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• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling 
constant as an expansion parameter, schematically: 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Fabio MaltoniFabio MaltoniMattelaer Olivier Lund 2014

• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling 
constant as an expansion parameter, schematically: 
 
 
 
 
 
 

Perturbative expansion

4

NLO 
corrections

NNLO 
corrections

N3LO or NNNLO 
corrections

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅

LO 
predictions

Parton-level cross sectiond⇥̂ab�X(ŝ, µF , µR)
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• Including higher corrections improves predictions 
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• Leading Order predictions can depend strongly on 
the renormalization and factorization scales	



• Including higher order corrections reduces the 
dependence on these scales

Improved predictions
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• At NLO the dependence on the 
renormalization and factorization scales is 
reduced	



• First order where scale dependence  
in the running coupling and the  
PDFs is compensated for via the loop 
corrections: first reliable estimate  
of the total cross section 

• Better description of final state: 
 impact of extra radiation included 
(e.g. jets can have substructure)	



• Opening of additional initial state 
partonic channels

Going NLO

6
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• NNLO is the current state-of-the-art. There are 
only a few results available: Higgs, Drell-Yan, ttbar	



• Why do we need it?	



•  control of the uncertainties in a  
calculation	



• It is “mandatory” if NLO corrections  
are very large to check the behavior  
of the perturbative series	



• It is needed for Standard Candles  
and very precise tests of perturbation theory, exploiting all 
the available information, e.g. for determining NNLO PDF 
sets

Going NNLO...?

7
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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• LO calculation is not reliable,	



• but the perturbative series 
stabilizes at NNLO	



• NLO estimation of the 
uncertainties (by scale variation) 
works reasonably well

Higgs at NNLO
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012

Let’s focus on NLO
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• NLO corrections have three parts:	



• The Born contribution, i.e. the Leading order.	



• Virtual (or Loop) corrections: formed by an amplitude with 
a closed loop of particles interfered with the Born 
amplitudes	



• Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process	



• Both Virtual and Real emission have one power of 
αs extra compared to the Born process

NLO corrections

9
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• As an example, consider Drell-Yan Z/γ* 
production

NLO predictions

10
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• As an example, consider Drell-Yan Z/γ* 
production
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Fixed Order calculations

11

“LO”

“NLO”

transverse momentum [GeV]
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Fixed Order calculations

11

“LO”

“NLO”

transverse momentum [GeV]Negative 
contribution of the 

0-bin 
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• Multiple steps	



• Fix divergencies	



• Virtual amplitudes: how to compute the loops automatically 
in a reasonable amount of time	



• How to deal with infra-red behavior for phase-space 
integration	



• How to match these processes to a parton shower without 
double counting

Difficulties

12

+ anything
= + O(αs2) +
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• For an observable to be calculable in fixed-order 
perturbation theory, the observable should be infrared 
safe, i.e., it should be insensitive to the emission of soft 
or collinear partons. 

• In particular, if pi is a momentum occurring in the 
definition of an observable, it most be invariant under 
the branching 
      pi ⟶ pj + pk, 
whenever pj and pk are collinear or one of them is soft. 

• Examples 

• “The number of gluons” produced in a collision is not an infrared 
safe observable	



• “The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

Infrared safe observables

13
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!

• Total cross section!

• Transverse momentum of the top quark!

• Transverse momentum of the top-antitop pair!

• Transverse momentum of the jet!

• Top-antitop invariant mass!

• Azimuthal distance between the top and anti-top

NLO...?

14

LO VirtReal

• Are all (IR-safe) observables that we can compute using a 
NLO code correctly described at NLO? Suppose we have 
a NLO code for pp ⟶ ttbar
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One Loop

16
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• Consider this m-point loop 
diagram with n external momenta
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kn
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Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

• Consider this m-point loop 
diagram with n external momenta

Di = (l + pi)
2 �m2

i

Z
ddl
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D0D1D2 · · ·Dm�1

• The integral to 
compute is



Fabio MaltoniFabio MaltoniMattelaer Olivier Lund 2014

• Any one-loop integral can be decomposed in scalar integrals	



• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

17

Key Point
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• The a, b, c, d and R coefficients depend only on external 
parameters and momenta

Basis of scalar integrals

18

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• All these scalar integrals are known and available in computer libraries (FF 
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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• The a, b, c, d and R coefficients depend only on 
external parameters and momenta

Divergences

19

➡The coefficients d, c, b and a are finite and do not contain poles in 1/є	



➡The 1/є dependence is in the scalar integrals (and the UV renormalization)	



➡When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in front 
of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)
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• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

20

Key Point

Two methods

• Passarino-Veltman	



• OPP
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

Standard Approach

21
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

• Let’s do an example: 
Suppose we want to calculate this triangle integral

Standard Approach

21
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.

22

Passarino-Veltman
Main Idea
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

Passarino-Veltman
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Resolution  (dropping the mass)

• express the integral as simpler integral

Scalar Integral: Know analytically

Passarino-Veltman

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  



Fabio MaltoniFabio MaltoniMattelaer Olivier Lund 2014 25

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

Already computed

Passarino-Veltman
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Gram Determinant: G
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

Already computed

Final Step
• Inverting the Gram Determinant

• We have an expression in term of scalar integral

Passarino-Veltman
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• Any one-loop integral can be decomposed in scalar integrals	



• The task is to find these coefficients efficiently (analytically or 
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OPP Reduction

27

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�
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ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0
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+R +O(�)
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OPP Reduction

27

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at  
the integrand level, we would be able  
to manipulate the integrands and 
extract the coefficients without doing 
the integrals
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• The functional form of the spurious terms is known (it depends on the 
rank of the integral and the number of propagators in the loop) [del 
Aguila, Pittau 2004]	



• for example, a box coefficient from a rank 1 numerator is 
 
 
 
 
(remember that pi is the sum of the momentum that has entered the 
loop so far, so we always have p0 = 0)	



• The integral is zero  
 
 

spurious terms

28
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Z
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�
3
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= 0
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How it works...

29
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line

There are two (complex) 
solutions to this equation due to 
the quadratic nature of the 
propagators

How it works...
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How it works...
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Now we choose l such that	



!

 
sets all the terms in this equation 
to zero except the first and 
second line	



How it works...
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How it works...
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Now, choosing l such that 
 
 
sets all the terms in this equation 
to zero except the first, second 
and third line	



How it works...

31

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)
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Now, choosing l such that 
 
 
sets  the last line to zero	



How it works...
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Now, choosing arbitrary l

How it works...
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We have our Numerator!

How it works...
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• For each phase-space point we have to solve the system of 
equations	



• Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces	



• We can decompose the system at the level of the squared 
matrix element, amplitude, diagram or anywhere in between. 
As long as we provide the corresponding numerator function. 
Since each reduction with CutTools is computationally heavy, 
we directly reduce the squared element with MadGraph.	



• For a given phase-space point, we have to compute the 
numerator function several times (~50 or so for a box loop)

How it works...

35
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• In the previous consideration I was very sloppy in considering 
if we are working in 4 or d dimensions	



• In general, external momenta and polarization vectors are in 
4 dimensions; only the loop momentum is in d dimensions 
 

• To be more correct, we compute the integral

d dimensions

36

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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• The decomposition in terms of scalar 
integrals has to be done in d dimensions 

• This is why the rational part R is needed

Implications

37

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m−1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (ℓ̄+ pi)
2 −m2

i = Di + ℓ̃2 ≡ (ℓ+ pi)
2 −m2

i + ℓ̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ϵ)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i ̸= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
ddℓ̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
ddℓ̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

38

R = R1 +R2
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• In the OPP method, they are split into two 
contributions, generally called 
 

• Both have their origin in the UV part of the model, 
but only R1 can be directly computed in the OPP 
reduction and is given by the CutTools program
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• In the OPP method, they are split into two 
contributions, generally called 
 

• Both have their origin in the UV part of the model, 
but only R1 can be directly computed in the OPP 
reduction and is given by the CutTools program

• R1: originates from the propagator (calculate by CutTools)

• R2: originates from the numerator (need in the model)

Rational terms

38

R = R1 +R2

Celine Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

FeynArts
Write the amplitudes

NLO.m
Compute the NLO vertices

model.mod
model.gen model.nlo
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• Any one-loop integral can be decomposed in scalar integrals	



• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

39

Key Point

Two methods

• Passarino-Veltman	



• OPP

One Tool
• MadLoop	





Fabio MaltoniFabio MaltoniMattelaer Olivier Lund 2014

• Instead of using an external tool for loop diagram generation, we 
recycle MadGraph5 power for tree level diagram generation.	



• A loop diagrams with the loop cut open has to extra external 
particles. Consider e+e- ➞ u u~ u u~ (loop particles are in green). 
MadGraph will generate 8 L-cut diagrams. Here are two of them:

Generating loop diagrams

40

≡

≡
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• Instead of using an external tool for loop diagram generation, we 
recycle MadGraph5 power for tree level diagram generation.	



• A loop diagrams with the loop cut open has to extra external 
particles. Consider e+e- ➞ u u~ u u~ (loop particles are in green). 
MadGraph will generate 8 L-cut diagrams. Here are two of them:

Generating loop diagrams

40

≡

≡

• All diagrams with two extra 
particles are generated and the 
ones that are needed are filtered 
out	



• Additional filter to eliminate 
tadpoles and bubbles attached 
to external lines
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Numerator

41

• We want to use (modified) HELAS method

d cg g

➱

d c

g1

g2

• Closing the lorentz trace :

i

j

k

l

➱

External Wavefunction for HELAS
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MadLoop 

42

• Other modifications : 

➥ Allow for the loop momentum to be complex

➥ Remove the denominator of the loop propagators

• Ok, now this gives you              , the integrand numerator to be fed to CT!  N (lµ)

➥ Close the color trace

A
L
O
H
A

• But this is SLOW!!

• We have to compute this numerator ~ 50 times for each phase-space point!

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµr

• Idea instead of computing the numerator compute the polynomial form

[S. Pozzorini & al. hep-ph/1111.5206]
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Numerical Stability

43

• For 2 to 4 processes, ~7% of the Phase-space point have a precision worse than 1e-3	



➡ Previous solution pass to quadruple precision (extremelly slow)
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IREGI

44

Stability&

• New Solution use IREGI: a TIR program	



➡ Slower than previous method but faster than quadruple precision	



➡Usually less uncertainty (and not for the same PS point)

[H.-shao]
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Plan

• NLO Introduction	


• Loop Computation	


• Dealing with Singularities	


• Matching@NLO	


• Live Demo
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phase-space integration

46

�NLO �
�

d4�m B(�m) +
�

d4�m

�

loop
ddl V (�m) +

�
dd�m+1 R(�m+1)
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phase-space integration

46

�NLO �
�

d4�m B(�m) +
�

d4�m

�

loop
ddl V (�m) +

�
dd�m+1 R(�m+1)

• This sum is Finite (KLN theory)

• Each piece is divergent

• Cannot use a finite value for the dimensional regulator 
and take the limit to zero in a numerical code

• We have to cancel the divergences explicitly

• Use a subtraction method to explicitly factor out the 
divergences from the phase-space integrals
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• Type of Divergencies of the real

Example

47

� 1

0
dx f(x) f(x) =

g(x)
x

g(x) Finite everywhere

2

gs

+ ..
.

• Let’s introduce a regulator 
 
 
 
for any non-integer non-zero value for     this integral is finite	



• We would like to factor out the explicit poles in     so that they can 
be canceled explicitly against the virtual corrections

lim
�⇥0

� 1

0
dx

g(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x)

�

�
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• Add and subtract the same term

Subtraction method

48

lim
�⇥0

� 1

0
dx

f(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x) f(x) =

g(x)
x

lim
�⇥0

⇤ 1

0
dx x��f(x) = lim

�⇥0

⇤ 1

0
dx x��

�
g(0)
x

+ f(x)�g(0)
x

⇥
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�⇥0
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• Add and subtract the same term

• We have factored out the 1/   divergence and are left with a 
finite integral

Subtraction method

48
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• Add and subtract the same term

• We have factored out the 1/   divergence and are left with a 
finite integral

• According to the KLN theorem the divergence cancels against 
the virtual corrections

Subtraction method

48

lim
�⇥0

� 1

0
dx

f(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x) f(x) =

g(x)
x

lim
�⇥0

⇤ 1

0
dx x��f(x) = lim

�⇥0

⇤ 1

0
dx x��

�
g(0)
x

+ f(x)�g(0)
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⇥

= lim
�⇥0

⇤ 1

0
dx

�
g(0)

x��

x
+

g(x)� g(0)
x1+�

⇥

= lim
��0

�1
�

g(0) +
� 1

0
dx

g(x)� g(0)
x

�
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• Even though the divergence is factored, there are cancellations 
between large numbers: if for an observable    , if                                
or if we choose the bin-size too small, instabilities render the 
computation useless	



• We already knew that! KLN is sufficient; one must have 
infra-red safe observables and cannot ask for infinite 
resolution (need a finite bin-size)	



• Subtraction method is very flexible -> method of choice in 
automation

Limitations

49

� 1

0
dx

g(x)� g(0)
x

Subtraction:

lim
x�0

O(x) �= O(0)O

“Plus distribution”
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• If i and j are two on-shell particles that are present in a splitting 
that leads to an singularity, for the counter events we need to 
combine their momenta to a new on-shell parton that’s the 
sum of i+j	



• This is not possible without changing any of the other 
momenta in the process	



• When applying cuts or making plots, events and counter events 
might end-up in different bins	



• Use IR-safe observables and don’t ask for infinite resolution! 
(KLN theorem)

counter events

50

i

j

i+j

Real emission Subtraction term
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• The NLO results shows a typical peak-dip structure that 
hampers fixed order calculations

4 charged lepton

51

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and

– 15 –
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

ME

1. Fixed order calculation	


2. Computationally expensive	


3. Limited number of particles	


4. Valid when partons are hard and 

well separated	


5. Quantum interference correct	


6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders	


2. Computationally cheap	


3. No limit on particle multiplicity	


4. Valid when partons are collinear 

and/or soft	


5. Partial interference through 

angular ordering	


6. Needed for hadronization

53

NLO+PS matching
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NLO+PS matching

No longer true at 
NLO!
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Matching NLO

54

• At NLO one faces even more severe double-counting issues:
Parton shower

...

...Born+Virtual:

Real emission:

• And also part of the virtual contribution is double counted 
through the definition of the Sudakov factor Δ
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!

• Since Δ = 1 - P, Δ contains contributions from the virtual 
corrections implicitly	



• Because at NLO the virtual corrections are already included via 
explicit matrix elements, Δ is double counting with the virtual 
corrections	



• In fact, because the shower is unitary, what we are double 
counting in the real emission corrections is exactly equal to 
what we are double counting in the virtual corrections (but 
with opposite sign)!

Double counting

55
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• To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations 

MC@NLO procedure

56

[Frixione & Webber (2002)]
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• Good features of including the subtraction counter terms	



1. Double counting avoided: The rate expanded at NLO 
coincides with the total NLO cross section	



2. Smooth matching: MC@NLO coincides (in shape) with the 
parton shower in the soft/collinear region, while it agrees 
with the NLO in the hard region	



3. Stability: weights associated to different multiplicities are 
separately finite. The MC term has the same infrared 
behavior as the real emission (there is a subtlety for the soft 
divergence)

MC@NLO properties

57
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• Expanded at NLO

Double counting avoided

58
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• Smooth matching:	



• Soft/collinear region:	



• Hard region, shower effects suppressed, ie. 

Smooth matching

59

R ' MC ⇒ d�MC@NLO ⇠ I
(m)
MC (O)dO

⇒ d�MC@NLO ⇠ d�m+1R

MC ' 0 I
(m)
MC (O) ' 0 I

(m+1)
MC (O) ' 1
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• The MC subtraction terms are defined to be what the shower 
does to get from the m to the m+1 body matrix elements. 
Therefore the cancellation of singularities is exact in the (R - 
MC) term	



• The integral is bounded all over phase-space; we can therefore 
generate unweighted events!	



• “S-events” (which have m body kinematics)	



• “H-events” (which have m+1 body kinematics)

Stability & unweighting

60
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• We generate events for the two terms between the square 
brackets (S- and H-events) separately	



• There is no guarantee that these contributions are separately 
positive (even though predictions for infra-red safe observables 
should always be positive!)	



• Therefore, when we do event unweighting we can only 
unweight the events up to a sign. These signs should be taken 
into account when doing a physics analysis (i.e. making plots 
etc.)	



• The events are only physical when they are showered.

Negative weights

61
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Example : ttbar production

62
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POWHEG
Nason (2004)

• One could try to get NLO accuracy by replacing B with the 
NLO rate (integrated over the extra phase-space) 
 

• In order to avoid double counting, one should replace the 
definition of the Sudakov form factor

• Its structure is identical an ordinary shower, with normalization 
rescaled by a global K-factor and a different Sudakov for the first 
emission: no negative weights are involved. 
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• That all observable of an NLO computation 
are not NLO accurate.!
• How to evaluate the loop!
• NLO computation done with counter-events!

➡ can be a bin miss-match!
• NLO+PS generation allow event generation!

➡ Events Physical only after the Parton-
Shower.!

➡ The Events should be generated for a 
given shower (in MC@NLO)

65

What we have learned


