

MadGraph 5 Developments and Plans

Johan Alwall

National Taiwan University

for the MadGraph team

ATLAS/CMS/LPCC MC workshop, CERN 2012/11/19

MadGraph 5 Developments and Plans

Olivier Mattelaer

University of Illinois at Urbana-Champaign

for the MadGraph team

(Most slide from Johan Alwall)

ATLAS/CMS/LPCC MC workshop, CERN 2012/11/19

Huge news! Completely automated simulations at nextto-leading order in QCD, matched to shower, now public (aMC@NLO in MG5 v. 2.0 beta)!

- No-need-for-theorist NLO simulations that can be immediately interfaced to detector sim, for any 2→3 and many 2→4 and higher processes within the SM, at reasonable computer time
- → You will hear (and have already heard!) much more about this from other speakers at this meeting!

- So I will focus on "LO" developments
- As per request, special focus on matching with bquarks (public, but still under validation)

MadGraph developments and plans

 Also present some exciting upcoming developments in the next few months!

Core news since MG5 release - Quick list

- Lots of speedups and improvements, including
 - → Huge speedup of gridpacks
 - Vast speedup for long decay chains with multiparticle decays
 - → Huge improvements in user interface
 - Multi cluster support
- New 4-flavor matching and VBF-type matching
- 4 fermion vertices in FR+MG5 (except Majorana)
- Spin 3/2 particles in FR+MG5
- Complex mass scheme
- Feynman gauge
- Handling of negative weights
- On-the-fly 2-body decay width calculations ("Auto width")

News from our friends

- FeynRules (C. Duhr, B. Fuks et al)
 - SLagrangians in superspace formalism
 - Automatic 2-body width expressions
 - Automatic renormalization group equations (soon!)
 - → Automatic mass matrix diagonalization (soon!)
- MadAnalysis 5 (B. Fuks et al)
 - Super flexible, fast, user friendly analysis suite
 - Arbitrary weights (also negative)
 - Automatic systematics uncertainty bands (soon!)
- MadGolem (Goncalves-Netto, Plehn et al)
 - Automated NLO SUSY production cross sections

"LO" upcoming developments - Quick list

- Automatic matching to Pythia 8
 - CKKW-L matching

(S. Pretzel et al)

- Automatic scale/PDF/matching systematics (A. Kalogeropoulos et al)
- Fast multiparton processes using color-ordered recursion
- MadSpin (full spin correlations for LO&NLO decays) (P.Artoisenet et al)
- MadDecay: Automatic BSM decay width suite (including needed 3- and 4-body widths and decay of event file) (C-H Shen et al)
 - Combined with MadSpin for full spin correlations
- MadDM: Relic density calculations and direct detection limits for any BSM model (K.C. Kong et al)
- MadWeight5: Matrix-Element Method

(P.Artoisenet et al)

Recap: "What is MG5"

- MadGraph 5 is a completely new (released spring 2011) matrix element generator written in Python
- Can handle ANY model (that can be written as a Lagrangian), conveniently output by FeynRules
 - Any Lorentz structure for any spin (up to 2) and color (6tets, ε^{ijk})
 - Multiparticle vertices for any multiplicity, multifermion vertices
- Super fast process generation
- Unlimited-length decay chains with full BW and spin effects
- Event generation speedups by orders of magnitude
- Output in multiple languages and formats (including Pythia 8)
- Super-user-friendly command line interfaces

Decay chains

Results for g g > go go , (go > t1 t~, t~> b~ all all / h+ , (t1 > t n1 , t > b all all / h+)) in the mssm

Available Results

Links	Events	Tag	Run	Collider	Cross section (pb)	Events
results banner	Parton-level LHE	fermi	test	p p 7000 x 7000 GeV	.33857E-03	10000

Main Page

(See backup slides for discussion about physics validity)

User Interface

- ☐ Nice Interactive session
 - ☐ Auto-completion
 - □ Tutorial
 - interactive help
- □ Simple command set
 - □ import model sm
 - □ generatepp>e+e-
 - Output FORMAT MY_DIR Defined multiparticle I+ = e+ mu+
 - launch

```
WELCOME to MADGRAPH 5
         VERSION 1.3.16
                                      2011-09-11
    The MadGraph Development Team - Please visit us at
    https://server06.fynu.ucl.ac.be/projects/madgraph
               Type 'help' for in-line help.
           Type 'tutorial' to learn how MG5 works
*************************
load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = q u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle L- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~
mq5>help
```


User Interface

- ☐ Nice Interactive session
 - ☐ Auto-completion
 - □ Tutorial
 - □ interactive help

If You test it, you are going to like it

- □ Simple command set
 - □ import model sm
 - □ generatepp>e+e-
 - Doutput FORMAT MY_DIR Defined multiparticle I+ = e+ mu+
 - launch

```
WELCOME to MADGRAPH 5
         VERSION 1.3.16
                                     2011-09-11
        MadGranh Develonment Team - Please visit us at
                                    -gects/madgraph
               Type 'help' for in-line help.
           Type 'tutorial' to learn how MG5 works
*************************
load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = q u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
```

Defined multiparticle l- = e- mu-Defined multiparticle vl = ve vm vt

Defined multiparticle vl~ = ve~ vm~ vt~

mq5>help

Matching in MG + Pythia 6

J.A. et al. [arXiv:0706.2569], J.A., de Visscher, Maltoni [arXiv:0810.5350], MadGraph wiki

- MLM-style matching
 - → Classic cone-jet matching (a la AlpGen), k_T-jet matching, and "shower-k_T" matching
- Easily adopted to different shower algorithms (e.g., virtuality- and p_T-ordered showers in Pythia 6)
- Official CMS SM background simulation
 - Excellent agreement with data across the line
- Fully supports matching for any NP process
- Restriction: Matching of jets from core process, not from decay products (let Pythia ME corr. take care of that)

MLM algorithm in a nutshell

- I. Generate ME events (with different parton multiplicities) using parton-level cuts ($p_T^{ME}/\Delta R$ or k_T^{ME})
- 2. Cluster each event and reweight α_s and PDFs based on the scales in the corresponding clustering vertices
- 3. Run the parton shower with starting scale $t_0 = m_T$.
- 4. Check that the number of jets after parton shower is the same as ME partons, and that all jets after parton shower are matched to the ME partons at a scale Q^{match}. If yes, keep the event. If no, reject the event. Q^{match} is called the *matching scale*.
- 5. For highest multiplicity, allow radiation < lowest ME scale

(See backup slides for pedagogic discussion)

- When matching with b-quarks, two options:
 - 1. b as any parton (5-flavor scheme)
 - No special treatment needed, just use regular matching

2. b as massive final-state particle only (4-flavor scheme)

- In 5-flavor matching, just need to pick out events with b:s from all-inclusive sample
 - \rightarrow Below Q^{match} , b's given by shower gbb splittings
- In 4-flavor matching, no cut on b:s (allowing, 0, 1 or 2 energetic b's in event)
 - Need to remove b's from Sudakov treatment (Pythia clustering), but make sure to veto too-hard FSR from b
 - Question: How to deal with alpha_s reweighting of b vertices and factorization scales?

• If this configuration given by shower, scale for the b and b vertices would be given by m_{Tb} and $m_{T\overline{b}}$

- Shower prescription works well in 5-flavor matching, so let's use the same also for the 4-flavor scheme
- Special difficulty: Factorization scale. In principle, parton line stops at the gbb vertex, however, Z sets central scale for process
 - \rightarrow Use geometric average $m_{TZ}m_{Tb}$ for factorization scale
 - Gives smooth matching to Pythia PS

Gives smooth matching to Pythia PS

Summary

- MadGraph 5 is a heavily used matrix element generator and MC simulator for both SM and BSM
- Jet matching in SM and any BSM model
- News include 4-flavor b and VBF matching, new gauges and mass schemes, even more BSM functionality
- Biggest news (this month!): aMC@NLO
- Lots of news upcoming in the next few months, including: MadDecay, MadSpin, MadDM, Pythia 8 matching, automatic systematics bands, fast multipartons, ...
- Keep updated at http://launchpad.net/madgraph5!

Backup slides

Decay chains

- Decay chains retain full matrix element for the diagrams compatible with the decay
- Full spin correlations (within and between decays)
- Full width effects
- However, no interference with non-resonant diagrams
 - Description only valid "near" pole mass
 - \rightarrow Cutoff at $|m \pm n\Gamma|$ where n is set in run_card.

B Matching

→ bb~W matching with scale mt(W)

→ Gives NOT smooth matching to Pythia PS

Matching in New Physics production

J.A., de Visscher, Maltoni [arXiv:0810.5350]

- Matching necessary also in NP production whenever QCD radiation jets are important
 - When small mass differences in hadronic decays make decay jets softer than radiated jets
 - → When recoil of NP system against initial state radiation is important

Special difficulty:
 Double-counting due to onshell decays to jets

Special difficulty in e.g. SUSY matching:
 Double counting due to on-shell decays to jets!

Decays double-counted with on-shell gluino production and subsequent decay

Special difficulty in e.g. SUSY matching:
 Double counting due to on-shell decays to jets!

Decays double-counted with on-shell gluino production and subsequent decay

Special difficulty in e.g. SUSY matching:
 Double counting due to on-shell decays to jets!

Decays double-counted with on-shell gluino production and subsequent decay

- This has been solved in MadGraph 5 by the "\$" syntax mg5> import model mssm mg5> generate p p > dr dr~ j j \$ go
- This removes any on-shell gluinos from the event generation (where on-shell is defined as m ± n·Γ with n set by bwcutoff in the run_card.dat)
- The corresponding region is exactly filled if you run gluino production with gluinos decaying to dr j (using the same bwcutoff).

Invariant mass distributions of d_r squark and d quark

$$p p > dr dr \sim d$$
\$ go

$$p p > dr go, go > dr \sim d$$

Invariant mass distributions of d_r squark and d quark

Look at what Parton Shower gives us

- Look at what Parton Shower gives us
- Modify ME to ensure smooth matching near Q^{match}

$$\mathcal{P} = (\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \\ \times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

$$t_{\text{cut}}$$

Look at what Parton Shower gives us

X2

 t_{cut}

• Modify ME to ensure smooth matching near Q^{match}

- Look at what Parton Shower gives us
- Modify ME to ensure smooth matching near Q^{match}

- Look at what Parton Shower gives us
- Modify ME to ensure smooth matching near Q^{match}

- Look at what Parton Shower gives us
- Modify ME to ensure smooth matching near Q^{match}

- Look at what Parton Shower gives us
- Modify ME to ensure smooth matching near Q^{match}

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{|f_q(x_1, t_1)|}{|f_q(x_1', t_1)|} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

ME with α_s evaluated at the scale of each splitting

27

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{|f_q(x_1, t_1)|}{|f_q(x_1', t_1)|} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

ME with α_s evaluated at the scale of each splitting PDF reweighting

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q}\to e\nu}(\hat{s},\ldots) f_q(x_1',t_0) f_{\bar{q}}(x_2,t_0)$$

ME with α_s evaluated at the scale of each splitting PDF reweighting

Sudakov suppression due to non-branching above scale t_{cut}

 Again, use a clustering scheme to get a parton shower history

 Again, use a clustering scheme to get a parton shower history

- Again, use a clustering scheme to get a parton shower history
- Now, reweight both due to α_s and PDF

$$|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)} \frac{f_q(x_1', t_0)}{f_q(x_1', t_1)}$$

- Again, use a clustering scheme to get a parton shower history
- Now, reweight both due to α_s and PDF

$$|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)} \frac{f_q(x_1', t_0)}{f_q(x_1', t_1)}$$

• Remember to use first clustering scale on each side for PDF scale: $\mathcal{P}_{\text{event}} = \hat{\sigma}(x_1, x_2, p_3, p_4, \dots) f_q(x_1, t_1) f_{\bar{q}}(x_2, t_0)$

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !

• Perform jet clustering after PS - if hardest jet $k_{TI} > t_{cut}$ or there are jets not matched to partons, reject the event

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

- Perform jet clustering after PS if hardest jet $k_{TI} > t_{cut}$ or there are jets not matched to partons, reject the event
- The resulting Sudakov suppression from the procedure is $(\Delta_{Iq}(t_{\mathrm{cut}},t_0))^2(\Delta_q(t_{\mathrm{cut}},t_0))^2$ which turns out to be a good enough approximation of the correct expression $(\Delta_{Iq}(t_{\mathrm{cut}},t_0))^2\Delta_q(t_2,t_1)(\Delta_q(t_{\mathrm{cut}},t_2))^2$

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

- Perform jet clustering after PS if hardest jet $k_{TI} > t_{cut}$ or
- √ Simplest available scheme
- ✓ Allows matching with any shower, without modification
- → Sudakov suppression not exact, minor mismatch with shower
- Implemented in AlpGen, HELAC, MadGraph