MadGraph Tutorial

Olivier Mattelaer
UIUC

Celine Degrande
UIUC
Plan

• Today: MadGraph5
 ➡ Install MadGraph 5
 ➡ Learn the various syntax
 ➡ Be able to run without the interactive interface

• Tomorrow: FeynRules
 ➡ Install FeynRules
 ➡ Create your own Model

• Wednesday: BSM
 ➡ Use the FR model to do some phenomenology
 ➡ Next-to-leading order
 ✦ Please install gcc4.6 to your laptop.
Exercise I: Install MadGraph 5!

- https://launchpad.net/madgraph5
 - 1.5.10
 - 2.0.0.beta3 -> (NLO available !)
- Untar it (tar -xzpvf TUTO_model.tgz)
- Launch it ($./bin/mg5)
- Learn it!
 - Type tutorial and follow instructions
Install

The MadGraph Matrix Element Generator version 5

Registered 2009-09-15 by Michel Herquet

The version 5 of the MadGraph Matrix Element Generator for the simulation of parton-level events for decay and collision processes at high energy colliders. Allows matrix element generation and event generation for any model that can be written as a Lagrangian, using the output of the FeynRules Feynman rule calculator. Provides output in multiple formats and languages, including Fortran MadEvent, Fortran Standalone matrix elements, C++ matrix elements, and Pythia 8 process libraries.

Note that process generation can also be done directly online at http://madgraph.phys.ucl.ac.be or http://madgraph.hep.uiuc.edu.

Installation:
MadGraph 5 needs Python version 2.6 or 2.7. The latest stable release is in the trunk, which can be branched using the Bazaar versioning system:
bzr branch /n4madgraph5
or be downloaded as a tar.gz package to the right. This release contains everything needed for process generation in multiple models, as well as event generation through MadEvent, and standalone matrix element evaluation for Fortran or C++ output.
In order to use the process library output for Pythia 8, you need Pythia 8.150 or later installed.

Getting started:
Run bin/mg5 and type "help" to learn how to run MadGraph 5 using the command interface, or run the interactive quick-start tutorial by typing "tutorial".
Or copy the Template, edit the Cards/proc_card_mg5.dat and run bin/newprocess_mg5.

Examples of process generation syntax:
p p > w+ w-
p p > t+ t-
p p > b+ b-
p p > b+ b-
p p > t+ t-

To output models files for MadGraph 5 with FeynRules, use version 1.6 or later, and use the WriteUIO command.

Project information

Maintainer:
Driver:

Series and milestones

View full history

MadGraph Tutorial.
Where to find help?

- Ask me/Celine/Other student!
- Use the command “help” / “help XXX”
 ➡ “help” tell you the next command that you need to do.
- Launchpad:
 ➡ https://answers.launchpad.net/madgraph5
 ➡ FAQ: https://answers.launchpad.net/madgraph5/+faqs
What are those cards?

- Read the Cards and identify what they do
 - param_card: model parameters
 - run_card: beam/run parameters and cuts
 - https://answers.launchpad.net/madgraph5/+faq/2014
Exercise II: Cards Meaning

- How do you change
 - top mass
 - top width
 - W mass
 - beam energy
 - pt cut on the lepton
Exercise III: Syntax

- What's the meaning of the order QED/QCD
- What's the difference between
 - $p p \rightarrow t t^-$
 - $p p \rightarrow t t^- \text{ QED}=2$
 - $p p \rightarrow t t^- \text{ QED}=0$
Exercise IV: Syntax

- Generate the cross-section and the distribution (invariant mass) for
 \[p \ p \rightarrow \ e^+ \ e^- \]
 \[p \ p \rightarrow \ z, \ z \rightarrow \ e^+ \ e^- \]
 \[p \ p \rightarrow \ e^+ \ e^- \$ \ z \]
 \[p \ p \rightarrow \ e^+ \ e^- \ / \ z \]

Hint: To plot automatically distributions:
mg5> install MadAnalysis
Exercise V: Automation

- Compute the cross-section for the top pair production for 3 different mass points.
 ➡ Do NOT use the interactive interface
 ✦ hint: you can edit the param_card/run_card via the “set” command [After the launch]
 ✦ hint: All command [including answer to question] can be put in a file. (run ./bin/mg5 PATH_TO_FILE)
Let’s start
1. Follow the built-in tutorial (type “tutorial” in mg5 shell)
2. Understand the cards
3. compare (diagram and cross-section)
 - $p\ p > t\ t^-$
 - $p\ p > t\ t^-\ QED=0$
 - $p\ p > t\ t^-\ QED=2$
4. compare (distributions)
 - $p\ p > e^+\ e^-$
 - $p\ p > z,\ z > e^+\ e^-$
 - $p\ p > e^+\ e^-\ $ z
 - $p\ p > e^+\ e^-\ /\ z$
5. compute the cross-section
 - $p\ p > t\ t^-$
 - for M_{top} between 160 to 180 GeV
 - Do not use the interface!
Solution
Exercise II: Cards Meaning

- How do you change
 - top mass
 - top width
 - W mass
 - beam energy
 - pt cut on the lepton

Param_card
Run_card
• top mass

```
# INFORMATION FOR MASS
Block mass

6  1.730000e+02 # MT
23  9.118000e+01 # MZ
25  1.200000e+02 # MH

# Dependent parameters, given by model restrictions.
# Those values should be edited following the
# analytical expression. MG5 ignores those values
# but they are important for interfacing the output of MG5
# to external program such as Pythia.
1  0.000000 # d : 0.0
2  0.000000 # u : 0.0
3  0.000000 # s : 0.0
4  0.000000 # c : 0.0
11  0.000000 # e- : 0.0
12  0.000000 # ve : 0.0
13  0.000000 # mu- : 0.0
14  0.000000 # vm : 0.0
16  0.000000 # vt : 0.0
21  0.000000 # g : 0.0
22  0.000000 # a : 0.0
24  80.419002 # w+ : cmath.sqrt(MZ_exp_2/2.0) + cmath.sqrt(MZ_exp_4/4.0) - (aEW*cmath.pi*MZ_exp_2)/(Gf*sqrt_2))
```
• W mass

W Mass is an internal parameter!
MG5 didn’t use this value!
So you need to change MZ or Gf or alpha_EW
Exercise III: Syntax

- What's the meaning of the order QED/QCD
- What's the difference between
 - $p\ p > t\ t^\sim$
 - $p\ p > t\ t^\sim\ QED=2$
 - $p\ p > t\ t^\sim\ QED=0$
Solution 1 : Syntax

- What’s the meaning of the order QED/QCD
 - By default MG5 takes the lowest order in QED!
 - $p \ p \rightarrow t \ t\sim \Rightarrow p \ p \rightarrow t \ t\sim \ QED=0$
 - $p \ p \rightarrow t \ t\sim \ QED=2$
 - additional diagrams (photon/z exchange)

No significant QED contribution
Exercise II: Syntax

- Generate the cross-section and the distribution (invariant mass) for
 - $p\ p \rightarrow e^+\ e^-$
 - $p\ p \rightarrow z, z \rightarrow e^+\ e^-$
 - $p\ p \rightarrow e^+\ e^-\ z$
 - $p\ p \rightarrow e^+\ e^-\ /z$

Hint: To have automatic distributions:
```
mg5> install MadAnalysis
```
\[p p \rightarrow e^+ e^- \] (16 diagrams)

\[p p \rightarrow z, z \rightarrow e^+ e^- \] (8 diagrams)

\[p p \rightarrow e^+ e^- /z \] (8 diagrams)

\[p p \rightarrow e^+ e^- \$ z \] (16 diagrams)

No Z

Z- onshell veto
Correct Distribution

$p p \to e^+ e^- (16\text{ diagrams})$

$p p \to z, z \to e^+ e^- (8\text{ diagrams})$

$p p \to e^+ e^- /z (8\text{ diagrams})$

$p p \to e^+ e^- \not{z} (16\text{ diagrams})$

No Z

Z- onshell veto
$p p > e^+ e^-$ (16 diagrams)

Correct Distribution

Z Peak

$p p > z, z > e^+ e^-$ (8 diagrams)

$p p > e^+ e^- /z$ (8 diagrams)

NO Z Peak

Z-onshell veto

$p p > e^+ e^- \& z$ (16 diagrams)
Correct Distribution

- $p p \rightarrow e^+ e^-$
 - (16 diagrams)

- $p p \rightarrow e^+ e^- / z$
 - (8 diagrams)
 - No z/a interference

Z Peak

- $p p \rightarrow z, z \rightarrow e^+ e^-$
 - (8 diagrams)

- $p p \rightarrow e^+ e^- /z$
 - (16 diagrams)
 - z/a interference
 - Z- onshell veto

NO Z Peak

- $p p \rightarrow e^+ e^- \rightarrow z$
 - (8 diagrams)

- $p p \rightarrow e^+ e^- \rightarrow z$
 - (16 diagrams)

- No z/a interference
$p p \rightarrow e^+ e^-$ (16 diagrams)

Correct Distribution

\rightarrow /z

$\rightarrow e^+ e^- /z$

(8 diagrams)

No z/a interference

Wrong tail

No Z

Z Peak

$\rightarrow z, z \rightarrow e^+ e^-$

(8 diagrams)

$\rightarrow e^+ e^- \rightarrow z$

(16 diagrams)

Z- onshell veto

z/a interference

Correct tail

No Z/a interference
Onshell cut: BW_{cut}

$$|M^* - M| < BW_{cut} \times \Gamma$$

- The Physical distribution is (very close to) exact sum of the two other one.
- The “$” forbids the Z to be onshell but the photon invariant mass can be at M_Z.
- The “/” is to be avoid if possible since this leads to violation of gauge invariance.
WARNING

- NEXT SLIDE is generated with bw_cut = 5
- This is TOO SMALL to have a physical meaning (15 the default value used in previous plot is better)
- This was done to illustrate more in detail how the “$” syntax works.
$p\,p \rightarrow e^+\,e^- / Z$
See previous slide warning

$p p \rightarrow e^+ e^- / Z$

adding $p p \rightarrow e^+ e^- \; Z$

![Graph showing $m(e^1, e^-1)$ with data points and a legend indicating $N_{syst} = 0.697E+03 (pb)$ and $\Delta N_{syst} = 0.055E+01$]
See previous slide warning

\[p p \rightarrow e^+ e^- / Z \]

adding \(p p \rightarrow e^+ e^- \) $ Z

- Z onshell veto

5 times width area
See previous slide warning

\[pp > e^+ e^- / Z \]

adding \[pp > e^+ e^- $\;Z \]

- Z onshell veto
- In veto area only photon contribution

5 times width area
See previous slide warning

\[p p \rightarrow e^+ e^- / Z \]

adding \(p p \rightarrow e^+ e^- \rightarrow Z \)

- Z onshell veto
- In veto area only photon contribution
- Area sensitive to z-peak

5 times width area
15 times width area
See previous slide warning

\[p p \rightarrow e^+ e^- / Z \]

adding \[p p \rightarrow e^+ e^- \rightarrow Z \]

- \(Z \) onshell veto
- In veto area only photon contribution
- Area sensitive to \(Z \)-peak
- Very off-shell \(Z \), the difference between the curve is due to interference which are need to be KEPT in simulation.

5 times width area

15 times width area

>15 times width area
The "$\not\rightarrow Z$" can be used to split the sample in BG/SG area.

- Z onshell veto
- In veto area only photon contribution
- Area sensitive to z-peak
- Very off-shell Z, the difference between the curve is due to interference, which are need to be KEPT in simulation.

5 times width area
15 times width area
>15 times width area

The "$\not\rightarrow Z$" can be used to split the sample in BG/SG area.
• Syntax Like
 ➡ \(p p > z > e^+ e^- \)
 ➡ \(p p > e^+ e^- / z \)
 ➡ \(p p > e^+ e^- $$ z \)
 (ask one S-channel \(z \))
 (forbids any \(z \))
 (forbids any \(z \) in s-channel)

• ARE NOT GAUGE INVARIANT !

• forgets diagram interference.

• can provides un-physical distributions.
• Syntax Like
 ➡ $\ p\ p > z > e^+ e^-$ (ask one S-channel z
 ➡ $\ p\ p > e^+ e^- / z$ (forbids any z
 ➡ $\ p\ p > e^+ e^- \$$ z (forbids any z in s-channel)

• ARE NOT GAUGE INVARIANT!
• forgets diagram interference.
• can provides un-physical distributions.

Avoid Those as much as possible!
• Syntax Like
 ➡ \(p\ p > z > e^+\ e^- \)
 (ask one S-channel \(z \))
 ➡ \(p\ p > e^+\ e^- / z \)
 (forbids any \(z \))
 ➡ \(p\ p > e^+\ e^- \$\$\ z \)
 (forbids any \(z \) in s-channel)

• ARE NOT GAUGE INVARIANT!
• forgets diagram interference.
• can provides un-physical distributions.

Avoid Those as much as possible!
check physical meaning and gauge/Lorentz invariance if you do.
• Syntax like
 • \(p \ p > z, \ z > e^+\ e^- \) \hspace{1cm} (on-shell z decaying)
 • \(p \ p > e^+\ e^-\ z \) \hspace{1cm} (forbids s-channel z to be on-shell)
• Are linked to cut \(|M^* - M| < BW_{cut} \Gamma \)
• Are more safer to use
• Prefer those syntax to the previous slides one
Exercise V: Automation

• Look at the cross-section for the previous process for 3 different mass points.

 ➡ hint: you can edit the param_card/run_card via the “set” command [After the launch]

 ➡ hint: All command [including answer to question] can be put in a file.
Exercise V: Automation

- File content:

```python
import model sm
generate p p > t t~
output
launch
set mt 160
set wt Auto
done
launch
set mt 165
set wt Auto
launch
set mt 170
set wt Auto
launch
set mt 175
set wt Auto
launch
set mt 180
set wt Auto
launch
set mt 185
set wt Auto
```

- Run it by:
 - `./bin/mg5 PATH`
 - (smarter than `./bin/mg5 < PATH`)
 - If an answer to a question is not present: Default is taken automatically