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•Monday: FeynRules!
•Tuesday: MadGraph5@LO!
•Wednesday: Matching/Merging!
•Thursday: NLO!
•Friday: Unleashed the tools
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Week Plan
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1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist

What are the MC for?
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What are the MC for?
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Sherpa artist

2. Parton Shower 

☞ where new physics lies 

☞ process dependent
☞ first principles description
☞ it can be systematically improved

1. High-Q  Scattering2

3. Hadronization 4. Underlying Event 
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What are the MC for?

Sherpa artist
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1. High-Q  Scattering2 2. Parton Shower 

4. Underlying Event 3. Hadronization 

☞ QCD -”known physics”
☞ universal/ process independent
☞ first principles description
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation

Parton shower

6
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation

• This effect should be unitary: the inclusive cross section 
shouldn’t change when extra radiation is added

• Remember that parton-level cross sections for a hard process 
are inclusive in anything else. 
E.g. for LO Drell-Yan production all radiation is included via PDFs (apart 
from non-perturbative power corrections)

• And finally we want to turn partons into hadrons (hadronization)....

Parton shower
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First Example

e+e� ! qq̄g

page 1/1

Diagrams made by MadGraph5_aMC@NLO

u

4

g

3

u

e-

2

e+

1

a

u~

5

 diagram 1 QCD=1, QED=2

u

4

g

3

u

e-

2

e+

1

z

u~

5

 diagram 2 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

a

u

4

 diagram 3 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

z

u

4

 diagram 4 QCD=1, QED=2

1

2

3

e+ e- > g u u~ WEIGHTED=5 page 1/1

Diagrams made by MadGraph5_aMC@NLO

e+

1

e-

2

a

g

3

u

4

u

u~

5

 diagram 1 QCD=1, QED=2

e+

1

e-

2

z

g

3

u

4

u

u~

5

 diagram 2 QCD=1, QED=2

e+

1

e-

2

a

g

3

u~

5

u~

u

4

 diagram 3 QCD=1, QED=2

e+

1

e-

2

z

g

3

u~

5

u~

u

4

 diagram 4 QCD=1, QED=2

1
2

3

q q



Mattelaer Olivier Lund 2014 7

First Example

e+e� ! qq̄g

page 1/1

Diagrams made by MadGraph5_aMC@NLO

u

4

g

3

u

e-

2

e+

1

a

u~

5

 diagram 1 QCD=1, QED=2

u

4

g

3

u

e-

2

e+

1

z

u~

5

 diagram 2 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

a

u

4

 diagram 3 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

z

u

4

 diagram 4 QCD=1, QED=2

1

2

3

e+ e- > g u u~ WEIGHTED=5 page 1/1

Diagrams made by MadGraph5_aMC@NLO

e+

1

e-

2

a

g

3

u

4

u

u~

5

 diagram 1 QCD=1, QED=2

e+

1

e-

2

z

g

3

u

4

u

u~

5

 diagram 2 QCD=1, QED=2

e+

1

e-

2

a

g

3

u~

5

u~

u

4

 diagram 3 QCD=1, QED=2

e+

1

e-

2

z

g

3

u~

5

u~

u

4

 diagram 4 QCD=1, QED=2

1
2

3

q q

x3 = 2k3 · q/q2 = 2Eg/
p
S

x1 = 2k1 · q/q2 = 2Eq/
p
S

x2 = 2k2 · q/q2 = 2Eq̄/
p
S

d�

dx1dx2
= �0CF

↵s

2⇡

x

2
1 + x

2
2

(1� x1)(1� x2)

x1 + x2 + x3 = 2



Mattelaer Olivier Lund 2014 7

First Example

e+e� ! qq̄g

page 1/1

Diagrams made by MadGraph5_aMC@NLO

u

4

g

3

u

e-

2

e+

1

a

u~

5

 diagram 1 QCD=1, QED=2

u

4

g

3

u

e-

2

e+

1

z

u~

5

 diagram 2 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

a

u

4

 diagram 3 QCD=1, QED=2

u~

5

g

3

u~

e-

2

e+

1

z

u

4

 diagram 4 QCD=1, QED=2

1

2

3

e+ e- > g u u~ WEIGHTED=5 page 1/1

Diagrams made by MadGraph5_aMC@NLO

e+

1

e-

2

a

g

3

u

4

u

u~

5

 diagram 1 QCD=1, QED=2

e+

1

e-

2

z

g

3

u

4

u

u~

5

 diagram 2 QCD=1, QED=2

e+

1

e-

2

a

g

3

u~

5

u~

u

4

 diagram 3 QCD=1, QED=2

e+

1

e-

2

z

g

3

u~

5

u~

u

4

 diagram 4 QCD=1, QED=2

1
2

3

q q

• Divergent at               and 	



• Soft Divergencies	



• Collinear Divergencies	
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• Collinear limit	



• Split our integral in two
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First Example

Introduction to Event Generators Bryan Webber, MCnet School, 2014

Can separate into two independent jets:!

!

!

!

!

Jets evolve independently!

!

!

Exactly same form for anything!

e.g. transverse momentum:!

     invariant mass:

6

(x3 � z)

☞ z fraction of energy
☞ Generic Formula
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

Collinear factorization

10
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c
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angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

• The inclusion of such a branching cannot change the picture set up 
by the hard process: the whole emission process must be writable 
in this limit as the simpler one times a branching probability.

Collinear factorization
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2
a

b

c
θ
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

• The inclusion of such a branching cannot change the picture set up 
by the hard process: the whole emission process must be writable 
in this limit as the simpler one times a branching probability.

• The first task of Monte Carlo physics is to make this statement 
quantitative.

Collinear factorization
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

11
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

11
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Collinear factorization:

when θ is small.

!|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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t can be called the ‘evolution variable’ (will become clearer later): it 
can be the virtuality m2 of particle a or its pT2 or E2θ2 …	



!

!

!

It represents the hardness of the branching and tends to 0 in the 
collinear limit.	



Different choice of ‘evolution parameter’ in different Parton-
shower code	



!

!

d✓2/✓2 = dm2/m2 = dp2T /p
2
T

Collinear factorization

12

m2 ' z(1� z)✓2E2
a

p2T ' zm2

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�
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↵S

2⇡
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Collinear factorization

13

z is the “energy variable”: it is defined to be the energy fraction taken by parton 
b from parton a. It represents the energy sharing between b and c and tends to 
1 in the soft limit (parton c going soft)	



Φ is the azimuthal angle. It can be chosen to be the angle between the 
polarization of a and the plane of the branching.

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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The spin averaged (unregulated) splitting functions for the various types 
of branching are (Altarelli-Parisi): 

Parton Shower basics

14

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�
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↵S

2⇡
Pa!bc(z)
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The spin averaged (unregulated) splitting functions for the various types 
of branching are (Altarelli-Parisi): 

Comments:
* Gluons radiate the most
* There are soft divergences in z=1 and z=0.
* Pqg has no soft divergences.

Parton Shower basics

14

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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• Each choice of argument for αS is equally acceptable at the leading-logarithmic accuracy. 
However, there is a choice that allows one to resum certain classes of subleading 
logarithms.	



• The higher order corrections to the partons splittings imply that the splitting kernels 
should be modified: Pa ⟶ bc(z) ⟶ Pa ⟶ bc(z) + αs P’a ⟶ bc(z)	



For g ⟶ gg branchings P’a ⟶ bc(z) diverges as -b0 log[z(1-z)]  Pa ⟶ bc(z)  
(just z or 1-z if quark is present)	



• Recall the one-loop running of the strong coupling: 

!

• We can therefore include the P’(z) terms by choosing pT2~z(1-z)Q2 as argument of αS:

Argument of αS
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• Now consider Mn+1 as the new core process and use the recipe we 
used for the first emission in order to get the dominant contribution 
to the (n+2)-body cross section: add a new branching at angle much 
smaller than the previous one: 
 
 

!

• This can be done for an arbitrary number of emissions. The recipe to 
get the leading collinear singularity is thus cast in the form of an 
iterative sequence of emissions whose probability does not depend on 
the past history of the system: a ‘Markov chain’. No interference!!!

Multiple emission

16
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• The dominant contribution comes from the region where the 
subsequently emitted partons satisfy the strong ordering requirement: 
θ ≫ θ’ ≫ θ’’... 
For the rate for multiple emission we get 
 
 
 
 
where Q is a typical hard scale and Q0 is a small infrared cutoff that 
separates perturbative from non perturbative regimes.	



• Each power of αs comes with a logarithm. The logarithm can be easily 
large, and therefore it can lead to a breakdown of perturbation theory.

Multiple emission

17
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• The collinear factorization picture gives a branching sequence 
for a given leg starting from the hard subprocess all the way 
down to the non-perturbative region.	



• Suppose you want to describe two such histories from two 
different legs: these two legs are treated in a completely 
uncorrelated way. And even within the same history, 
subsequent emissions are uncorrelated.	



• The collinear picture completely misses the possible 
interference effects between the various legs. The extreme 
simplicity comes at the price of quantum inaccuracy.	



• Nevertheless, the collinear picture captures the leading 
contributions: it gives an excellent description of an arbitrary 
number of (collinear) emissions:	



• It is a “resummed computation” 	



• It bridges the gap between fixed-order perturbation theory 
and the non-perturbative hadronization.

Absence of interference

18
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Parton shower

20

The Sudakov form factor is the heart of the parton shower. It gives the 
probability that a parton does not branch between two scales	



Using this no-emission probability the branching tree of a parton is generated.	



Define dPk as the probability for k ordered splittings from leg a at given scales 
 
 
 
 

!

Q02 is the hadronization scale (~1 GeV). Below this scale we do not trust the 
perturbative description for parton splitting anymore.	



dP1(t1) = �(Q2, t1) dp(t1)�(t1, Q2
0),

dP2(t1, t2) = �(Q2, t1) dp(t1) �(t1, t2) dp(t2) �(t2, Q2
0)⇥(t1 � t2),

... = ...

dPk(t1, ..., tk) = �(Q2, Q2
0)

k�

l=1

dp(tl)⇥(tl�1 � tl)
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• The parton shower has to be unitary (the sum over all 
branching trees should be 1). We can explicitly show this by 
integrating the probability for k splittings: 
 
 

Unitarity

21
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• The parton shower has to be unitary (the sum over all 
branching trees should be 1). We can explicitly show this by 
integrating the probability for k splittings: 
 
 

• Summing over all number of emissions  
 
 

• Hence, the total probability is conserved

Unitarity
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• We have shown that the showers is unitary. However, how are 
the IR divergences cancelled explicitly? Let’s show this for the 
first emission: 
Consider the contributions from (exactly) 0 and 1 emissions 
from leg a: 
 

• Expanding to first order in αs gives 

!

• Same structure of the two latter terms, with opposite signs: 
cancellation of divergences between the approximate virtual 
and approximate real emission cross sections.	



• The probabilistic interpretation of the shower ensures that 
infrared divergences will cancel for each emission.

singularities

22
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Can we solve this equation? NO -> veto algorithm
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Veto Algorithm
1. find overestimate of the branching probability
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does not work!

3. Special selection: Veto Algorithm
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

3.accept/reject with probability 

➡ if                                 return 

➡else go back to point 2

t0 = Q2

ti+1

Ri+1 = �̄(ti, ti+1)
p(ti+1)

g(ti+1)
p(ti+1)

g(ti+1)
< R0

i+1

ti+1

Is is what we want?
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!	



1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1	



2. Given a virtual mass scale ti and	

 momentum	

 fraction	

xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).	



3. If ti+1 < tcut it means that the shower has finished.	



4. Otherwise, generate z = zi/zi+1 with a distribution proportional to (αs/
2π)P(z), where P(z) is the appropriate splitting function.	



5. For each emitted particle, iterate steps 2-4 until branching stops.

29



Fabio MaltoniFabio MaltoniMattelaer Olivier Lund 2014

• There is a lot of freedom in the choice of evolution parameter 
t. It can be the virtuality m2 of particle a or its pT2 or E2θ2 ... For 
the collinear limit they are all equivalent	



• However, in the soft limit (z ⟶ 0,1) they behave differently	



• Can we chose it such that we get the correct soft limit?	



• Soft gluon comes from the full event!  

Soft Limit

30

�(Q2, t) = exp

�
�

⇤

bc

⌅ Q2

t

dt⇥

t⇥
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

⇥

Event Generators 1 Mike Seymour 

Soft limit 
Also  universal.    But  at  amplitude  level… 
 
 
 
 
 
 
 
soft gluon comes from everywhere in event. 
ÆQuantum interference. 
Spoils independent evolution picture? 

• Quantum Interference
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Radiation inside cones around the original partons is allowed 
(and described by the eikonal approximation), outside the cones 
it is zero (after averaging over the azimuthal angle)

Angular ordering

31

photon+photon
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!
If the transverse wavelength of the emitted gluon is longer than the 
separation between q and qbar, the gluon emission is suppressed, 
because the q qbar system will appear as colour neutral (i.e. dipole-
like emission, suppressed)	



Therefore d>1/k⊥ , which implies    θ < φ.

Intuitive explanation
Angular ordering
(slide by M. Mangano)

An intuitive explanation of angular ordering

φ

θμ!
k

p

Distance between q and qbar after τ:

d =  φτ = (φ/θ) 1/k⊥

If the transverse wavelength of the emitted gluon is longer than 
the separation between q and qbar, the gluon emission is 
suppressed, because the q qbar system will appear as colour 
neutral (=> dipole-like emission, suppressed)

μ! = (p+k)! = 2E k₀ (1-cosθ) 
∼ E k₀ θ! ∼ E k⊥ θ

Lifetime of the virtual intermediate state:

τ < γ/μ = E/μ!  = 1 / (k₀θ!)= 1/(k⊥θ)

Therefore d> 1/k⊥ , which implies θ < φ
12Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 25 / 83

32

Lifetime of the virtual intermediate state: 
τ < γ/μ = E/μ2 = 1/(k0θ2) = 1/(k⊥θ)	



Distance between q and qbar after τ: 
d = φτ = (φ/θ) 1/k⊥

μ2 = (p+k)2 = 2E k0 (1-cosθ)  
∼ E k0 θ2 ∼ E k⊥ θ

MichelangeloMangano®
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Angular ordering

The construction can be iterated to the next 
emission, with the result that the emission 
angles keep  getting smaller and smaller. 

One can generalize it to a generic parton of 
color charge Qk splitting into two partons i 
and j, Qk=Qi+Qj.  The result is that inside the 
cones i and j emit as independent charges, 
and outside their angular-ordered cones the 
emission is coherent and can be treated as if 
it was directly from color charge Qk. 	



KEY POINT FOR THE MC!	



Angular ordering is automatically satisfied in 
θ ordered showers! (and easy to account for 
in pT ordered showers).

33
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Angular ordering

34
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Angular ordering

Angular ordering is: 
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1. A quantum effect coming from the interference of different 
Feynman diagrams. 
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Angular ordering

Angular ordering is: 

1. A quantum effect coming from the interference of different 
Feynman diagrams. 

2.  Nevertheless it can be expressed in “a classical fashion” (square of 
a amplitude is equal to the sum of the squares of two special 
“amplitudes”).  The classical limit is the dipole-radiation.
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Angular ordering

Angular ordering is: 

1. A quantum effect coming from the interference of different 
Feynman diagrams. 

2.  Nevertheless it can be expressed in “a classical fashion” (square of 
a amplitude is equal to the sum of the squares of two special 
“amplitudes”).  The classical limit is the dipole-radiation.

3.  It is not an exclusive property of QCD (i.e., it is also present in 
QED) but in QCD produces very non-trivial effects, depending on 
how particles are color connected. 

34
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• So far, we have looked at final-state (time-like) splittings. For 
initial state, the splitting functions are the same

• However, there is another ingredient: the parton density (or 
distribution) functions (PDFs). Naively: Probability to find a 
given parton in a hadron at a given momentum fraction x = pz/
Pz and scale t.

Initial-state

35

x0 t0

Q2

x1 t1
· · ·

xn�1 tn�1

xn tn

p

Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
t0 ⇤ t1 ⇤ . . .⇤ tn�1 ⇤ tn ⇤ t = Q2 and x0 > x1 > . . . > xn�1 > xn = x.

steps, we see that such a radiation would result in
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where the last step follows from the first, and the middle equality is only
inserted to show the appearance of the

⌦
�s
2⇥ ln

�
t
t0

⇥↵2
-term.

Note that, in the last step, we evaluate the running coupling �s(t) (see
sec. 3.1.1) at the same scale as the quark distribution function. If we look
at more successive gluon radiations at ever decreasing t (see fig. 3.5), we
include higher powers of
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, and the last step in eq. (3.27) turns

into an identity. Differentiating with respect to t, we get the famous DGLAP
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation [76] (which is often
just called the Altarelli-Parisi equation):
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• So far, we have looked at final-state (time-like) splittings. For 
initial state, the splitting functions are the same

• However, there is another ingredient: the parton density (or 
distribution) functions (PDFs). Naively: Probability to find a 
given parton in a hadron at a given momentum fraction x = pz/
Pz and scale t.

• How do the PDFs evolve with increasing t?

Initial-state
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Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
t0 ⇤ t1 ⇤ . . .⇤ tn�1 ⇤ tn ⇤ t = Q2 and x0 > x1 > . . . > xn�1 > xn = x.
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Note that, in the last step, we evaluate the running coupling �s(t) (see
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• Start with a quark PDF  f0(x) at scale t0.  After a single 
parton emission, the probability to find the quark at 
virtuality t > t0 is 
 

• After a second emission, we have

Initial-state parton splittings
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Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
t0 ⇤ t1 ⇤ . . .⇤ tn�1 ⇤ tn ⇤ t = Q2 and x0 > x1 > . . . > xn�1 > xn = x.
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• So for multiple parton splittings, we arrive at an integral-
differential equation: 
 

• This is the famous DGLAP equation (where we have taken into 
account the multiple parton species i, j).  The boundary 
condition for the equation is the initial PDFs fi0(x) at a starting 
scale t0 (around 2 GeV).	



• These starting PDFs are fitted to experimental data.

The DGLAP equation
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Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
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• To simulate parton radiation from the initial state, we start with 
the hard scattering, and then “deconstruct” the DGLAP 
evolution to get back to the original hadron: backwards 
evolution!	



• i.e. we undo the analytic resummation and replace it with 
explicit partons (e.g. in Drell-Yan this gives non-zero pT to 
the vector boson)	



• In backwards evolution, the Sudakovs include also the PDFs -- 
this follows from the DGLAP equation and ensures 
conservation of probability: 
 
 
 
This represents the probability that parton i will stay at the 
same x (no splittings) when evolving from t1 to t2.	



• The shower simulation is now done as in a final state shower!

parton showers
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Parton Shower

Introduction to Event Generators Bryan Webber, MCnet School, 2014

Backward Evolution

DGLAP evolution: pdfs at               as function of pdfs at

18

Evolution paths sum over all 
possible events.!
!
Formulate as backward evolution: 
start from hard scattering and 
work down in       up in    towards 
incoming hadron.!
!
Algorithm identical to final state 
with!                replaced by

Introduction to Event Generators Bryan Webber, MCnet School, 2014

Parton Shower
• Evolution in t (q2) and x (DIS)

13

Basic 2-step:

P (x2/x1)

�(t2, t1)

e+e-: same formula, 
opposite direction!

Scaling Violation and DGLAP Equation

● Bjorken scaling is not exact. This is due to enhancement of higher-order contributions from
small-angle parton branching, discussed earlier.

● Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying
a fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum
fractions by successive small-angle emissions, and is finally struck by photon of virtual
mass-squared q2 = −Q2.

● Cross section will depend on Q2 and on momentum fraction distribution of partons seen by
virtual photon at this scale, D(x, Q2).

● To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial
representation of evolution, also useful for Monte Carlo simulation.

7
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Initial State Parton Shower

(x1, t1)
(x2, t1)

(x2, t2)

PI(x1/x2)

�I(t1, t2) = �(t1, t2)/f(x2)
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• The shower stops if all partons are characterized by a scale at 
the IR cut-off: Q0 ~ 1 GeV.	



• Physically, we observe hadrons, not (colored) partons.	



• We need a non-perturbative model in passing from partons to 
colorless hadrons.	



• There are two models (string and cluster), based on physical 
and phenomenological considerations.

Hadronization

40
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e-

e+

Cluster model

41

The structure of the perturbative evolution including angular ordering, leads 
naturally to the clustering in phase-space of color-singlet parton pairs 
(preconfinement). Long-range correlations are strongly suppressed. 
Hadronization will only act locally, on low-mass color singlet clusters.
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From lattice QCD one sees that the color confinement potential of a 
quark-antiquark grows linearly with their distance: V(r) ∼ kr, with k ~ 0.2 
GeV. This is modeled with a string with uniform tension (energy per unit 
length) k that gets stretched between the qq pair.

String model

42

Quark antiquark color potential and string model

From lattice QCD one sees that the color confinement potential of a quark-antiquark
grows linearly with their distance: V (r) ⇠ kr , with k ⇠ 0.2 GeV2. This is modeled with a
string with uniform tension (energy per unit length) k that gets stretched between the qq̄
pair.
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At a certain point it becomes energetically favorable to break the string in two by
creating a new qq̄ pair in the middle of the string.

Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 38 / 83

Quark antiquark color potential and string model

From lattice QCD one sees that the color confinement potential of a quark-antiquark
grows linearly with their distance: V (r) ⇠ kr , with k ⇠ 0.2 GeV2. This is modeled with a
string with uniform tension (energy per unit length) k that gets stretched between the qq̄
pair.
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At a certain point it becomes energetically favorable to break the string in two by
creating a new qq̄ pair in the middle of the string.

Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 38 / 83

When quark-antiquarks are too far apart, it becomes energetically more 
favorable to break the string by creating a new qq pair in the middle.	
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Varying the shower starting scale (‘wimpy’ or ‘power’) and the evolution 
parameter (‘Q2’ or ‘pT2’) a whole range of predictions can be made:
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Shower starting scale
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Ideal to describe the data: one can tune the parameters and fit it! 
But is this really what we want...Does it work for other procs?
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Parton Shower MC event generators

44

A parton shower program associates one of the possible histories (and pre-
histories in case of pp) of an hard event in an explicit and fully detailed way, 
such that the sum of the probabilities of all possible histories is unity.
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• General-purpose tools 	



• Complete exclusive description of the events: hard scattering, 
showering & hadronization (and underlying event)	



• Reliable and well-tuned tools	



• Significant and intense progress in the development of new 
showering algorithms with the final aim to go at NLO in QCD 

Parton Shower MC event generators

44

A parton shower program associates one of the possible histories (and pre-
histories in case of pp) of an hard event in an explicit and fully detailed way, 
such that the sum of the probabilities of all possible histories is unity.
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• Complete exclusive description of the events: hard scattering, 
showering & hadronization (and underlying event)	
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A parton shower program associates one of the possible histories (and pre-
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such that the sum of the probabilities of all possible histories is unity.

"Note that a banching tree is not a Feynman diagram: it 
represents the coherent sum of many real and virtual diagrams 
which are summed by the branching algorithm" (HERWIG 
manual) 
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• All HERWIG versions implement the angular-ordering: 
subsequent emissions are characterized by smaller and smaller 
angles. 
 
     HERWIG 6: 
 
     HERWIG++:  

• With angular ordering the parton shower does not populate 
the full phase space: empty regions of the phase space, called 
“dead zones”, will arise.	



• It may seem that the presence of dead zones is a weakness, but 
it is not so: they implement correctly the collinear 
approximation, in the sense that they constrain the shower to 
live uniquely in the region where it is reliable.  
Matrix element corrections (MLM/CKKW matching) remove the dead-zones	



• Hadronization: cluster model.

Herwig

45

t =
pb · pc

EbEc
⇤ 1� cos �

t =
(pb�)2

z2(1� z)2
= t(�)
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• Choice of evolution variables for Fortran and C++ versions: 
 
     PYTHIA 6:  
 
     PYTHIA 8: 

• Simpler variables, but decreasing angles not guaranteed: 
PYTHIA rejects the events that do not respect the angular 
ordering. In practice equivalent to angular ordering (in 
particular for Pythia 8)	



• Not implementing directly angular ordering, the phase space 
can be filled entirely (even without matrix element 
corrections), so one can have the so called “power 
shower” (use with a certain care: it uses the collinear/soft 
approximation for from the region where it is valid)	



• Hadronization: string model.

Pythia
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t = (pb + pc)2 ⇥ z(1� z)�2E2
a

t = (pb)2�
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• SHERPA uses a different kind of shower not based on the collinear 
1 ⟶ 2 branching, but on more complex 2 ⟶ 3 elementary process: 
emission of the daughter off a color dipole	



• The real emission matrix element squared is decomposed into a 
sum of terms Dij,k  (dipoles) that capture the soft and collinear 
singularities in the limits i collinear to j, i soft (k is the spectator), and 
a factorization formula is deduced in the leading color 
approximation:	



!

• The shower is developed from a Sudakov form factor  
 

• It treats correctly the soft gluon emission off a color dipole, so 
angular ordering is built in.	



• Hadronization: cluster model (default) and string model

Sherpa
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� = exp
�
�

⇤
dt

t

⇤
dz �S Kij,k

⇥

Dij,k ⇥ B
�S

pi · pj
Kij,k

Introduction to Event Generators Bryan Webber, MCnet School, 2014

Subsequent dipoles continue to cascade!

c.f. parton shower: one parton ! two!

dipole shower: (one dipole ! two) = (two partons ! three)!

Represented in ‘origami diagram’:!

!

!

!

!

!

!

Similar to angular-ordered parton shower for           annihilation

25
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• The parton shower dresses partons with radiation. This makes 
the inclusive parton-level predictions (i.e. inclusive over extra 
radiation) completely exclusive	



• In the soft and collinear limits the partons showers are 
exact, but in practice they are used outside this limit as well.	



• Partons showers are universal (i.e. independent from the 
process)	



• There is a cut-off in the shower (below which we don’t trust 
perturbative QCD) at which a hadronization model takes over	



• Hadronization models are universal and independent from 
the energy of the collision

Summary

48


