MadGraph5
UFO/ALOHA

Olivier Mattelaer
FNRS

MG5: J. Alwall / M. herquet / F. Maltoni / T. Stelzer
ALOHA: P. Aquino / W. Link / F. Maltoni / T. Stelzer
UFO: C. Degrande / C. Duhr / B. Fuks / D. Grellsheid
T. Reiter
and a lot of external collaborators

lundi 26 mars 2012
MG5 Two Years AGO...
MG5 First Objectives

- Diagram Generation (tree level)
- Diagram Drawing
- Color Factor 95%
- Amplitude Computation
- Helas Automatic Generation 75%
What’s Needed from FR

☐ Need A Python Module for the Model
☐ Discussion on this Workshop
☐ particles/vertices/parameters/couplings
☐ Lorentz information for creating Helas
☐ (See working Group)
What’s Needed from FR

- Need A Python Module for the Model ✔
- Discussion on this Workshop
- particles/vertices/parameters/couplings
- Lorentz information for creating Helas
- (See working Group)
What’s Needed from FR

- Need A Python Module for the Model ✓
- Discussion on this Workshop
- particles/vertices/parameters/couplings
- Lorentz information for creating Helas ✓
- (See working Group)
Plan

- UFO
- ALOHA
- MadGraph5
Plan

- UFO
- ALOHA
- MadGraph5
Avoid multiple output model written by FR.

Have the generator to adapt to the model and not the opposite.
Avoid multiple output model written by FR.

Have the generator to adapt to the model and not the opposite.

Avoid any possible limitations

- color
- lorentz structure
- number of particles in a vertex
- gauge
UFO: Motivations

- Avoid multiple output model written by FR.
- Have the generator to adapt to the model and not the opposite.
- Avoid any possible limitations
 - color
 - lorentz structure
 - number of particles in a vertex
 - gauge
- Joint model for MG5 / GOSAM / Herwig++
Avoid multiple output model written by FR.

Have the generator to adapt to the model and not the opposite.

Avoid any possible limitations

- color
- lorentz structure
- number of particles in a vertex
- gauge

Joint model for MG5/GOSAM/Herwig++

Python Object Oriented Model
Universal FeynRules Output (UFO)

particles.py:

```python
G = Particle(pdg_code = 21,
             name = 'G',
             antiname = 'G',
             spin = 3,
             color = 8,
             mass = 'ZERO',
             width = 'ZERO',
             texname = 'G',
             antitexname = 'G',
             line = 'curly',
             charge = 0,
             LeptonNumber = 0,
             GhostNumber = 0)
```

lorentz.py:

```python
VVV1 = Lorentz(name = 'VVV1',
               spins = [ 3, 3, 3 ],
               Structure =
               'P(3,1)*Metric(1,2) -
               P(3,2)*Metric(1,2) -
               P(2,1)*Metric(1,3) +
               P(2,3)*Metric(1,3) +
               P(1,2)*Metric(2,3) -
               P(1,3)*Metric(2,3)')
```

couplings.py:

```python
GC_4 = Coupling(name = 'GC_4',
               value = '-G',
               order = {'QCD':1})
```

vertices.py:

```python
V_2 = Vertex(name = 'V_2',
              particles = [ P.G, P.G, P.G ],
              color = [ 'f(1,2,3)' ],
              lorentz = [ L.VVV1 ],
              couplings = [(0,0):C.GC_4])
```
Plan

- UFO
- ALOHA
- MadGraph5
Idea: Evaluate m for fixed helicity of external particles.

$$M = \bar{u} \gamma^\mu v \, P_{\mu\nu} \, \bar{u} \gamma^\nu v$$
Idea: Evaluate m for fixed helicity of external particles.

\[M = \overline{u} \gamma^\mu u P_{\mu \nu} \overline{u} \gamma^\nu u \]

→ Number for a given helicity

Diagrams made by MadGraph5
Idea: Evaluate m for fixed helicity of external particles.

\[
M = (\bar{u} \gamma^\mu v) P_{\mu \nu} (\bar{u} \gamma^\nu v)
\]

- Number for a given helicity
- Evaluate interaction by interaction

Diagrams made by MadGraph5

\[\text{diagram 1} \quad \text{QED=2}\]

CALL IXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1))
CALL OXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2))
CALL OXXXX(P(0,3),MT,NHEL(3),+1*IC(3),W(1,3))
CALL IXXXX(P(0,4),MT,NHEL(4),-1*IC(4),W(1,4))
CALL JI0XXX(W(1,1),W(1,2),GG,ZERO,ZERO,W(1,5))
Idea: Evaluate m for fixed helicity of external particles.

$$M = \overline{u} \gamma^\mu v P_{\mu\nu} \overline{u} \gamma^\nu v$$

→ Number for a given helicity
→ Evaluate Interaction by interaction

```
CALL IXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1))
CALL OXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2))
CALL OXXXX(P(0,3),MT,NHEL(3),+1*IC(3),W(1,3))
CALL IXXXX(P(0,4),MT,NHEL(4),-1*IC(4),W(1,4))
CALL JIOXXX(W(1,1),W(1,2),GG,ZERO,ZERO,W(1,5))
CALL IOVXXX(W(1,4),W(1,3),W(1,5),GG,AMP(1))
```
- **Speed:**
 - The complexity grows linearly with the number of diagram
 - Recycling between diagram (so reduces the factorial growth)
Limitations

- Spins of the particles
Limitations

- Spins of the particles
- One routine by Lorentz structure
Limitations

- Spins of the particles
- One routine by Lorentz structure
Limitations

- Spins of the particles
- One routine by Lorentz structure
 - HEFT [Frederix] (2007)
Limitations

- Spins of the particles
- One routine by Lorentz structure
 - HEFT [Frederix] (2007)
Limitations

- Spins of the particles
- One routine by Lorentz structure
 - HEFT [Frederix] (2007)
Limitations

- Spins of the particles
 - HEFT [Frederix] (2007)

- One routine by Lorentz structure

SLIH
Chiral Perturbation
Effective Field Theory
Chromo-magnetic operator
Full HEFT
NMSSM
BNV Model
Black Holes

Mattlelaer Olivier
MC4BSM: BSM in MadGraph 5
lundi 26 mars 2012
Automatic Creation of HELAS routine for ANY BSM theory

Output
- Fortran
- C++
- Python

The Helas routine for BSM without the pain to write it.
ALOHA

Google translate

Type text or a website address or translate a document.

From: UFO To: Helicity Translate

Brussels October 2010

lundi 26 mars 2012
ALOHA

Options:
- Standard (HELAS)
- Feynman gauge
- Complex-mass scheme
- Loop

Type text or a website address or translate a document.
Feynman Gauge
- UFO Model supports both Unitary gauge and Feynman gauge
- Quite trivial for ALOHA (just changing the propagator)
- Easy for MG5 (just have to add the goldstino)
- UFO Model supports both Unitary gauge and Feynman gauge
- Quite trivial for ALOHA (just changing the propagator)
- Easy for MG5 (just have to add the goldstino)

This is trivial to implement
Feynman Gauge

- UFO Model supports both Unitary gauge and Feynman gauge
- Quite trivial for ALOHA (just changing the propagator)
- Easy for MG5 (just have to add the goldstino)

This is trivial to implement

- Usefull to test the gauge invariance
- Might be more optimal for some processes/energy (need to be checked)
- Will be helpfull for NLO
The presence of width **BREAKS** gauge and lorentz invariance

Gauge results:

<table>
<thead>
<tr>
<th>Process</th>
<th>matrix</th>
<th>BRS</th>
<th>ratio</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>g g > b b~ e+ e~ ve ve~</td>
<td>1.6829262916e-20 1.1523186709e-24 6.8471131304e-05</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAMP 0</td>
<td>7.3202114973e-19 4.3818201275e-23 5.9859201187e-05</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAMP 1</td>
<td>8.0802219962e-20 1.0339427857e-23 1.2795970039e-0</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary: 0/1 passed, 1/1 failed

Failed processes: g g > b b~ e+ e~ ve ve~

Lorentz invariance results:

<table>
<thead>
<tr>
<th>Process</th>
<th>Min element</th>
<th>Max element</th>
<th>Relative diff.</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>g g > b b~ e+ e~ ve ve~</td>
<td>6.87874030489e-21 6.8885480993e-21 1.0385879728e-04</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAMP 0</td>
<td>2.8968137980e-20 2.9000153627e-20 1.1039819500e-03</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAMP 1</td>
<td>3.0460455373e-19 3.0461513397e-19 3.4733125877e-0</td>
<td>Failed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary: 0/1 passed, 1/1 failed

Failed processes: g g > b b~ e+ e~ ve ve~
The presence of width **BREAKS** gauge and lorentz invariance

Complex mass scheme solves this problems

\[M_c = \sqrt{M^2 - iM \ast W} \]

Needs to fix also yukawa in that way and compute couplings accordingly.
Complex Mass Scheme

- The presence of width **BREAKS** gauge and lorentz invariance
- Complex mass scheme solves this problems

\[M_c = \sqrt{M^2 - iM \ast W} \]

Gauge results:
- Process: \(g g \rightarrow b \bar{b}^\ast e^+ e^- \) ve ve\^\
 - matrix: 1.3981771141e-20
 - BRS: 1.5230480926e-46
 - ratio: 1.0893098430e-26
 - Result: Passed
 - Summary: 1/1 passed, 0/1 failed

Gauge results (switching between Unitary/Feynman):
- Process: \(g g \rightarrow b \bar{b}^\ast e^+ e^- \) ve ve\^\
 - Unitary: 3.3591262659e-16
 - Feynman: 3.3591262659e-16
 - Relative diff.: 6.0178031715e-15
 - Result: Passed
 - Summary: 1/1 passed, 0/1 failed

Lorentz invariance results:
- Process: \(g g \rightarrow b \bar{b}^\ast e^+ e^- \) ve ve\^\
 - Min element: 4.0109884021e-21
 - Max element: 4.0109884021e-21
 - Relative diff.: 1.8756383941e-15
 - Result: Passed
 - Summary: 1/1 passed, 0/1 failed
Plan

- UFO
- ALOHA
- MadGraph5
Plan

- UFO
- ALOHA
- MadGraph5
MadGraph5 Goal

- Remove ALL limitations of MadGraph4
 - speed
 - number of particles
 - type of interactions
 - modularity / flexibility of the code
 - static HELAS library
To improve our web services we request that you register. Registration is quick and free. You may register for a password by clicking here. You can still use MadGraph 4 here.

Code can be generated either by:

1. Fill the form:
 - Model: SM
 - Input Process: p p > w+ j j QED=3, w+ > l+ vl
 - p and j definitions: p = d u s c d u s c q
 - sum over leptons: l+ = e+, mu+ ta+; l- = e-, mu- ta-; vl = ve, vm, vt; vl = ve-, vm-, vt-

3. MadGraph 5: Going Beyond.
 Johan Alwall (Fermilab), Michel Herquet (NIKHEF, Amsterdam), Fabio Maltoni, Olivier Mattelaer (Louvain U., CP3), Tim Stelzer (Illinois U., Urbana). FERMILAB-PUB-11-448-T.
 Published in JHEP 1106 (2011) 128
Speed

Matrix Element generation:

<table>
<thead>
<tr>
<th>Process</th>
<th>MadGraph 4</th>
<th>MadGraph 5</th>
<th>Subprocesses</th>
<th>Diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow jjj$</td>
<td>2 min</td>
<td>22 s</td>
<td>34</td>
<td>307</td>
</tr>
<tr>
<td>$pp \rightarrow jjl^+l^-$</td>
<td>23 min</td>
<td>26 s</td>
<td>108</td>
<td>1216</td>
</tr>
<tr>
<td>$pp \rightarrow jjjej^+e^-$</td>
<td>60 min</td>
<td>132 s</td>
<td>141</td>
<td>9012</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow e^+e^-e^-e^+e^-$</td>
<td>51 min</td>
<td>75 s</td>
<td>1</td>
<td>3474</td>
</tr>
<tr>
<td>$gg \rightarrow ggggg$</td>
<td>3 hours</td>
<td>5 min</td>
<td>1</td>
<td>7245</td>
</tr>
<tr>
<td>$pp \rightarrow jj(W^+ \rightarrow l^+\nu_l)$</td>
<td>10 min</td>
<td>19 s</td>
<td>82</td>
<td>304</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}$+full decays</td>
<td>6h</td>
<td>29 s</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>$pp \rightarrow \bar{q}/q \bar{q}/q$</td>
<td>14 min</td>
<td>63 s</td>
<td>313</td>
<td>475</td>
</tr>
<tr>
<td>$gg \rightarrow (\tilde{g} \rightarrow u\bar{u}\tilde{\chi}_0^0)(\tilde{g} \rightarrow u\bar{u}\tilde{\chi}_1^0)$</td>
<td>5 min</td>
<td>7 s</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>$pp \rightarrow (\tilde{g} \rightarrow jj\tilde{\chi}_1^0)(\tilde{g} \rightarrow jj\tilde{\chi}_1^0)$</td>
<td>—</td>
<td>30s</td>
<td>144</td>
<td>11008</td>
</tr>
</tbody>
</table>

Matrix Element evaluation (Fortran):

<table>
<thead>
<tr>
<th>Process</th>
<th>Function calls</th>
<th>Run time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MG 4</td>
<td>MG 5</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow e^+e^-$</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow e^+e^-e^-e^+$</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow e^+e^-e^-e^+e^-$</td>
<td>6668</td>
<td>3775</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}$</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}g$</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}gg$</td>
<td>85</td>
<td>67</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}ggg$</td>
<td>748</td>
<td>515</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow w\bar{u}gg$</td>
<td>160</td>
<td>116</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow w\bar{u}ggg$</td>
<td>1468</td>
<td>960</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}d\bar{d}$</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}d\bar{d}g$</td>
<td>310</td>
<td>197</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}d\bar{d}gg$</td>
<td>3372</td>
<td>1876</td>
</tr>
<tr>
<td>$\bar{u}u \rightarrow d\bar{d}d\bar{d}d\bar{d}$</td>
<td>1370</td>
<td>753</td>
</tr>
</tbody>
</table>
number of particles

lundi 26 mars 2012
Type of Interactions

Effective Theory

multi fermion interactions
Effective Theory

multi fermion interactions

As well as new color structures
(triplet/sextet)
Mattlelaer Olivier

FR Mont St Odille 2012: MadGraph 5

Command Interface

Welcome to MadGraph 5

Version 1.3.16

The MadGraph Development Team - Please visit us at https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

Load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~
mg5>help

lundi 26 mars 2012
Nice Interactive session

MadGraph 5 (version 1.3.16)

Welcome to MadGraph 5

* * * * * * * * * * * *

The MadGraph Development Team - Please visit us at
https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~
mg5> help
Nice Interactive session

Auto-completion

WELCOME to MADGRAPH 5

VERSION 1.3.16 2011-09-11

The MadGraph Development Team - Please visit us at
https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~
mg5>help

lundi 26 mars 2012
Nice Interactive session

Auto-completion

Tutorial

Welcome to MadGraph 5

Version 1.3.16

The MadGraph Development Team - Please visit us at
https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

Load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~
mg5> help
Nice Interactive session
Auto-completion
Tutorial
Interactive help

Welcome to MadGraph 5

Version 1.3.16
2011-09-11

The MadGraph Development Team - Please visit us at
https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

Load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vl = ve vm vt
Defined multiparticle vl~ = ve~ vm~ vt~

mg5>help
Nice Interactive session

Auto-completion

Tutorial

interactive help

If You test it, you are going to like it!
Nice Interactive session
Auto-completion
Tutorial
interactive help
- Nice Interactive session
- Auto-completion
- Tutorial
- Interactive help
- Simple command set

Welcome to MadGraph 5

WELCOME to MADGRAPH 5

VERSION 1.3.16

The MadGraph Development Team - Please visit us at
https://server06.fynu.ucl.ac.be/projects/madgraph

Type 'help' for in-line help.
Type 'tutorial' to learn how MG5 works

load MG5 configuration from /Users/omatt/.mg5_config
Loading default model: sm
models.import_ufo: Restrict model sm with file models/sm/rest
models.import_ufo: Run "set stdout_level DEBUG" before import
INFO: Change particles name to pass to MG5 convention
Defined multiparticle p = g u c d s u~ c~ d~ s~
Defined multiparticle j = g u c d s u~ c~ d~ s~
Defined multiparticle l+ = e+ mu+
Defined multiparticle l- = e- mu-
Defined multiparticle vL = ve vm vt
Defined multiparticle vL~ = ve~ vm~ vt~
mg5>help
Nice Interactive session

Auto-completion

Tutorial

interactive help

Simple command set

import model sm

generate p p > e+ e-

output FORMAT MY_DIR

launch
Compact and optimise output for MadEvent

<table>
<thead>
<tr>
<th>Process</th>
<th>Subprocess directories</th>
<th>Channels for survey</th>
<th>Directory size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ME 4</td>
<td>ME 5</td>
<td>ME 4</td>
</tr>
<tr>
<td>$pp \to W^+ j$</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>$pp \to W^+ jj$</td>
<td>41</td>
<td>4</td>
<td>138</td>
</tr>
<tr>
<td>$pp \to W^+ jjj$</td>
<td>73</td>
<td>5</td>
<td>1164</td>
</tr>
<tr>
<td>$pp \to W^+ jjjj$</td>
<td>296</td>
<td>7</td>
<td>15029</td>
</tr>
<tr>
<td>$pp \to l^+ l^- j$</td>
<td>12</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>$pp \to l^+ l^- jj$</td>
<td>54</td>
<td>4</td>
<td>586</td>
</tr>
<tr>
<td>$pp \to l^+ l^- jjj$</td>
<td>86</td>
<td>5</td>
<td>5408</td>
</tr>
<tr>
<td>$pp \to l^+ l^- jjjj$</td>
<td>235</td>
<td>7</td>
<td>63114</td>
</tr>
<tr>
<td>$pp \to t\bar{t}$</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>$pp \to t\bar{t}j$</td>
<td>7</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>$pp \to t\bar{t}jj$</td>
<td>22</td>
<td>5</td>
<td>417</td>
</tr>
<tr>
<td>$pp \to t\bar{t}jjj$</td>
<td>34</td>
<td>6</td>
<td>3816</td>
</tr>
</tbody>
</table>
Remove ALL limitations of MadGraph4
- speed
- number of particles
- type of interactions
- modularity / flexibility of the code
MadGraph5 Goal

- Remove ALL limitations of MadGraph4
 - speed
 - number of particles
 - type of interactions
 - modularity / flexibility of the code

So we succeed the initial goal
After the initial Goal?
After the initial Goal?
After the initial Goal?

Mattelaer Olivier

FR Mont St Odille 2012: MadGraph 5

lundi 26 mars 2012
After the initial Goal?

Current 1.4.3

Not possible to detail everything

1.4.0
What’s new

- Improve Phase-space integration
What’s new

- Improve Phase-space integration
- automatic order restriction for any model

```bash
mg5>display coupling_order
  QCD : weight = 1
  QED : weight = 2
```
What’s new

- Improve Phase-space integration
- automatic order restriction for any model

mg5>display coupling_order
 QCD : weight = 1
 QED : weight = 2
mg5>generate p p > w- > b b~ e+ ve jj
INFO: Checking for minimal orders which gives processes.
INFO: Please specify coupling orders to bypass this step.
INFO: Trying coupling order WEIGHTED=8
INFO: Trying coupling order WEIGHTED=9
INFO: Trying coupling order WEIGHTED=10
INFO: Trying process: g g > w- > b b~ e+ ve d u~ WEIGHTED=10
INFO: Process has 63 diagrams

If no coupling order specify: take minimal weight
What’s new

- Improve Phase-space integration
- automatic order restriction for any model

mg5>display coupling_order
 QCD : weight = 1
 QED : weight = 2
mg5>generate p p -> w- -> b b~ e+ ve j j
INFO: Checking for minimal orders which gives processes.
INFO: Please specify coupling orders to bypass this step.
INFO: Trying coupling order WEIGHTED=8
INFO: Trying coupling order WEIGHTED=9
INFO: Trying coupling order WEIGHTED=10
INFO: Trying process: g g -> w- -> b b~ e+ ve d u~ WEIGHTED=10
INFO: Process has 63 diagrams

QED=4, QCD=2

If no coupling order specify: take minimal weight
What’s new

☐ Check that the param_card is compatible with the model
What’s new

- Check that the param_card is compatible with the model
- MSSM will support SLAH1 card
What’s new

- Check that the param_card is compatible with the model
- MSSM will support SLAH1 card
- Improve user interface
 - configuration files
 - New interface for madevent
- Easy to install pythia-pgs/Delphes/...
What’s new

- Check that the param_card is compatible with the model
- MSSM will support SLAH1 card
- Improve user interface
 - configuration files
 - New interface for madevent
- Easy to install pythia-pgs/Delphes/…
- Possibility to compute partial width (and BR)
What’s new

- Check that the param_card is compatible with the model
- MSSM will support SLAH1 card
- Improve user interface
 - configuration files
 - New interface for madevent
- Easy to install pythia-pgs/Delphes/...
- Possibility to compute partial width (and BR)
- Improving the gridpack
What’s new

- Check that the param_card is compatible with the model
- MSSM will support SLAH1 card
- Improve user interface
 - configuration files
 - New interface for madevent
- Easy to install pythia-pgs/Delphes/...
- Possibility to compute partial width (and BR)
- Improving the gridpack
- add a cut forbidding on-shell particles but allowing off-shell contribution (?).
$ \text{Explanation}$

\[p p > e^+ e^- ZZ \]
$ \text{explanation}$

$$pp \rightarrow e^+ e^- Z$$

BW cutt = 5
(small for the example)
$ \text{Explanation}$

$p p \rightarrow e^+ e^- Z$

Z-onshell veto

$BW \text{cut} = 5$
(small for the example)
$ \text{Explanation}$

$p p \rightarrow e^+ e^- Z$

Z-onshell veto

BW cutt = 5 (small for the example)

$\text{Offshell } Z \text{ interference is BG}$
And After...

- Inclusion of new output
 - MadDarkMatter
 - MadWeight
 - ...

Mattlelaer Olivier

FR Mont St Odille 2012: MadGraph 5

lundi 26 mars 2012
And After...

- Inclusion of new output
- MadDarkMatter
- MadWeight
- ...
- MadLoop / aMC@NLO
And After...

- Inclusion of new output
- MadDarkMatter
- MadWeight
- ...
- MadLoop / aMC@NLO
- usermod for UFO model
- MadAnalysis5
And After...

- Inclusion of new output
- MadDarkMatter
- MadWeight
- ...
- MadLoop / aMC@NLO
- usermod for UFO model
- MadAnalysis5
- color ordered amplitude

Fr Mont St Odille 2012: MadGraph 5
And After...

- Inclusion of new output
 - MadDarkMatter
 - MadWeight
 - ...
- MadLoop / aMC@NLO
- usermod for UFO model
- MadAnalysis5
- color ordered amplitude
- recursion relations
And After...

- Inclusion of new output
- MadDarkMatter
- MadWeight
- ...
- MadLoop / aMC@NLO
- usermod for UFO model
- MadAnalysis5
- color ordered amplitude
- recursion relations
- computing the widths

Diagram 19

```
1 \ u \ 2 \ u\sim \ g \ 3 \ u \ 4 \ u\sim

5
```

QCD=5
Computing the widths

- mg5> compute_widths Z
- First evaluate $2>2$ and $2>3$ contribution
- Compute ONLY the relevant contribution
- Write the new param_card.dat
We are VERY happy
What we need from FR

- 4 fermion operator
- Unitary Operator
- spin 3/2
- Automatic width for 2>2?

We are VERY happy
What we need from FR

- 4 fermion operator
- Unitary Operator
- spin 3/2
- Automatic width for 2>2?

We are VERY happy

And of course NLO

Details in Valentin/Rik’s talk

lundi 26 mars 2012
MadGraph 5 is working
We have included a lot of features
A lot of improvements are ongoing

https://launchpad.net/madgraph5