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are inclusive In anything else.

E.g. for LO Drell-Yan production all radiation is included via PDFs (apart
from non-perturbative power corrections)
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VWe need to be able to describe an arbrtrarily number of
parton branchings, 1.e. we need to ‘dress’ partons with radiation

This effect should be unitary: the inclusive cross section
shouldn't change when extra radiation I1s added

Remember that parton-level cross sections for a hard process
are inclusive In anything else.

E.g. for LO Drell-Yan production all radiation is included via PDFs (apart
from non-perturbative power corrections)

And finally we want to turn partons into hadrons (hadronization)....
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4 x1:2k1-q/q2:2Eq/\/§\
do C g x%+$% vo = 2ks - q/q* = 2E/V'S
o
dridry 0 21 (1 — 1) (1 — ma) @3 = 2ks-q/q> = 2E,/V'S
r1+ 1o + 13 = 2
_ 1 2 3
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o
4 x1:2k1-q/q2:2Eq/\/§\
do o Qs T3 + x5 Ty = 2ko - q/q® = 2E;/V'S
— 0
dridry 0 21 (1 — 1) (1 — ma) @3 = 2ks-q/q> = 2E,/V'S
r1+ T+ x3 =2
\
® Divergentat 1 = land 2 =1 (1—2,) = 5’;25’53(1 — cosfy3)
® 5Soft Divergencies
Coll 5 | (1 — .CUQ) — 51312333 (1 — 608913)
o
_ ollinear Divergencies Y
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4 x1:2k1-q/q2:2Eq/\/§\
do C O g :U% + m% vy = 2ky - q/q* = 2Eg/V'S
=0
dxi1dzs o (1 —21)(1 —x2) 3 = 2ks - q/q* = 2E,/VS
r1+ To + x3 = 2
/0 Change the variable to x3 and COS 013 A
do' Qg 2 1 — (1 — 5133)2
— o0 —
dxsd cos 03 TOME 2T <sin2 013 X3 x3>
\_ v
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® Change the variable to x3 and cos 013

do
d.ilfgd COS (913

\_

2

Sin2 (913

1 — (1 —513’3)2

X3

>

4 x1:2k1-q/q2:2Eq/\/§\
do o G T3 + 25 ro = 2ky - q/q® = 2E;/VS
=0
dx1dxo o (1 —21)(1 — 29) z3=2ks q/¢* =2E,/VS
T1 + Xo + x5 = 2
L 1 2 3 )
a2 )

/
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4 x1:2k1-q/q2:2Eq/\/§\
do C Qg :13%+:13§ vy = 2ks - q/q* = 2E;/V'S
=0
dx1dxo o (1 —21)(1 — 29) z3=2ks q/¢* =2E,/VS
T1 + Xo + x5 = 2
L 1 2 3 )
a2 )

® Change the variable to x3 and cos 013

\_

do o, O 21— (1—x3)* >
— 0 —— X
d.ili‘gdCOS (913 ) F27T ;

/
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4 x1:2k1-q/q2:2Eq/\/§\
do e T4 + T3 vy = 2ky - q/q° = 2Ez/V'S
dridrs D21 (1 — 1) (1 — @9) @3 = 2ks-q/q> = 2E,/V/S
r1 + o + L3 — 2
\_ /
| )
/0 Change the variable to 3 and cos 013
do Qg
= 0oCFp—— T3
dﬂ?gd COS (913 27
- /
(" e Collinear limit 2dcosb13  dcosbis dcosfrz )
| | | sin2015 1 —cosbi3 1+ cosbis
® 5plit our integral in two dcos 0,5 0 ¢05 O
~ (1 —cosbi3) (1 —cosbhs)
\_ 0l 03 y
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/0 Change the variable to x5 and cos 613 A
do Qg
= 09gCp— x3
d.fL‘gd COS (913 27T
- /
(" e Collinear limit 2dcosbths  dcosbrs dcosfrz )
| | | sin2013 1 —coshi3 1+ cosOis
® 5plit our integral in two d cos 015 d cos fo
~ (1 —cosfi3) (1 — cosbas)
\_ 03 034 /
4 asdf? 14 (1—2)? A
do = o Z CF2 02 dz
jets i <
= 7 fraction of energy
\_ == Generic Formula )
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angle 0.
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particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess.
o /




~@-  Collinear factorization ot

(| 12 12
0 a0

e (onsider a process for which two particles are separated by a small
angle 0.

~
J

® |nthe limit of @ = 0 the contribution is coming from a single parent
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scales which are very long with respect to the hard subprocess.
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® (onsider a process for which two particles are separated by a small
angle 0.
® |nthe limit of @ = 0 the contribution is coming from a single parent
particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess.
® T[he inclusion of such a branching cannot change the picture set up
by the hard process: the whole emission process must be writable
in this limit as the simpler one times a branching probability.
o /
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e (onsider a process for which two particles are separated by a small
angle 0.

® |nthe limit of @ = 0 the contribution is coming from a single parent
particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess.

® T[he inclusion of such a branching cannot change the picture set up
by the hard process: the whole emission process must be writable
in this limit as the simpler one times a branching probability.

® T[he first task of Monte Carlo physics is to make this statement
\_ quantrtative. Y,
. Mattelaerolivier ~ wtuwd20t4 10
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* The process factorizes in the collinear limit. This procedure it
universall

2 b
xa—<

1 1 1

(po+pc)?  JEPERI=GES0)

soft and collinear

divergencies

Collinear factorization:

dt = do o
|Mn_|_1‘2dq)n_|_1 ~ |Mn‘2dq)n ¢ >

—d Pa C
7 P9 oy Parbel?)

when 0 is small.




dt . do «
( |/\/ln+1\2d<1>n+1 ~ \/\/ln\zd(bn dz i SPa%bc(zD

t 27 or

%€ t can be called the ‘evolution variable’ (will become clearer later): it
can be the virtuality m? of particle a or its pr? or E?02 ...

40°/6° = dm?/m?® = dp/p?

m? ~ 2(1 — 2)0°E?

P2, ~ zm?

s |t represents the hardness of the branching and tends to O in the
collinear limrt.

¢ Different choice of ‘evolution parameter’ in different Parton-
shower code




dt - do «
( |/\/ln+1\2d<1>n+1 ~ \/\/ln\zd(bn?dZQW Q;Pa_)bc(z))

s¢ z 15 the “energy variable™ it is defined to be the energy fraction taken by parton

b from parton a. It represents the energy sharing between b and ¢ and tends to
| In the soft limit (parton c going soft)

% @ is the azimuthal angle. It can be chosen to be the angle between the
polarization of a and the plane of the branching.
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The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

at
C |Mn_|_1‘2d(1)n_|_1 ~ |Mn‘2d(1)n?d2

) = On[75] %{E
Ppo(s) = op [FEUEZ2] +{
Pog(z) = Tr [jz%(l—z)ﬁ?, m<
Pu) = Oa|qim+it+z01-2). =9

Cp=3%Ca=3Tr=3

E.
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Ao Qg
PCL C
o 2. 4P (2)

The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

C Mo Pd e~ M, de, -

) = On[75] %{E
pale) = op [FEEZ2T) +{
09(z) = Tr [jz%(l—z)ﬁ?, m<
Pu) = Oa|qim+it+z01-2). =9

Cp=20Ca=3Tg=1.

Comments:
* Gluons radiate the most

*There are soft divergences in z=1 and z=0.
* Pqg has no soft divergences.
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ao o
( My |2dPr1 ~ | M,|2dP, —d G Spﬁbc(z))

z
2T 2T

® [ach choice of argument for Os Is equally acceptable at the leading-logarithmic accuracy.
However, there Is a choice that allows one to resum certain classes of subleading
logarithmes.

® [he higher order corrections to the partons splittings imply that the splitting kernels
ShOUld be mOd|ﬂed Pa — bc(Z) e Pa — bc(Z) + (Xs P’a — bc(Z)

For g — gg branchings P’a — bc(z) diverges as -bo log[z(1-z)] Pa— bc(2)
(just z or |-z If quark is present)

® Recall the one-loop running of the strong coupling:

2 _ Oés(,u2) -~ 2 < . 2 bo 1 Q_2>
Ozs(Q ) 1 —I—OAS(,LLQ)[)O logg—s Oés(:u ) 1 aS(M ) 0 108 MZ

® \We can therefore include the P’(z) terms by choosing pt?~z(1-z)Q? as argument of Xs:

as(Q%) (Pa—ve(2) + as(Q*)Pi_ye) = as(Q”) (1 — as(Q*)blog 2(1 — 2)) Paspe(2)

~  as(2(1 = 2)Q*) Py_pe(2)
 Mattelaerolivier ~ wuwd2024 U5
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z
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® [ach choice of argument for Os Is equally acceptable at the leading-logarithmic accuracy.
However, there Is a choice that allows one to resum certain classes of subleading
logarithmes.

® [he higher order corrections to the partons splittings imply that the splitting kernels
ShOUld be mOd|ﬂed Pa — bc(Z) e Pa — bc(Z) + (Xs P’a — bc(Z)

For g — gg branchings P’a — bc(z) diverges as -bo log[z(1-z)] Pa— bc(2)
(just z or |-z If quark is present)

® Recall the one-loop running of the strong coupling:

2 _ Oés(,u2) -~ 2 < . 2 bo 1 Q_2>
Ozs(Q ) 1 —I—OAS(,LLQ)[)O logg—s Oés(:u ) 1 Cks(lu ) 0 108 MZ

® \We can therefore include the P’(z) terms by choosing pt?~z(1-z)Q? as argument of Xs:

as(Q%) (Pacbe(2) + as(Q*)Py_p.) = as(Q%) (1 — as(Q%)blog 2(1 — 2)) Pape(2)
~ as t ) Pa—pe(2)




2 2

2
0,0 >0 xL<be<d
C c

<0

® Now consider Mn+| as the new core process and use the recipe we

used for the first emission in order to get the dominant contribution
to the (n+2)-body cross section: add a new branching at angle much
smaller than the previous one:

do o

dt
My o|?dPr e ~ | M,|2dP, —dz
t 2w 2w

dit’ dd o
W s Py (2
X2y o Poosae(2)

Pa—)bc (Z)

® This can be done for an arbitrary number of emissions. The recipe to
oet the leading collinear singularity is thus cast in the form of an
terative sequence of emissions whose probability does not depend on
the past history of the system: a ‘Markov chain’. No interferencelll
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Multiple emission  ¥eute

2 i d
e 0,00 >0 xL< xL<
0’<x< 6 C e

® [he dominant contribution comes from the region where the
subsequently emitted partons satisfy the strong ordering requirement:

0>0>0".

For the rate for multiple emission we get
Car tar T @ty o\ ¥
k
Tk 2 s / ./ / 1) X On (ﬁ) log™(@*/@0)

where Q Is a typical hard scale and Qo Is a small infrared cutoff that
separates perturbative from non perturbative regimes.

® [ach power of & comes with a logarithm. The logarithm can be easily
large, and therefore It can lead to a breakdown of perturbation theory.



~@>~ Absence of interference ot

® T[he collinear factorization picture gives a branching sequence
for a given leg starting from the hard subprocess all the way
down to the non-perturbative region.

® Suppose you want to describe two such histories from two
different legs: these two legs are treated in a completely
uncorrelated way. And even within the same history,
subsequent emissions are uncorrelated.

® [he collinear picture completely misses the possible
interference effects between the various legs. The extreme
simplicity comes at the price of quantum inaccuracy.

® Nevertheless, the collinear picture captures the leading
contributions: it gives an excellent description of an arbrtrary
number of (collinear) emissions:

® [tisaresummed computation”

® |t bridges the gap between fixed-order perturbation theory
and the non-perturbative hadronization.
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g *What is the probability of no emission?

tz' 27T

Ot v .
7Dnon—branching (tz) =1- 7Dbranching (tz) =1 / dZP(Z)
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2 . N L
*What is the probability of no emission?
ot .
7Dnon—braunching (tz) =1 7Dbramching (tz) =1 . ;ﬂ' / dZP(Z)
*So the probability of no emission between
two scales:
\_ Y,
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*\What is the probability of no emission?
0t g A
7Jnon—branching (tz) =1- 7Dbramching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between
two scales: N
0t g ~
Pno—branching(Q27t) = lim (1 /dZP(Z))

N —00 - t; 2T
1=0
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4 . - N )
*\What is the probability of no emission?
0t g A
7Jnon—branching (tz) =1- 7Dbramching (tz) =1 t gﬂ' / dZP(Z)

*So the probability of no emission between

two scales: N
2 5{; g d P
Pno— ranchin , = 1 1
branching(Q78) = Jim | L 277/ “F(2)
o Tim et (— 9SS [ dzP(2)
N — o0
\_ /
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
9 . 0t g q p
Pno—branchzng(@ ,t) — ]\;gnoo _—: (1 t° 9 / < (Z)>
~ Jim X (~# 3F [ 4P ()
- N — o0
o S Wiz G5 P(z) — o~ [ dp(t))
\_ Y,
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t ag 7 P
Pno— ranchin ] = 1
sranching (€, 1) Ngnooz‘—o t. o / 2P(z)
~ lim 627]:\7:0 (_f__ fdzP(z))
N — 00

Sudakov form factor 2
A(Q27 t) ft fdz P(z) — o ftQ dp(t')
> /
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4 . - N )
*\What is the probability of no emission?
0t g A
7Jnon—branching (tz) =1- 7Dbramching (tz) =1 t gﬂ' / dZP(Z)

*So the probability of no emission between

two scales: N
2 5{; g d P
Pro—branchin ,t) = i 1
branching(Q7, 1) = lim L\ 4or / “F(2)
~ Tm ezéio(—f—:‘;‘—i [ dzP(=))
N — o0

Sudakov form factor

J
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t ag 7 P
Pno— ranchin ] = 1
sranching (€, 1) Ngnooz‘—o t. o / 2P(z)
~ lim 627]:\7:0 (_f__ fdzP(z))
N — 00

Sudakov form factor 2
A(Q27 t) ft fdz P(z) — o ftQ dp(t')
> /
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4 . - N )
*\What is the probability of no emission?
0t g A
7Jlrlon—bran(:hing (tz) =1- 7Dbra,n(:hing (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t s ] p
Pro—branchin ) = i 1
b h g(@ ) Ngnoo 11 - > / - (Z)
~ lim 62520(—5—;3—5 fdzﬁ(z))
Sudakov form factor N—00
2
A(Q27t) ft fdz P(z) — o ftQ dp(t')

o /
GProperty: A(A,B) = A(A,C) A(C,B) )




Parton shower W Durham

% The Sudakov form factor i1s the heart of the parton shower. It gives the
probability that a parton does not branch between two scales

2 Using this no-emission probability the branching tree of a parton is generated.

¢ Define dPy as the probabllity for k ordered splittings from leg a at given scales

dPi(t1) = A(Q% t1) dp(t)A(t1,QF),
dPy(t1,t2) = A(Q% t1) dp(ty) A(t1,t2) dp(te) A(te, Q5)O(t1 — ta),
e = L
APt nte) = AQ% QD) H Oti—1 — 1)

% Qo? is the hadronization scale (~1 GeV). Below this scale we do not trust the
perturbative description for parton splitting anymore.
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4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
=1
® [he parton shower has to be unitary (the sum over all

branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
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integrating the probability for k splittings:

1| @
Py, = /dpk(tla oy ty) = A(Q27Q3)E /
/@3

dp(t)

k
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by

.y
C Vk=0,1,...

~
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integrating the probability for k splittings:

1| @
Py, = /de(th oy ty) = A(Q27Q3)E /
/@3

® Summing over all number of emissions

dp(t)

k
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by

.y
C Vk=0,1,...

~




Unitarity W

4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
- 1k

1| @
Pk — /dpk(tl, ...,tk) — A(Q%Qg)y / dp(t) ] Vk = O, 1,
- |/ Q2 ]

® Summing over all number of emissions

00 o0 1k
S P=AQLADY.
k=0 k=0

Q> Q7 |
[ ao| =a@t e | [ ap)| ~1

2 2
QO | B 0

o /
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4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
- 1k

1| @
Pk — /dpk(tl, ...,tk) — A(Q%Qg)y / dp(t) ] Vk = O, 1,
- |/ Q2 ]

® Summing over all number of emissions

00 o0 1k
S P=AQLADY.
k=0 k=0

Q> Q7 |
[ ao| =a@t e | [ ap)| ~1

2 2
QO | B 0

® Hence, the total probabillity i1s conserved

-




singularities W puhan

® \WVe have shown that the showers Is unitary. However, how are
the IR divergences cancelled explicitly! Let's show this for the
first emission:
Consider the contributions from (exactly) O and | emissions

from leg a:
do dt do aq
— =A A P, pe
= AQ Q)+ AQ Q) YT 5 5 P ()

® [xpanding to first order in &s gwes

do Q° dt’ _do s dt do o
— = 1 o a,—> c a—> C
Z / 7P on o Z e

® Same structure of the two latter terms, with opposite signs:
cancellation of divergences between the approximate virtual
and approximate real emission cross sections.

® [he probabllistic interpretation of the shower ensures that
infrared divergences will cancel for each emission.
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parton shower in a Monte Carlo event generator!
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2. Given a virtual mass scale ttand  momentum fraction x; at some stage
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=L an we solve thls equatlon’? NO -> veto algorithm

IS a random number

3. If ti+) < teye it means that the shower has finished.

4. Otherwise, generate z = z;/zj+| with a distribution proportional to (Xs/
21T)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.
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(1. find overestimate of the branching probability
p(z) > P(Z), Zmin < Zmz’n(t)a Zmaw(t) < Zmaz, QS = CV,S'(t)
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(1. find overestimate of the branching probability

Zmaac

84 OéslA

p(Z) Z P(Z), Zmz’n S Zmin(t)a Zmax(t) S Zmaxa C_VS Z Oés(t)

~

R=AQ 1) = e I ottt

We have P (t) = g(t)A(QQ7 t) We need P

t) = — P(z)> | =2=P(2) = p(t
o) =5 [ P2 [ GE1PE) =it
k mtmn /
/2. Solve the overestimated Sudakov )

t) — p(t)A(QZ, t)
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(1. find overestimate of the branching probability N
p(z) Z P(Z), Zmin S Zmin(t)a Zmax(t) < Zmaz Qs Z CVS’(t)

O_é Zmax _ oY 1 .
g(t) = 5 P(z) = | 5>2P(2) = p(t)

/2. Solve the overestimated Sudakov )
R=A(Q%t) = e~ b7 ottt

We haveP(t) — g(t)A(Qz7 t) We need P(t) — p(t)A(Qz, t)

p(t)A(Q?, 1)
g(t)A(Q=,1)

<1

Standard unweighting needs

o J




- Veto Algorithm Pt

(1. find overestimate of the branching probability N
p(z) Z P(Z), Zmin S Zmin(t)a Zmax(t) < Zmaz Qs Z CVS’(t)

O_é zmaaz _ CVS 1 .
o) = o [ P [ 525PE) =0
21t )5
k mimn j
/2. Solve the overestimated Sudakov )

R=A(Q%1t) = e N o)t

We haveP(t) — g(t)A(Qz7 t) We need P(t) — p(t)A(Qz, t)

p(t)A(QQ, t) Xl Standard unweighting
AA(O2 .t does not work!
L (1) A(Q?,1) Y

63. Special selection: Veto Algorithm )

Standard unweighting needs
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(2. Algorithm )
2
| Start with i=0 andt0 = &
2.move to i+ and generate 341 suchthat R; 1 = A(ti, tz’—l—l)
t.
3.accept/reject with probability p( H_l)
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/1 . Idea )

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale Is rejected

\_ /
(2. Algorithm )

2
| Start with i=0 andto0 = &

2.move to i+ and generate t;41 such that Rz’—l—l — A(ti, t@'_|_1)
p(ti+1)
g(tit1)

< R;l—l—l return T;4-1

3.accept/reject with probability

m i Pti+1)
g(tiy1)

B c[se oo back to point 2
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® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale Is rejected

\_ J
(2. Algorithm )
2
| Start with i=0 and t0 = &
2.move to I+ | and generate ?fz'_|_1t such that Rz’—l—l — A(ti, t@'_|_1)
3.accept/reject with probability p( H_l)
i) g(tit1)
) PAlit < R;H_lretum tit1
g(tit1)
B c[se oo back to point 2
\_ Is is what we want? W,
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With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!

|. Start the evolution at the virtual mass scale to (e.g. the mass of the
decaying particle) and momentum fraction zo = |

2. Given a virtual mass scale ttand  momentum fraction x; at some stage
in the evolution, generate the scale of the next emission ti+| according to
the Sudakov probability A(t;t+1) by solving
A(ti+|,ti) =R

where R is a random number (uniform on [0, 1]).
3. If ti+1 < teue it means that the shower has finished.

4. Otherwise, generate z = z;/zj+| with a distribution proportional to (Xs/
21T)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.



Soft Limit W Durham

Q° /
A(Q?,t) = exp —Z/ ij

do as
27T 27

Pa—>bc(z)

There is a lot of freedom In the choice of evolution parameter

t. It can be the virtuality m? of particle a or its pt? or E2072 ... For
the collinear limit they are all equivalent

However, in the soft Iimit (z — O, 1) they behave differently

Can we chose 1t such that we get the correct soft limit?

Soft gluon comes from the full event!

® (Quantum Interference




Radiation inside cones around the original partons is allowed
(and described by the eikonal approximation), outside the cones

Angular ordering

(S ]

(N

O(p-,)

9, -+
O(gp-¢,)

it Is zero (after averaging over the azimuthal angle)

-

photon

=

photon

IR
¥ Durham

University




angano®

~@- Intuitive explanation . Fex

s Lifetime of the virtual intermediate state:
T <Y/U = E/p? = 1/(koB?) = 1/(k.0O)

 Distance between g and gbar after T:

d = T = (p/0) 1/k.

u? = (p+k)% = 2E ko (1-cosB)
~EkoO?~Ek,.©O

It the transverse wavelength of the emitted gluon is longer than the
separation between g and gbar, the gluon emission Is suppressed,
because the g gbar system will appear as colour neutral (i.e. dipole-
ike emission, suppressed)

Therefore d>1/k, , which implies 0 < .



~@-  Angularordering Ve

s The construction can be iterated to the next
emission, with the result that the emission
angles keep getting smaller and smaller.

Al
Ny

¢ One can generalize 1t to a generic parton of
color charge Q splitting into two partons |
and j, Qu=Qi+Q;. The result is that inside the
cones | and | emit as independent charges,
and outside their angular-ordered cones the
emission Is coherent and can be treated as if
it was directly from color charge Q.

KEY POINT FOR THE MC!

NA
K\

Al
ws

Angular ordering is automatically satisfied In

O ordered showers! (and easy to account for
in pt ordered showers).
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Angular ordering Is:
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Angular ordering Is:

. A quantum effect coming from the Interference of different
Feynman diagrams.
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Angular ordering Is:

. A quantum effect coming from the Interference of different
Feynman diagrams.

2. Nevertheless i1t can be expressed In “a classical fashion” (square of
a amplitude 1s equal to the sum of the squares of two special
“amplitudes™). The classical limit is the dipole-radiation.,




Angular ordering W puham

Angular ordering Is:

. A quantum effect coming from the Interference of different
Feynman diagrams.

2. Nevertheless i1t can be expressed In “a classical fashion” (square of
a amplitude 1s equal to the sum of the squares of two special
“amplitudes™). The classical limit is the dipole-radiation.,

3. It i1s not an exclusive property of QCD (e, it Is also present In

QED) but in QCD produces very non-trivial effects, depending on
how particles are color connected.
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® 50 far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there Is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probability to find a
given parton in a hadron at a given momentum fraction x = p,/
P, and scale t.




. Initalstate  ¥ee

® 50 far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there Is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probability to find a

given parton in a hadron at a given momentum fraction x = p,/
P, and scale t.

® How do the PDFs evolve with increasing t!
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® 50 far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there Is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probability to find a

given parton in a hadron at a given momentum fraction x = p,/
P, and scale t.

® How do the PDFs evolve with increasing t!

0, L dz a, T
tafi(w,t) — ) —PZJ(Z)f] (;,t) DGLAP

2 o
 Mattelaeroliviee ~ tuwd2024 35



= nitial-state parton splittingSe=:»

Q

® Start with a quark PDF fo(x) at scale to. After a single
parton emission, the probability to find the quark at
virtuality t > to IS

fx,t) = folz) + /t ij/ g; /xl %P(z)fo (g)

to <

® After a second emission, we have

f(a:,t)zfo(:v)+/t if = /: %P(z){fo (5)@ f(x/z, t)

to

t’ dt" o L g, .
PR () )
—I_/t t" 277/:,; 2! () /o 22!

0




~@-  The DGLAP equation ot

g
xo to 220000,

p “'Nonn.,,””” Q000 "09,'. 'n,.

® 50 for multiple parton splittings, we arrive at an integral-
differential equation:

0 Y dz ag
tafi(ﬂ%t) = Za_Pij(Z)fj (%,t)

. 227

® T[hisis the famous DGLAP equation (where we have taken into
account the multiple parton species |, |). The boundary

condition for the equation Is the Initial PDFs fio(x) at a starting
scale to (around 2 GeV).

® T[hese starting PDFs are fitted to experimental data.



® J[o simulate parton radiation from the initial state, we start with
the hard scattering, and then “deconstruct” the DGLAP
evolution to get back to the original hadron: backwards
evolution!

® |c.we undo the analytic resummation and replace it with
explicit partons (e.g. in Drell-Yan this gives non-zero pr to
the vector boson)

® |n backwards evolution, the Sudakovs include also the PDFs --
this follows from the DGLAP equation and ensures
conservation of probabllity:

2 dx’ as(t) x\ filz', )
Agi(x,t1,ts) = — dt’ 1( ) |
(@t t2) = exp /tl Zg:/x ' 2m Y \a ) fi(x, )

This represents the probabllity that parton i will stay at the
same X (no splittings) when evolving from t| to ta.

® [he shower simulation is now done as in a final state shower!
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Parton Shower W Durham
/Filnal State Parton Shower Basic 2-step: N
NCSE
. (>2 1) (tz’xl)
(tl’xl) VP($2/$1)
0 (t2’:v—2.:; —————
k t ¢ o° /
/Initial State Parton Shower Basic 2-step' A
Q4 '
EPI(E/QEQ). (CEQ tl)
' (z1,11) VAr(t1,t2)
QA + ( .--i“)—“—: A(tlv t2)/f(x2>
0 To,
L - 2, L2 )




Hadronization W Durham

The shower stops If all partons are characterized by a scale at
the IR cut-off: Qo ~ | GeV.

Physically, we observe hadrons, not (colored) partons.

VWe need a non-perturbative model in passing from partons to
colorless hadrons.

There are two models (string and cluster), based on physical
and phenomenological considerations.




Cluster model W Durham

The structure of the perturbative evolution including angular ordering, leads
naturally to the clustering In phase-space of color-singlet parton pairs
(preconfinement). Long-range correlations are strongly suppressed.
Hadronization will only act locally, on low-mass color singlet clusters.
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String model oo

From lattice QCD one sees that the color confinement potential of a
quark-antiguark grows linearly wrth their distance: V(r) ~ kn, with k ~ 0.2
GeV. This I1s modeled with a string with uniform tension (energy per unit
length) k that gets stretched between the qg pair.
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Fig. 29. QCD potential va. R (in lattice units) from lattice QCD. Figure from
ref. [23).

When quark-antiquarks are too far apart, it becomes energetically more
favorable to break the string by creating a new gqg pair in the middle.
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Varying the shower starting scale (‘wimpy or ‘power) and the evolution
parameter (‘\Q% or‘pt?) a whole range of predictions can be made:

10

do/dP; (pb/bin)

10"

107

® Q? (wimpy)
O Q2 (power)
A P% (wimpy)

A P% (power)

-3 | I 1 1 1 1 I 1 1 1
10 c)"“‘l 50 100

tt  (Pythia only)

P of the 2-nd extra jet

50 0( 50
GeV

A.




Varying the shower starting scale (‘wimpy or ‘power) and the evolution
parameter (‘\Q% or‘pt?) a whole range of predictions can be made:

S F
s f _
£ o0 tt  (Pythia only)
=
E u P; of the 2-nd extra jet
1E s A
- °°==:A-AAA‘A-
- S~ Qo X712 AL A
10‘15— 'QZ(WImpy) v "a"”;,t\ WAK\,
E 5 D N W "’
B O Q° (power) ¥ &
®
102 4 P7(wimpy)
- A P2 (power) “
10-3P..ll I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 A A
50 100 150 200 50 0( 5(C 400
GeV

|deal to describe the data: one can tune the parameters and fit it
But I1s this really what we want..Does it work for other procs?
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Parton Shower MC event generators WDurham

A parton shower program assoclates one of the possible histories (and pre-
histories In case of pp) of an hard event in an explicit and fully detailed way,
such that the sum of the probabillities of all possible histories is unity.
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Parton Shower MC event generators WDurham

A parton shower program assoclates one of the possible histories (and pre-
histories In case of pp) of an hard event in an explicit and fully detailed way,
such that the sum of the probabillities of all possible histories is unity.

® (eneral-purpose tools

® Complete exclusive description of the events: hard scattering,
showering & hadronization (and underlying event)

® Reliable and well-tuned tools

® Significant and intense progress in the development of new
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A parton shower program assoclates one of the possible histories (and pre-
histories In case of pp) of an hard event in an explicit and fully detailed way,
such that the sum of the probabilities of all possible histories Is unity.

® (eneral-purpose tools

® Complete exclusive description of the events: hard scattering,
showering & hadronization (and underlying event)

® Reliable and well-tuned tools

® Significant and intense progress in the development of new
showering algorithms with the final aim to go at NLO in QCD

Shower MC Generators: PYTHIA, HERWIG, SHERPA

‘Note that a banching tree is not a Feynman diagram: it
represents the coherent sum of many real and virtual diagrams
which are summed by the branching algorithm" (HERWIG
manual)



Herwi 0 W Durham

o All HERWIG versions implement the angular-ordering:
subsequent emissions are characterized by smaller and smaller

angles.
HERWIG & = %;gf ~ 1 — cos 0
(py1)”
HERWIGH+: ¢ = — 1(6)
22(1 — 2)?

® \With angular ordering the parton shower does not populate
the full phase space: empty regions of the phase space, called
"dead zones”, will arise.

® [t may seem that the presence of dead zones Is a weakness, but
't I1s not so: they implement correctly the collinear
approximation, in the sense that they constrain the shower to

ive uniguely in the region where 1t is reliable.
Matrix element corrections (MLM/CKKW matching) remove the dead-zones

® Hadronization: cluster model.



Pythia W itan

® (Choice of evolution variables for Fortran and C++ versions:
PYTHIA 6 t = (pp +pe)? ~ 2(1— 2)0*E?

PYTHIA 8 t = (ps)1

® Simpler variables, but decreasing angles not guaranteed:
PY THIA rejects the events that do not respect the angular
ordering. In practice equivalent to angular ordering (in
particular for Pythia 8)

® Not implementing directly angular ordering, the phase space
can be filled entirely (even without matrix element
corrections), so one can have the so called “power
shower (use with a certain care: It uses the collinear/soft
approximation for from the region where it is valid)

® Hadronization: string model.



Sherpa WPpuha

® SHERPA uses a different kind of shower not based on the collinear
| — 2 branching, but on more complex 2 — 3 elementary process:

emission of the daughter off a color dipole

® [he real emission matrix element squared i1s decomposed Into a
sum of terms Djk (dipoles) that capture the soft and collinear
singularities in the limits 1 collinear to J, 1 soft (k is the spectator), and
a factorization formula is deduced in the leading color

approximation:
g

D — B Kijk T,

L

Pi - Py
® [he shower is developed from a Sudakov form factor k

A = exp (-/%/dz % Kzgk)

® [t treats correctly the soft gluon emission off a color dipole, so
angular ordering is built in.

® Hadronization: cluster model (default) and string model



Summary Wt

® [he parton shower dresses partons with radiation. This makes
the Inclusive parton-level predictions (l.e. inclusive over extra
radiation) completely exclusive

® |n the soft and collinear limits the partons showers are
exact, but in practice they are used outside this imit as well.

® Partons showers are universal (1.e. iIndependent from the
process)

® T[here s a cut-off In the shower (below which we don't trust
perturbative QCD) at which a hadronization model takes over

® Hadronization models are universal and independent from
the energy of the collision




