_{s_{3},s_{2}} + 2 p_{2}^{\beta} \gamma^{\alpha}{}_{s_{3},s_{2}} + p_{1}^{\alpha} \gamma^{\beta}{}_{s_{3},s_{2}} + 2 p_{2}^{\alpha} \gamma^{\beta}{}_{s_{3},s_{2}} - 2 p_{1}^{\alpha 2} \gamma^{\alpha 2}{}_{s_{3},s_{2}} \eta_{\alpha,\beta} - 4 p_{2}^{\gamma 2} \gamma^{\gamma 2}{}_{s_{3},s_{2}} \eta_{\alpha,\beta} + 4 \operatorname{mpsi} \delta_{s_{2},s_{3}} \eta_{\alpha,\beta}\right)$$

Step IV: The FeynmanRules

Step IV: The FeynmanRules

1