aMC@NLO

Olivier Mattelaer
IPPP/Durham



Plan

]
¥ Durham

University

("« NLO Introduction A
e | oop Computation
e Dealing with Singularrties
e Matching@NLO

\_* Live Demo Y




Plan

]
¥ Durham

University

( e NLO Introduction i

\_

_oop Computation

Dealing with Singularities

Matching@NLO

e | Ive Demo




Perturbative expansion ¥t

dGap—x (8, up, ur) Parton-level cross section

® [he parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:
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Perturbative expansion ¥t

dbap—x (S, HF, UR)

® [he parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:
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dGap—x (8, up, ur) Parton-level cross section

® [he parton-level cross section can be computed as a
series in perturbation theory, using the coupling
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® [ncluding higher corrections improves predictions

and reduces theoretical uncertainties



~@  Improved predictions  ¥ex

do = Z/dmd@ fa($1 MF)fb(3727MF)dUab—>X(S ILF, IR)

~ _ Born | (1) ( ) (2) ( ) (3)
14
o= ( 27’(’ * 2T * 2T T )

® |eading Order predictions can depend strongly on
the renormalization and factorization scales

® Including higher order corrections reduces the
dependence on these scales




~@> Going NLO W Rutam

4 )
o At NLO the dependence on the

renormalization and factorization scales is

reduced ’e ™
T T T T | A T
® First order where scale dependence 18- Top produstion va 4, VA-14TeV -
. . . B LO, ctegBll, (M i=0.130 .
in the running coupling and the ) 185, otoat_m, euli=011D -

14

PDFs 1s compensated for via the loop
corrections: first reliable estimate

14

of the total cross section af
® Better description of final state: af
impact of extra radiation included 2 | | | | "
(e.g. jets can have substructure) e T e e
o J

® Opening of additional inrtial state
partonic channels
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® NNLO is the current state-of-the-art. There are
only a few results available: Higgs, Drell-Yan, ttbar

pp - (Z¥")+X at Y=0

® Why do we need it! e P A b

4]

® control of the uncertainties in a
calculation

80

50— Vs = 14 Tev
B M = M,

MRSTZ2001 pdfs

® [t s “mandatory” if NLO corrections :
are very large to check the behavior wl
of the perturbative series '

d®c/aM/dY [pb/GeV]

Yy = iz = W —
Hp =g g =M ——— 1
pp =M pg=p -

30-1 III|IIII|IIII|IIII|IIIIIIIII|IIIIIIIII| 1 1 1 1 I 11 IIIIIIIIIIII
0.2 Q.3 0.6 Q.7 1.0 2.0 3.0 6.0

/M

® [tis needed for Standard Candles
and very precise tests of perturbation theory, exploiting all
the available information, e.g. for determining NNLO PDF
sets
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Higgs at NNLO

IVE SEries

stabilizes at NNLO

® | O calculation is not reliable,
® NLO estimation of the

® but the perturbat

uncertainties (by scale variation)

works reasonably well
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Let’s focus on NLO




® NLO corrections have three parts:
® [he Born contribution, I.e. the Leading order.

® Virtual (or Loop) corrections: formed by an amplitude with
a closed loop of particles interfered with the Born
amplitudes

® Real emission corrections: formed by amplitudes with one
extra parton compared to the Born process

® Both Virtual and Real emission have one power of
s extra compared to the Born process




NLO predictions oo

® As an example, consider Drell-Yan Z/y*
production
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® As an example, consider Drell-Yan Z/y*

production
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® As an example, consider Drell-Yan Z/y*

production
b = O'Born<1 Qs (1) +)
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® As an example, consider Drell-Yan Z/y*
production
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® As an example, consider Drell-Yan Z/y*
production

6:030”1(1 | &80(1)4—...)
27
!\

2
>\MN Z:V\N T
- J [ gs
7 Re %vvw x>vvw

Not definite positive  { * y,




Fixed Order calculations ¥
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Fixed Order calculations ¥t
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Difficulties W i

DB = v+ B pe s of@

® Multiple steps

® [ix divergencies

® Virtual amplitudes: how to compute the loops automatically
N a reasonable amount of time

® How to deal with infra-red behavior for phase-space
Integration

® How to match these processes to a parton shower without
double counting




Infrared safte observablegwouts
)

/0 For an observable to be calculable in fixed-order
perturbation theory, the observable should be infrared
safe, I.e., it should be insensitive to the emission of soft

or collinear partons.

® [n particular, it piis a momentum occurring in the
definition of an observable, it most be invariant under
the branching
Pi — Pj + Pk,
\ Whenever pjand pk are collinear or one of them is soft. ,

N

(@ Examples

® “The number of gluons” produced in a collision is not an infrared
safe observable

® ""[he number of hard jets defined using the kr algorithm with a
transverse momentum above 40 GeV,” produced in a collision is
\_ an infrared safe observable )
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- Are all (IR-safe) observables that we can compute using a
NLO code correctly described at NLO? Suppose we have
a NLO code for pp — ttbar

g - t g i £ g - t

t

1O Real Virt
9 OO0 L— t g Wa%;“ - t 000000 —

e Total cross section

® Transverse momentum of the top quark

®* Transverse momentum of the top-antitop pair

* Transverse momentum of the jet

e Jop-antitop invariant mass

e Azimuthal distance between the top and anti-top
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One Loop Wt
4 )

® Consider this m-point loop
diagram with n external momenta




- One Loop W Durham
<
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® Consider this m-point loop
diagram with n external momenta

(o The integral to

compute is

DOD1D2 © 'Dm—l

D;=(+p)*—m;
- Y,




~@-  Integrand reduction  ¥eu

1 Key Point )

® Any one-loop integral can be decomposed in scalar integrals

® The task is to find these coefficients efficiently (analytically or
numerically)




~<>- Basis of scalar integrals ez

® Thea,b,c,dand R coefficients depend only on external
parameters and momenta

1-loo
M P = E dioilizigBOXioi1i2i3

10<t1<t2<13

+ g Cigiyip LTiaNgle; ;o
10<11 <12

-+ E bigilBUbblez’oil
10<11

-+ E a;, Ladpole;_
10

+ R+ O(e)

* All these scalar integrals are known and available in computer libraries (FF
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])



~@> Divergences W Ruta

® Thea,b,c,d and R coefficients depend only on
external parameters and momenta

1-loo
M P = E dioi1i2i3BOXioi1i2i3 ><

10<11<12<13

+ E Cioi1i2Trla’nglei0i1i2
10<11 <12

+ E bioilBU—bbleioil ?
10<11

-+ E a;, Tadpole;

10

+R 4+ O(e)
= The coefficients d, c,b and a are finite and do not contain poles in I/e

= The |/e dependence is in the scalar integrals (and the UV renormalization)

=VWhen we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in front
of the poles. These divergences should cancel against divergences in the real
emission corrections (according to KLN theorem)
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Standard Approach
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® Passarino-Veltman reduction:

® Reduce a general integral to “scalar integrals” by “completing
the square”

~

/
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® Pjssarino-Veltman reduction:

® Reduce a general integral to “scalar integrals” by “completing
the square”

~

/

-

® [et's do an example:
Suppose we want to calculate this triangle integral

X I

~




Passarino-Veltman W Durham

Main Idea N

® T[he only independent four vectors are pH and gH . Therefore,
the integral must be proportional to those.We can set-up a
system of linear equations.
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Passarino-Veltman W Durham

Main Idea N

® T[he only independent four vectors are pH and gH . Therefore,
the integral must be proportional to those.We can set-up a
system of linear equations.

-

/Resolution (dropping the mass)
® contracting with 2*p and 2*g

A\

\_ Gram Determinant: G W,
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\_ Gram Determinant: G W,
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/Resolution (dropping the mass) \
® contracting with 2*p and 2*q
—7
? LK
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\_ Gram Determinant: G W,
/Resolution (dropping the mass) \
® cxpress the integral as simpler integral
o /
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Passarino-Veltman W Durham

/Resolution (dropping the mass) \
® contracting with 2*p and 2*g

\_ Gram Determinant: G

VAN

/Resolution (dropping the mass)
® cxpress the integral as simpler integral

Scalar Integral: Know analytically
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/Resolution (dropping the mass)
® contracting with 2*p and 2*q

\_ Gram Determinant: G
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/Resolution (dropping the mass)
® contracting with 2*p and 2*q

\_ Gram Determinant: G

~




Passarino-Veltman W Dutan

/Resolution (dropping the mass) \
® contracting with 2*p and 2*q

o

\_ Gram Determinant: G W,

fFinaI Step A
® [nverting the Gram Determinant ? i\
-

® Ve have an expression Iin term of scalar integral

?
k/ \_/
C) Already computed
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The decomposition to scalar Y
integrals presented before works
at the level of the integrals

1-loop __
M b= E : di0i1i2i3BOXioi1i2‘i3

10<11<12<13

_|_ E Ci0i1i2Trla;ngle,io,i1,’:2
10<11 <12

-+ E bioilBU—bbleioil
10<1t1

+ E a;, Tadpole;
10

+R 4+ O(e)
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(o

The decomposition to scalar h
integrals presented before works
at the level of the integrals

1-loo E
M g dioiligigBOXiOiliQi?)

10<11<12<13

+ E Cio’il’izTrla’ngleioilig
10<11<1%2

-+ E bioilBUbbleioil
10<7?1

-+ E a;, Tadpole;
10

+R 4+ O(e)

OPP Reduction W Durham

€ If we would know a similar relation at )
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals




> OPP Reduction W Durham

/. The decomposition to scalar @ If we would know a similar relation at )
integrals presented before works the integrand level, we would be able
at the level of the integrals to manipulate the integrands and

extract the coefficients without doing
the integrals
1 m—1 ~ m—1
Ml— o00p __ Z dioiligig BOXi0i1i2i3 N(l) = Z [di0i1i2i3 + dioilizis (l)} Dz
10<11<12<13 10<11<12<13 i#10,11,12,13
. m—1 m—1
™ Z Ciniyip 1TiANGlE; 5,4, + Z |:C’i0’i1’i2 ‘|‘5¢oi1z‘2(l>} H D;
i0<i1<i2 7:O<'i1<7:2 ’i;é’io,il,’iQ
+ Y bi,i, Bubblegy;, m-l ) m—1
10<11 + Z {b’io’il + bigiy (l)] H D;
10<11 1#£10,11
+ Z a;, Tadpole; m—1 m—1
10 + Z {aio + &io (D} H D;
+R + O(e) v i
+P(1) 1] D
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The decomposition to scalar A
integrals presented before works
at the level of the integrals

1-loo
M b= E : di0i1i2i3BOXioi1i2i3

10<11<12<13

_|_ E Ci0i1i2Trlangle,io,i1,’:2
10<11 <12

-+ E bioilBU—bbleioil
10<1t1

+ E a;, Tadpole;
10

+R 4+ O(e)

OPP Reduction W Durham

€ If we would know a similar relation at )
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

m—1
N(l) — E , [di0i1i2’i3
10<11<12<13

m—1
+ E [Cioilig

10<11 <19

+ mz_l i,

10<11

m—1

+ Z {aio

10

woll>e Spurious term




@ spurious terms W Ruta

® The functional form of the spurious terms is known (it depends on the

rank of the integral and the number of propagators in the loop) [del
Aguila, Pittau 2004]

® for example, a box coefficient from a rank | numerator is

~

1 Voo v, PO
di0i1i2i3 (l) — di0i1i2i3 ervr l“p1p2p3

(remember that p; Is the sum of the momentum that has entered the
loop so far; so we always have po = 0)

® The integral is zero

~

gy Qiginizis (1) _ 5 /ddle‘“’p" Ipiphrs _

DoD1DyDy tontais DoD;1 Dy D5




How It works...

m—1

= 2

m—

[dioi1i2i3 + di0i1i2i3 (l)}

1

m—

* Z [Cioilig + Cigiyio (l)} H D;

19<t1<i2

m—1
+ Z |:bi0i1‘|_l;iozl } H D,

io<i1 e
m—1
+ 3 Jaio + s, (1) H D,
0 1710
m—1
+P() I D

1#£10,81,12

1

~
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How It works...

m—1

10<11<12<13

m—1

+ > [Cioi1i2+5z‘oi1z‘2(l)]

10<11 <12

m—1
T Z [bioil +Bi021 } H D;

m—

[dioi1i2i3 + Ji0i1i2i3 (l)}

1

m—

17#10,01,%2

1

~

D;

" Durham

Univ cmlw

-

~

To solve the OPP reduction,
choosing special values for the

loop momenta helps a lot

10<1?1 110,81
m—1
-+ Z [CLZ'O -+ C~L7;O (l)} H Dz
10 1#£10
m—1
+P(1) 1] D
/




How It works...

m—1 m—1

2

10<11<12<13

[di0i1i2’i3 + Ji0i1i2i3 (l)}

m—1

(l)} H D;

1#£10,81,12

m—1
T Z [bioh —I_Bioh } H D;

10<11 1#£10,11

+mzl {aio + dy, (l)} H D;

iZio

10<11 <12

~

D;

] |
¥ Durham

University

-

To solve the OPP reduction,
choosing special values for the
loop momenta helps a lot

~

For example, choosing | such that
Do(I*) = D1(I7) =
= Dy (1) = D3(IF) =0

sets all the terms in this equation
to zero except the first line
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- N A
m—1 - l m—1 . To solve the OPP reduction,
N = . [dioilim T digisiaial )} L1 ™11 choosing special values for the

10<11<12<13 1#10,11,12,13

loop momenta helps a lot

For example, choosing | such that
Do(I*) = D1(I7) =
= Dy (1) = D3(IF) =0

sets all the terms in this equation
to zero except the first line




HOow It WOrks... W Durha

- N A
m—1 - l m—1 . To solve the OPP reduction,
N = . [dioilim T digisiaial )} L1 ™11 choosing special values for the

10<11<12<13 1#10,11,12,13

loop momenta helps a lot

For example, choosing | such that
Do(I*) = D1(I7) =
= Dy (1) = D3(IF) =0

sets all the terms in this equation
to zero except the first line

There are two (complex)
solutions to this equation due to
O the quadratic nature of the

— propagators

\_ AN /
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m—1 —
* Z [Cio’iliz + Cigiio (l)] H D;
10<11<12 itio.in i
m—1 . 1
+ 3 b + b ] TT D
<h 17#10,%1
m—1 m—1
+ 3 Jai, + @i, 0] T D
*0 1710
m—1
+pP() I D

o /

- Coefficient computed in a previous step
 Mattelaerolivieer ~ wuwd2014 30
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/
- m—1 _ m—1
N(l) — Z [di0i1i2i3 - dioi1i2i3 (l)] H D
10<11<12<13 17£10,41,12,13
m—1 m—1 / \
+ Z | {Cio“’i? + Cioiio (l)} 11 | Di Now we choose | such that
10<11 <12 1£10,11 ,12
m_l o . .
-+ Z [bioil —|—Bi021 } H D, DO(ZZ) — Dl (l"/) — D2(l7/) — O
10<%1 1#£10,11
~ sets all the terms in this equation
i ZO [ai@ T i (l)} 1;[ D to zero except the first and
(4 1=+10
1 second line
+2() T] D N Y
\_ %

@ Coefficient computed in a previous step
 Mattelaerolivieer ~ wuwd2014 30
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4 m—1 _ m—1
N(l) — Z [dioi1i2i3 T d’ioilizis (l)] H D
10<11<12<13 ’i;éio,’il,’iz,’ig
m—1 m—1 / \
t Z | {%m? + Cioinis (l)} I[ P Now we choose | such that
10<11 <12 i#’io,’il,ig

Do(1") = D (I") = Dy(I") =0

sets all the terms in this equation
to zero except the first and
second line

N\ /

= (

o J

C) Coefficient computed in a previous step
 Mattelaerolivieer ~ wuwd2014 30



HoOw It WOrKs... W Durham

N /

- Coefficient computed in a previous step
. Mattelaer olivier ~ wuwda2014 31




HoOw It WOrKs... W Durham

/
4 m—1 _ m—1
N(l) ] Z [di0i1i2i3 + dioi1i2i3 (l)] H D
10<11<12<13 17£10,41,12,13
/~ m—1 T — 1
H ) [C’io’il’bé + Cigiria (l)] 1] b - ~
s Galliie Now, choosing I such that
+ Z [bioil +B7§021 } H D; DO(ZZ) — D]_ (l”l,) — O
10<%1 1#£10,11
sets all the terms in this equation
+ Z {a”iO + “io(l)} 1;[ D to zero except the first, second
20 1710 . .
e \_ and third line Y
+P(1) 1] D
o /

@ Coefficient computed in a previous step
. Mattelaer olivier ~ wuwda2014 31



T How it works... M

/
C m—1 _ m—1
N(l) — Z [di0i1i2i3 + di0i1i2i3 (Z)] H D

to<t1<t2<i3 1710,01,12,13
=1 TM—1

+ Z [C’io’ilig + Cigiyis (l)] H D;
&:,:102 — Galliie 4 Now, choosing | such that h

+ Z [bioﬁ —|—B7;07;1(l)] H D, DO(ZZ) — D]_ (lfl,) _ O
t0<t1 110,11

sets all the terms in this equation
to zero except the first, second
\_ and third line Y

= (

o J

@ Coefficient computed in a previous step
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2V

Now, choosing [ such that
Di(1") =0

m—1 m—1 9 sets the last line to zero y

N /

- Coefficient computed in a previous step
. Mattelaerolivier ~ wwwda20t4 3
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/
- m—1 _ m—1
N(l) — Z [di0i1i2i3 - dioi1i2i3 (l)] H D

10<11<12<13 ’i;ﬁio 11,12,13
/~ m—1 T — 1

H D [Cio’il’bé + Cigiria (l)] H D;
(50<731 <i2 1710,11,12 [ . \
(1 Now, choosing [ such that

—|_ Z |:b’1,0?,1 Zo'Ll i| H D ’[, .
\f0 <71 i#£40,11 Dl(l ) o O
m—1 .

sets the last line to zero
+3° [a + aio(z)} H D; \_ Y
io iig

o J

@ Coefficient computed in a previous step
. Mattelaerolivier ~ wwwda20t4 3
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Now, choosing arbitrary |

\_ /

- Coefficient computed in a previous step
 Mattelaerolivieer ~ wtuwd201t4 33
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We have our Numerator!

-

- Coefficient computed in a previous step
- Mattelaerolivier ~ tuwd201t4 . 34




How It works... W Durham

~

For each phase-space point we have to solve the system of
equations

Due to the fact that the system reduces when picking special
values for the loop momentum, the system greatly reduces

We can decompose the system at the level of the squared
matrix element, amplitude, diagram or anywhere in between.
As long as we provide the corresponding numerator function.
Since each reduction with CutTools is computationally heavy,
we directly reduce the squared element with MadGraph.

For a given phase-space point, we have to compute the

numerator function several times (~50 or so for a box loop)

/




e d dimensions Fputan

® |In the previous consideration | was very sloppy in considering
if we are working in 4 or d dimensions

® In general, external momenta and polarization vectors are in
4 dimensions; only the loop momentum is in d dimensions

o J
4 )
® To be more correct, we compute the integral
N(l.1 (=141
/ddl . _(7 )_ f T \
DoD1 Dz -+ D1 d di epsilon dim
M 4 dim P
Di=0+p)?—mi=(1+p)—m?>+1?>=D;+1°
[-1=0 [-pi=1-p; [ l=1-14+1-1
N /
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@ Implications W Qe
4 - )
® [he decomposition in terms of scalar
iIntegrals has to be done in d dimensions
® Thisis why the rational part R is needed
N\ /
/ m—1 - 1 \
> dtiviiai) [ 40
0<710<11<12<13
m—1 - 1
i = C(ZOZ1i2)/dd€ D’ioDilD’iQ
0<19<11 <12
m—1 - 1
- 3 tlion) [ '
0<109<11
m—1 1
+ 3 aio) / 297 —
10=0 w0
N\ + R /
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R =Ry + Rs




~@-  Rationalterms Ve

4 N

® |nthe OPP method, they are split into two
contributions, generally called

R =Ry + Rs

® Both have their origin In the UV part of the mode|,
but only R| can be directly computed in the OPP
reduction and is given by the CutTools program
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® |nthe OPP method, they are split into two
contributions, generally called

R :-l- Ro

® Both have their origin In the UV part of the mode|,
but only R| can be directly computed in the OPP
reduction and is given by the CutTools program

® R|[:originates from the propagator (calculate by Cutlools)

o /
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® |nthe OPP method, they are split into two
contributions, generally called

Rle

® Both have their origin In the UV part of the mode|,
but only R| can be directly computed in the OPP
reduction and is given by the CutTools program

® R|[:originates from the propagator (calculate by Cutlools)

N ® R2:originates from the numerator (need in the model) y




~@-  Rationalterms Ve

4 N

® |nthe OPP method, they are split into two
contributions, generally called

R:R1

® Both have their origin In the UV part of the mode|,
but only R| can be directly computed in the OPP
reduction and is given by the CutTools program

® R|[:originates from the propagator (calculate by Cutlools)

N ® R2:originates from the numerator (need in the model) y




~@- |ntegrand reduction = ¥

4 Key Point )

® Any one-loop integral can be decomposed in scalar integrals

® The task is to find these coefficients efficiently (analytically or
numerically)

\_ J

/Two methods N
® Passarino-Veltman
e OPP

\_ /

" One Tool N
® Madloop

\_ J
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Generating loop diagrams ¥ huham
- p

® |nstead of using an external tool for loop diagram generation, we
recycle MadGraph5 power for tree level diagram generation.

® A |loop diagrams with the loop cut open has to extra external
particles. Consider ee” = u u~ u u~ (loop particles are in green).
MadGraph will generate 8 L-cut diagrams. Here are two of them:

4 )

\_




. . A
Generating loop diagrams ¥ huham
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® |nstead of using an external tool for loop diagram generation, we
recycle MadGraph5 power for tree level diagram generation.

® A |loop diagrams with the loop cut open has to extra external
particles. Consider ee” = u u~ u u~ (loop particles are in green).
MadGraph will generate 8 L-cut diagrams. Here are two of them:

\_ /
4 N




. . A
~&>  Generating loop diagrams ~ YRuhar
- a

® |nstead of using an external tool for loop diagram generation, we
recycle MadGraph5 power for tree level diagram generation.

® A loop diagrams with the loop cut open has to extra external
particles. Consider ee” = u u~ u u~ (loop particles are in green).
MadGraph will generate 8 L-cut diagrams. Here are two of them:

o J
4 N )

e All diagrams with two extra ? = ?
particles are generated and the
ones that are needed are filtered
out | ——

e Additional filter to eliminate
tadpoles and bubbles attached 2 = ?

to external lines




Numerator W Durharm

4 e We want to use (modified) HELAS method A
? g
d s—=8 c d g2 c
?
? > '
g /
e Closing the lorentz trace : h
1 k
? — ?
) l .
\_ External Wavefunction for HELAS /




> MadLoop W Durham
I

e Other modifications :

w Allow for the loop momentum to be complex

w Remove the denominator of the loop propagators

<>IOI_>)

w Close the color trace

C ¢ Ok, now this gives you N ({"), the integrand numerator to be fed to CT!
/

ANIVAN

* But thisis SLOW!!
e We have to compute this numerator ~ 50 times for each phase-space point!

e Idea instead of computing the numerator compute the polynomial form

Tmax
-
N(U#) =7 Oy 101 - 11
r=0
k [S. Pozzorini & al. hep-ph/llll.5206j/




Numerical Stability ¥t

e IFor 2 to 4 processes, ~7% of the Phase-space point have a precision worse than le-3

= Previous solution pass to quadruple precision (extremelly slow)




IREG] W Durham

(. New Solution use IREGI: a TIR program A

= Slower than previous method but faster than quadruple precision

\_ = Usually less uncertainty (and not for the same PS point) Y,

/ StaiByity plot for g g > t t~ [ virt = QCD ] (optimized mode, 10000 points) Stal%idity plot forg g > tt~ g [ virt = QCD ] (optimized mode, 1000 pom

e—e CutTools e—e CutTools
e—e |REGI e—e |REGI
101}
"n (9] 10.1_
< <
[ (]
] >
5 102} 5
S 5
= 102}
103}
10-4 I I I I I ; I 10.3 -17 I-16 .-15 I-14 l-13 I412 l-11 1410 ‘-9 148 I-7 ]~6 -5
10V 10 100 104 101 1012 1012 1010 10° 107 10 10" 10 10 10 10 10 10° 10® 107 10° 10

Stability plot for g g >z b b~ [ virt = QCD ] (optimized mode, 1000 points) Stality plot for a a > t t~ a [ virt = QED ] (optimized mode, 1000 point

e—e CutTools e—e CutTools
e—e |REGI e—e |REGI

107} 107}

Fraction of events
Fraction of events

102} 102F

.

10-3 L L L L L L L ! 10-3 L ! ! ! L L
10 10 10 10 10 10 10™ 10 10° 10® 107 10° 10V 10%° 1013 101! 107 107 107 103
Maximal precision Maximal precision . -S ao
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~@- phase-space integration ot

o N0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pq1)
loop




phase-space integration ¥eutn

o0 / d*®,, B(P / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

4 | o )
® T[hissum is Finite (KLN theory)
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o0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

4 | o )
® T[hissum is Finite (KLN theory)

® [ach piece Is divergent
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o0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

4 | o )
® T[hissum is Finite (KLN theory)

® [ach piece Is divergent

® (Cannot use a finite value for the dimensional regulator
and take the limit to zero in a numerical code
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o0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

4 | o )
® T[hissum is Finite (KLN theory)

® [ach piece Is divergent

® (Cannot use a finite value for the dimensional regulator
and take the limit to zero in a numerical code

® Ve have to cancel the divergences explicitly




phase-space integration weue

o0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

4 | o )
® T[hissum is Finite (KLN theory)

® [ach piece Is divergent

® (Cannot use a finite value for the dimensional regulator
and take the limit to zero in a numerical code

® Ve have to cancel the divergences explicitly

® Use a subtraction method to explicitly factor out the
divergences from the phase-space integrals




~@> Example
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University

fla) = 22

/ 1
/O dz f(z)

g(:z:) Finite everywhere

~

N
7

® Jype of Divergencies of the real

_/
2

o

s

® |ets mtroduce a regulator
: g\xr _
lim daj E ) = lim dx:z: “f(x)
e—0 Jq xlte e—0 /g

for any non-integer non-zero value for € this integral is finite

S be canceled explicitly against the virtual corrections

® Ve would like to factor out the explicit poles in € so that they can

/
N

J




~@-  oubtraction method  Feu

4 1 N
lim [ dxx™°f(x) f(x) = 9(z)
e—0 0 €T
\_ J
(o Add a?d subtract the same term N
1
. CepN e _e9(0) g(0)
21_:()1(1) dea: f(x) = 21_:()]:(1) Odajaﬁ . f(x) ;
\_ J




Subtraction method

A
W Durham
University

a2 1 )
lim [ dxx™°f(x) f(x) = 9(z)
e—0 0 e
\_ J
(o Add and subtract the same term )
1 1 -
. N | 9(0) g(0)
21_:()1(1) dea: f(x)—}:l_I)I(l) Odajaﬁ L f(x) ;
1 _
e x”¢ | g(z) —g(0)
_21_{1‘(1) de 9(0) r xrlte
\_ J




Subtraction method

28
W Durham
University

4 1 )
lim [ deax™f(x) flz) = _g(a:‘)
e—0 0 X
\_ /
(o Add and subtract the same term N
1 1 -
. N _e|9(0) g(0)
!1_:()1(1) de:v f(:I?)—ll_I)I(l) Oda::z: L f(x) .
1 - _
. z=  g(z) —g(0)
:21—{% Od:z: 9(0) r xlte
-1 tog(x) — g(0)
L _!%TQ(O%L/OM 7 .




~@>  Subtraction method ¥

4 )
A g()
lim [ dex™ € f(x) flx) = —=
e—0 /o XL
\_ /
(" e Add and subtract the same term )
1 1 -
0 0
lim [ dexz”“f(x) =1lim [ dea™© 9(0) - f(x) 9(0)
e—0 Jo e—0 /o X T
1 —
N = gx)—g(0)
N 21—{% Od:z: _g(O) r xlte
—1 ! —g(0
= lim —¢(0) + /d:v 9(z) — 9(0)
N c20 € 0 z /
(" ® We have factored out the |/€ divergence and are left with a )

finite integral




~@~  Subtraction method — ¥eute

4 )
A g()
lim [ dex™ € f(x) flx) = —=
e—0 /o XL
\_ /
(" e Add and subtract the same term )
1 1 -
0 0
lim [ dexz”“f(x) =1lim [ dea™© 9(0) - f(x) 9(0)
e—0 Jo e—0 /o X T
1 —
N = gx)—g(0)
N 21—{% Od:z: _g(()) r xlte
—1 ! —g(0
= lim —¢(0) + /d:v 9(z) — 9(0)
N c20 € 0 z /
(" ® We have factored out the |/€ divergence and are left with a )

finite integral

® According to the KLN theorem the divergence cancels against
\_ the virtual corrections )




Limitations W purtan

Subtraction:
J s ElUS dISEEIDbUtIon: J

/1da: g(x) —g(0) .

X

® [ven though the divergence is factored, there are cancellations
between large numbers: if for an observable O if lin% O(x) # 0(0)
€Tr—
or if we choose the bin-size too small, instabilities render the

computation useless

® Ve already knew that! KLN is sufficient; one must have
infra-red safe observables and cannot ask for infinrte
resolution (need a finite bin-size)

® Subtraction method is very flexible -> method of choice In
automation



counter events W Dutham

Real emission Subtraction term

® |fjand | are two on-shell particles that are present in a splitting
that leads to an singularity, for the counter events we need to
combine their momenta to a new on-shell parton that's the
sum of i+

® T[his s not possible without changing any of the other
momenta In the process

® \When applying cuts or making plots, events and counter events
might end-up In different bins

® [Jse |[R-safe observables and don't ask for infinite resolution!
(KLN theorem)



~@ 4 charged lepton  ¥euter

® [he NLO results shows a typical peak-dip structure that
hampers fixed order calculations

1.00 ¢ LHC 7 TeV —

0.50 |

0.10 ¢
0.05}

0.01F

1.1F
1.0 = —
0.9F — pdf unc. .

W ae=rooceposE -
05} g
04r 5
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NLO+PS matching W Durham

Shower MC

4

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

4

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and

well separated e
5. Quantum interference correct 5. Partial interference through

6. Needed f Iti-iet d o angular ordering
M IOTA 6. Needed for hadronization 4

Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions




NLO+PS matching W Durham

Shower MC

4

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity
4. Valid when partons are collinear
and/or soft

4

|. Fixed order calculation
2. Computationally expensive

4. Valid when partons are hard and
well separated
S

6. Needed for multi-jet descr

28 No longer true at

Approaches are com NLO!

Difficulty: avoid double counting, ensure smooth distributions

oh

h!




Matching NLO W Durham

* At NLO one faces even more severe double-counting issues:

Parton shower
— >

Born+Virtual: >’VVVV >l< ><

Real emission: 2}“/\/\/ 2 .

* And also part of the wvirtual contribution 1s double counted

through the definition of the Sudakov factor A




University

Double counting & Durham

Since A = | - PA contains contributions from the virtual
corrections implicrtly

Because at NLO the virtual corrections are already included via

explicit matrix elements, A is double counting with the virtual
corrections

In fact, because the shower Is unitary, what we are double
counting In the real emission corrections Is exactly equal to
what we are double counting in the virtual corrections (but
with opposite sign)!

~

/




MC@NLO procedure  #eutm

[Frixione & Webber (2002)]

4 )

® [o remove the double counting, we can add and subtract the
same term to the m and m+ 1 body configurations
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4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+ 1 body configurations

o /
4 N
N\ /




[Frixione & Webber (2002)]

4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+ 1 body configurations

N /

(o Where the MC are defined to be the contribution of the A
parton shower to get from the m body Born final state to the
m+ | body real emission final state
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N /

(o Where the MC are defined to be the contribution of the A
parton shower to get from the m body Born final state to the
m+ | body real emission final state




[Frixione & Webber (2002)]

4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+ 1 body configurations

N /

(o Where the MC are defined to be the contribution of the A
parton shower to get from the m body Born final state to the

m+| body real emission final state




([ N

® (ood features of including the subtraction counter terms

|. Double counting avoided: The rate expanded at NLO
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the
parton shower Iin the soft/collinear region, while 1t agrees

with the NLO In the hard region

3. Stability: weights associated to different multiplicities are
separately finite. The MC term has the same infrared
behavior as the real emission (there Is a subtlety for the soft
divergence)

o /




@ Double counting avoided®
/ N

® Expanded at NLO

A\

\
4




4 N
N y
(e Smooth matching: )

® Soft/collinear region: R ~ M(C' = domcanvo ~ I 4 (0)dO
® Hard region, shower effects suppressed, le.

MC~0 IIM©O)y~0 Lw(0)~1

_ = doyvcanLo ~ APy R Y




~@- - Stability & unweighting  wouta
2 )

® [he MC subtraction terms are defined to be what the shower
does to get from the m to the m=+1 body matrix elements.
Therefore the cancellation of singularrties is exact in the (R -

\ MC) term Y,

(o The integral Is bounded all over phase-space; we can therefore A
generate unweighted events!

® "S-events” (which have m body kinematics)

® “H-events’ (which have m+| body kinematics)

o /




Negative weights ~ ¥outam

® \/\Ve generate events for the two terms between the square
brackets (5- and H-events) separately

® J[here is no guarantee that these contributions are separately
positive (even though predictions for infra-red safe observables
should always be positive!)

® T[herefore, when we do event unweighting we can only
unweight the events up to a sign. [ hese signs should be taken

into account when doing a physics analysis (1.e. making plots
etc.)

® The events are only physical when they are showered.
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Nason (2004)

® One could try to get NLO accuracy by replacing B with the
NLO rate (integrated over the extra phase-space)

® |n order to avoid double counting, one should replace the
definition of the Sudakov form factor

® [ts structure is identical an ordinary shower, with normalization
rescaled by a global K-factor and a different Sudakov for the first
emission: No negative weights are involved.
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 NLO Introduction

e Loop Computation

e Dealing with Singularities
e Matching@NLO

| ® Live Demo \




What we have learned — ¥euban

~
e That all observable of an NLO computation

are not NLO accurate.
 How to evaluate the loop
 NLO computation done with counter-events
= can be a bin miss-match
* NLO+PS generation allow event generation

= Events Physical only after the Parton-
Shower.

= The Events should be generated for a

given shower (in MC@NLO)
\ %




