Maximizing Experimental precision

Olivier Mattelaer Université Catholique de Louvain CP3-FNRS

Based on:

- P.Artoisenet, V.Lemaître, F. Maltoni, OM: JHEP 1012:068
- J. Alwall, A. Freytas, OM: PRD83:074010
- P.D. Aquino, P.Artoisenet, F. Maltoni, OM : PRL111,091802
- P.Artoisenet, OM: In preparation

fn's From Theory to Detector

G

fn's From Theory to Detector

Few

assumptions

assumptions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Robust

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Slíde from Lester: arXív:1004.2732

Fragile

Vague

conclusions

Missing transverse momentum

- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

conclusions

Slíde from Lester: arXív:1004.2732

Vague

conclusions

Specific conclusions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Outline

- Introduction to Matrix Element re-weighting
- Automation of the method: MadWeight
- Presence of Radiation
- TTH Analysis
- Conclusions

Associate to each experimental event characterised by p^{vis} , the probability $\mathcal{P}(p^{vis}|\alpha)$ to be produced and observed following a theoretical assumption α

- - $\square \ |M_{lpha}({m p})|^2$ is the squared matrix element

- - $\square |M_{\alpha}(\mathbf{p})|^2 \text{ is the squared matrix element}$
 - $\square W({m p},{m p}^{vis})$ is the transfer function

Associate to each experimental event characterised by p^{vis} , the probability $\mathcal{P}(p^{vis}|\alpha)$ to be produced and observed following a theoretical assumption α

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

- $\square |M_{\alpha}(\mathbf{p})|^2$ is the squared matrix element
- $\square W({m p},{m p}^{vis})$ is the transfer function
- $\Box \int d\Phi dx_1 dx_2$ is the phase-space integral

Associate to each experimental event characterised by p^{vis} , the probability $\mathcal{P}(p^{vis}|\alpha)$ to be produced and observed following a theoretical assumption α

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}^{vis}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$$

- $\square |M_{lpha}(p)|^2$ is the squared matrix element
- \square $W({m p},{m p}^{vis})$ is the transfer function
- $\Box \int d\Phi dx_1 dx_2$ is the phase-space integral
- $\Box \ \sigma_{\alpha}^{vis}$ is the cross-section (after cuts)

Need to sum over the jet/parton assignments.

fn's Matrix Element Method

Most common and Important use is to combine those in a Likelihood

$$L(\alpha) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{p}_{i}^{vis} | \alpha)$$

fn's Matrix Element Method

Olívier Mattelaer

fn's Matrix Element Method

Signal/Background

Fraction of Signal/Event extracted at the same time:

 $P(p^{vis}|\alpha) = c_S P_S(p^{vis}|\alpha) + c_B P_B(p^{vis})$

Single Template Analysis:

$$d(p^{vis}) = rac{P_{Signal}}{(P_{Signal} + P_{Background})}$$

Signal/Background

Fraction of Signal/Event extracted at the same time:

 $P(p^{vis}|\alpha) = c_S P_S(p^{vis}|\alpha) + c_B P_B(p^{vis})$

Síngle Template Analysís:

$$d(p^{vis}) = \frac{P_{Signal}}{(P_{Signal} + P_{Background})}$$

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 (W(\boldsymbol{p}, \boldsymbol{p}^{vis}))$

Fit from MC tuned to the detector resolution

How to evaluate those weights?

- $\mathcal{P}(\mathbf{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 \mathcal{M}_{\alpha}(\mathbf{p})^2 \mathcal{W}(\mathbf{p}, \mathbf{p}^{vis})$
- Fit from MC tuned to the detector resolution
- Use of matrix-element generator: MadGraph5

[J.Alwall, M. Herquet, F. Maltoní, OM, T. Stelzer 1106.0522]

B

How to evaluate those weights?

- $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 M_{\alpha}(\boldsymbol{p}) |^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$
- Fit from MC tuned to the detector resolution
- Use of matrix-element generator: MadGraph5
- Need a specific integrator: Màdweight

[P.Artoisenet, V. Lemaitre, F.Maltoni, OM: 1007.3300]

C

How to evaluate those weights?

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$$

Difficult point: Numerical Integration

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

Dífficult point: Numerical Integration

- Presence of sharp functions
 - Breit-Wigner
 - TF linked to angular observables

fn's Monte-Carlo Integration

The choice of the parameterisation has a strong impact on the efficiency

The adaptive Monte-Carlo Technique picks point in interesting areas
The technique is efficient

this Monte-Carlo Integration

- The choice of the parametrization has a strong impact on the efficiency

The adaptive Monte-Carlo Techniques picks points everywhere

this Monte-Carlo Integration

- The choice of the parametrization has a strong impact on the efficiency

The adaptive Monte-Carlo Techniques picks point in interesting areas

MADWEIGHT

□ First Example: di-leptonic top quark pair

□ degrees of freedom 16

- 0 2: pdf
- □ 3×6: final states
- -4: energy-momentum conservation

D peaks 16

- 4: Breit-Wigner
- □ 3 x 4: visible particles

Second Example: semí-leptoníc top quark paír PB D degrees of freedom 16 p_5 p_a 00000 \overline{d} p_1 D peaks 19 00000 FB B m_{-4}^{*} -> 3 peaks unaligned p_3 Multí-channel \overline{b} $d\phi = \prod_{i=1}^{5} \frac{d^3 p_i}{(2\pi)^3 2E_i} \frac{d^3 p_6}{(2\pi)^3 2E_6} dx_1 dx_2 \delta^4 (p_a + p_b - \sum_j p_j)$ 3 5 $\rightarrow d\phi = \prod_{i=1}^{3} d\theta_{i} d\phi_{i} \prod_{i=1}^{3} d|\mathbf{p}_{i}| \prod_{i=1}^{3} dm_{-k}^{*2} \times J$ Pass to k=1j=1i=1

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \left(d\Phi dx_1 dx_2 M_{\alpha}(\boldsymbol{p}) |^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis}) \right)$

Dífficult point: Numerical Integration

- Presence of sharp functions
 - Breit-Wigner
 - TF linked to angular observables

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

Dífficult point: Numerical Integration

- Presence of sharp functions
 - Breit-Wigner
 - TF linked to angular observables

-----> Need a smart parameterízatíon of the phase space

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

Difficult point: Numerical Integration

- Presence of sharp functions
 - Breit-Wigner
 - TF linked to angular observables

Need a smart parameterization of the phase space
This is process dependent

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

Dífficult point: Numerical Integration

- Presence of sharp functions
 - Breit-Wigner
 - TF linked to angular observables

Need a smart parameterízatíon of the phase space
 Thís ís process dependent
 Need to be Automatíc, model índependent, fast

C

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} (d\Phi dx_1 dx_2) M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

Difficult point: Numerical Integration

- Presence of sharp functions
 - D Breit-Wigner
 - TF linked to angular observables

Need a smart parameterization of the phase space
 This is process dependent
 Need to be Automatic, model independent, fast
 MADWEIGHT

P. Artoisenet, V. Lemaître, F. Maltoni, OM: JHEP 1012:068

MadWeight

fully hadronic / leptonic process

W production

semi-leptonic top quark pair

Fully leptonic top quark pair

Olívier Mattelaer

MadWeight

Higss production decaying in W

W+W-production

MadWeight

MadWeight History

- 2009: MadGraph4 Implementation
- 2011: Private Implementation in MadGraph5
 - Initial State Radiation Support
 - SubProcess grouping (speed)
 - NWA (speed)
- 2013: MadWeight5 beta
 - □ Improve cluster support (speed)
 - MC over jet/parton assignment (speed)
 - pre-training (speed)
 - better multi-channel (speed)
- 2014: Madweight5 in MG5_aMC
 - Support for multi-transfert function estimated on the same phasespace point (speed)
 - Module of preselection of the jet/parton assignment (speed)

cpu-time

Number of integration to evaluate:
 Number of events: ~1000
 Number of theoretical hypothesis: ~10
 Systematics (JES): ~5
 Jet-Parton assignment: ~12

□ Total: ~600k

Each of them needs to be Fast

Speed Benchmark

process	perm	MW4	MW5
tt semí lept	24	1h16	41S
tt fully lept	2	46s	10s
tth semí lept	720	> 2 days	10mín
tth semí lept	48	> зh	Gmín
tth fully lept	24	>1h	Imín
h > w + w - > 1lept	2	59s	<5s
h > w + w - > 2 lept	1	8s	<5s
zbb	24	39т	185
zh	24	43M	<5s

running on Icore of a Intel core i7 2.3Ghz

Olívier Mattelaer

cpu-time

Number of integration to evaluate:

- Number of events:
- Number of theoretical hypothesis:
- Systematics (JES):
- Jet-Parton assignment:

 $\sim 10k$

Each of them needs to be Fast

fnscritics of the Method

- The Likelihood methods builds the BEST discriminating variable
- Fully Model dependent
- Transfer Function approximation
 - □ Factorize for each parton
 - Not valid for hard radiation
- D Pure LO approximation
- Strong sensitivity in analysis cut
- \Box Computing time ($N_{event} * N_{th}$ integrals)

fnscritics of the Method

- The Likelihood methods builds the BEST discriminating variable
- Fully Model dependent
- Transfer Function approximation
 - □ Factorize for each parton
 - Not valid for hard radiation
- D Pure LO approximation

- Strong sensitivity in analysis cut
- \Box Computing time ($N_{event} * N_{th}$ integrals)

MEM with radiation / NLO

Radiations

0 ISR

- Main Effect is to induce a transverse boost.
- D Different PDF

FSR

- Need to be parameteríze ín the TF
- Having a one parton
 evolving in two jets TF

Radiations

0 ISR

- Main Effect is to induce a transverse boost.
- Different PDF
 Here I will focus on ISR

• FSR

- Need to be parameteríze ín the TF
- Having a one parton
 evolving in two jets TF

Radiations

0 ISR

- Main Effect is to induce a transverse boost.
- Different PDF
 Here I will focus on ISR

FSR

- Need to be parameteríze ín the TF
- Having a one parton
 evolving in two jets TF

Work in progress

MEM with radiation

- Those radiations are important
 - □ ttj is 50% at LHC
- 🛛 з Maín ídea
 - Transfer boost
 - Use ME + Njets
 - O NLO

My point of view

Use ME + Njets

- Having one more jets at the matrix element level is roughly 10 times slower.
 - number of permutations (assignment jet-parton)
 - complexity of the integrand
 - dímension of the phase-space
- The radiation problem still occurs (at least for the inclusive sample)

O NLO

Basically equivalent to ME + N jets

NLO

[J. Campbel, W. Giele, C. Williams, 1204.4424]

- Splitting higher order in two pieces depending if you resolve the jet or not
 If you resolve the jet: Use LOME + 1 jet
 - If you don't:

MEM with radiation

- Those radiations are important
 - □ ttj is 50% at LHC

🛛 з Maín ídea

Transfer boost
Use ME + Njets
NLO

Choices of variables

Higgs production

Híggs Mass
 s-channel
 NOFSR

Study the ISR on Higgs production at LHC (14 TeV) at parton level (no hadronization)

Olívier Mattelaer

Glasgow Apríl 10 2014
Initial State Radiation

Initial State Radiation

Study the ISR on Higgs production at LHC (14 TeV) at detector level (simulation includes pile-up)

Initial State Radiation

TTH: LHC SENSITIVITY

TTH Observation

Small production rate
 0.137 pb (8 TeV)
 0.632 pb (14TeV)

Challenging background
 tt + (b)jets
 Combinatorial

TTH Observation

Small production rate
 O.137 pb (8 TeV)
 O.632 pb (14TeV)
 Can the MEM improve the sensitivity?

Final State

Semí-leptonic Decay
Interpetation - Fully-leptonic Decay

Final State

Semi-leptonic Decay
Interpetation of the second second

Which Channel is the most sensitive?

Event Generation

- C
- □ Generation: MG5+Pythia6+Delphes2 (14TeV)
- Event selection (CMS type of selection)

D Lepton: $P_T > 20, |\eta| < 2.4$

D Jets: (antí-KT, $\Delta R = 0.5$) $P_T > 30$, $|\eta| < 2.5$

at least four tagged b-jets

process	incl. σ	efficiency	$\sigma^{ m rec}$
$t\bar{t}h$, single-lepton	111 fb	0.0485	$5.37~{ m fb}$
$t\bar{t}h,{ m di-lepton}$	17.7 fb	0.0359	$0.634~{ m fb}$
$t\bar{t}$ +jets, single-lepton	256 pb	$0.463 imes 10^{-3}$	119 fb
$t\bar{t}$ +jets, di-lepton	40.9 pb	$0.168 imes 10^{-3}$	6.89 fb

Event Generation

- C
- □ Generation: MG5+Pythia6+Delphes2 (14TeV)
- Event selection (CMS type of selection)

D Lepton: $P_T > 20, |\eta| < 2.4$

D Jets: (antí-KT, $\Delta R = 0.5$) $P_T > 30$, $|\eta| < 2.5$

at least four tagged b-jets

process	incl. σ	efficiency	$\sigma^{ m rec}$	S/B
$t\bar{t}h$, single-lepton	111 fb	0.0485	$5.37~{ m fb}$	
$t\bar{t}h,{ m di-lepton}$	17.7 fb	0.0359	$0.634~{ m fb}$	
$t\bar{t}$ +jets, single-lepton	256 pb	0.463×10^{-3}	119 fb	1/22
$t\bar{t}$ +jets, di-lepton	40.9 pb	$0.168 imes10^{-3}$	$6.89~{\rm fb}$	1/11

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$$

Transfer function:

- perfect resolution on charged leptons
- perfect resolution for jets angle
- double gaussian with energy dependencies for jets energy
- Matrix-element
 - With ISR boost correction
 - tth for signal
 - ttbb for background

$$D_i = \frac{P(\boldsymbol{x}_i|S)}{P(\boldsymbol{x}_i|S) + P(\boldsymbol{x}_i|B)}$$

$$D_i = rac{P(\boldsymbol{x}_i|S)}{P(\boldsymbol{x}_i|S) + P(\boldsymbol{x}_i|B)}$$

- Higher discriminative power for di-leptonic channel
 - less background combinatorics
- Higher probability to select the "wrong" jets for semi-leptonic channel.

Test: confidence level in rejecting S+B if B-only is realized

correspond to the green integral

 \square rescale the cross section by a factor μ such that S+B is excluded at 95% C.L

Matrix Element Re-Weighting: path to precise measurement

- Matrix Element Re-Weighting: path to precise measurement
 - LO order method

- Matrix Element Re-Weighting: path to precise measurement
 - LO order method
- Madweight allows efficient evaluations for ANY BSM model and ANY topologies
 - Allows precise Mass/Spin measurements
 Use the full theoretical information

- Matrix Element Re-Weighting: path to precise measurement
 - LO order method
- Madweight allows efficient evaluations for ANY BSM model and ANY topologies
 - Allows precise Mass/Spin measurements
 - Use the full theoretical information
 - A lot of experimental information

- Matrix Element Re-Weighting: path to precise measurement
 - LO order method
- Madweight allows efficient evaluations for ANY BSM model and ANY topologies
 - Allows precise Mass/Spin measurements
 - Use the full theoretical information
 - Alot of experimental information
- Radiation is a bottleneck
 - Need new way to deal with them (FSR)

- Matrix Element Re-Weighting: path to precise measurement
 - LO order method
- Madweight allows efficient evaluations for ANY BSM model and ANY topologies
 - Allows precise Mass/Spin measurements
 - Use the full theoretical information
 - A lot of experimental information
- Radiation is a bottleneck
 - Need new way to deal with them (FSR)
- MEM is able to handle successfully complicated process like tth

Backup slide

Second Example: semí-leptoníc top quark paír PB D degrees of freedom 16 p_5 p_a 00000 \overline{d} p_1 D peaks 19 00000 FBB p₆ m_{-4}^{*} -> 3 peaks unaligned p_3 Multí-channel \overline{b} $d\phi = \prod_{i=1}^{5} \frac{d^3 p_i}{(2\pi)^3 2E_i} \frac{d^3 p_6}{(2\pi)^3 2E_6} dx_1 dx_2 \delta^4 (p_a + p_b - \sum_j p_j)$ 3 5 $\rightarrow d\phi = \prod_{i=1}^{3} d\theta_{i} d\phi_{i} \prod_{i=1}^{3} d|\mathbf{p}_{i}| \prod_{i=1}^{3} dm_{-k}^{*2} \times J$ Pass to k=1j=1i=1

MadWeight

- the phase-space is split into blocks, each of them is associated to a specific local change of variables
- 12 blocks, í.e. 12 analytic changes of variables have been defined in our code.
- Madweight finds automatically
 - the optimal partition of the PS into blocks
 - computes the weights using the corresponding PS parametrisation

(Crazy?) scenario: We observe only Two muon + MET

(Crazy?) scenario: We observe only Two muon + MET

(Crazy?) scenario: We observe only Two muon + MET

(Crazy?) scenario: We observe only Two muon + MET

(Crazy?) scenario: We observe only Two muon + MET

Examples of studies / investigations

- mass determination : smuon pair production
- Spín Analysis
- \Box ISR effects: pp > H > W + W -
- **D**MEM: $m_{t\bar{t}}$ in fully leptonic channel

fnsDifferential Cross Section

Need the parton configuration uses a series of constraints (kinematical fit) use $\frac{1}{\mathcal{P}} \frac{\partial \mathcal{P}}{\partial Z}$ as discriminator

fnsDifferential Cross Section

We use the full inference

DMEM Validation

reconstructed level

DMEM

What if the sample is not a SM one? For example if a heavy Z exists (600 GeV).

Examples of studies / investigations

- mass determination : smuon pair production
- Discriminating Hypothesis
- □ ISR effects: pp > H > W+W-
- DMEM: $m_{t\bar{t}}$ in fully leptonic channel

Discriminatett~ Higgs from background

diagram 3 QC

QCD=2, QED=1

define discriminant:

define discriminant:

