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FeynRules in a nutshell

cp3

Introduction
From FeynRules to FeynArts so far
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Conclusion
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model file
(***************** This is a template model file for FeynRules ***********) 
!
(********** Index definition *********) 
!
IndexRange[ Index[Generation] ] = Range[3] 
!
IndexFormat[Generation, f] 
!
(***** Parameter list ******) 
!
M$Parameters = { 
} 
(***** Gauge group list ******) 
!
M$GaugeGroups = { 
} 
(***** Particle classes list ******) 
!
M$ClassesDescription = { 
}

Definition of variables 
in Mathematica syntaxe



C. Degrande

Model information
M$ModelName = "my_new_model";

M$Information = {
Authors -> {"Mr. X", "Ms. Y"},
Institutions -> {"UC Louvain"},
Emails -> {"X@uclouvain.be", "Y@uclouvain.be},
Date -> "01.03.2013",
References -> {"reference 1", "reference 2"},
URLs -> {"http://feynrules.irmp.ucl.ac.be"},
Version -> "1.0"

};

A summary and complete set of options available for M$Information can be
found in Table 1.

The model information will be printed on the screen whenever the model is
loaded into Mathematica. In addition, the contents of M$Information can
be retrieved by issuing the command ModelInformation[] in a Mathemat-
ica session, after the model has been loaded.

2.2 Index Definitions

In general the Lagrangian describing a model is a polynomial in the fields (and
their derivatives) as well as in the parameters of the model. Very often, these
quantities carry indices specifying their members and/or how the di↵erent
quantities transform under symmetry operations. For example, the gauge field
Ga

µ of an unbroken gauge group SU(N) carries two di↵erent types of indices:

- a Lorentz index µ ranging from 0 to 3;
- an adjoint gauge index a ranging from 1 to N2 � 1.

It is therefore crucial to define at the beginning of each model file the types of
indices that appear in the model, together with the range of values each type
of index may take.

A field  i1i2...(x) carrying indices i1, i2, . . . is represented inside FeynRules
by an expression of the form psi[index1, index2, . . . ]. Each indexi denotes
an object of the form Index[name, i], and represents an index of type name
taking the value i. In this expression name is a symbol and value can be both a
symbol or an integer. In general the name can be chosen freely by the user, but
we emphasize that there are predefined names for the index types describing
four-vectors (Lorentz), four-component spinors (Spin) and two-component
left and right-handed Weyl spinors (Spin1 and Spin2).

9

Good practice for credit, issue(s) tracking



C. Degrande

Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];
IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace 
summed indices by 

the explicite sum

Used in parameters, gauge groups 
and fields
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(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace 
summed indices by 

the explicite sum

Tells FA/FC not to 
remplace summed 

indices by the 
explicite sum

Used in parameters, gauge groups 
and fields

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:



C. Degrande

Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];
IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace 
summed indices by 

the explicite sum

Tells FA/FC not to 
remplace summed 

indices by the 
explicite sum

Used in parameters, gauge groups 
and fields

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:

Predefined indices: Lorentz, Spin, Spin1, Spin2 
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },

Numerical value
Compulsory!
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

MW == {  
    ParameterType -> Internal,  
    Value         -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*aEW/
Gf*MZ^2]],  
    TeX           -> Subscript[M,W],  
    Description   -> "W mass" 
  },

Expression
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },

For the LHA cards
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  }, Dependence in the expansion parameters



C. Degrande

Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g2s/4⇡ as an
input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },
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Parameters definition
CKM == {  
    ParameterType -> Internal, 
    Indices       -> {Index[Generation], Index[Generation]}, 
    ComplexParameter -> True, 
    Unitary       -> True, 
    Value         -> {CKM[1,1] -> Cos[cabi],  CKM[1,2] -> Sin[cabi], 
CKM[1,3] -> 0, 
                      CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], 
CKM[2,3] -> 0, 
                      CKM[3,1] -> 0,  CKM[3,2] -> 0,  CKM[3,3] -> 1}, 
    TeX         -> Superscript[V,CKM], 
    Description -> "CKM-Matrix"}

Tensor parameters
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Parameters definition
CKM == {  
    ParameterType -> Internal, 
    Indices       -> {Index[Generation], Index[Generation]}, 
    ComplexParameter -> True, 
    Unitary       -> True, 
    Value         -> {CKM[1,1] -> Cos[cabi],  CKM[1,2] -> Sin[cabi], 
CKM[1,3] -> 0, 
                      CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], 
CKM[2,3] -> 0, 
                      CKM[3,1] -> 0,  CKM[3,2] -> 0,  CKM[3,3] -> 1}, 
    TeX         -> Superscript[V,CKM], 
    Description -> "CKM-Matrix"}

Tensor parameters
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Parameters definition
CKM == {  
    ParameterType -> Internal, 
    Indices       -> {Index[Generation], Index[Generation]}, 
    ComplexParameter -> True, 
    Unitary       -> True, 
    Value         -> {CKM[1,1] -> Cos[cabi],  CKM[1,2] -> Sin[cabi], 
CKM[1,3] -> 0, 
                      CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], 
CKM[2,3] -> 0, 
                      CKM[3,1] -> 0,  CKM[3,2] -> 0,  CKM[3,3] -> 1}, 
    TeX         -> Superscript[V,CKM], 
    Description -> "CKM-Matrix"}

Tensor parameters

Default:Tensor is True, scalar is 
False



C. Degrande

Parameters definition
CKM == {  
    ParameterType -> Internal, 
    Indices       -> {Index[Generation], Index[Generation]}, 
    ComplexParameter -> True, 
    Unitary       -> True, 
    Value         -> {CKM[1,1] -> Cos[cabi],  CKM[1,2] -> Sin[cabi], 
CKM[1,3] -> 0, 
                      CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], 
CKM[2,3] -> 0, 
                      CKM[3,1] -> 0,  CKM[3,2] -> 0,  CKM[3,3] -> 1}, 
    TeX         -> Superscript[V,CKM], 
    Description -> "CKM-Matrix"}

Tensor parameters

Hermitian, Orthogonal
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Interaction order

aEWM1 == { … 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z pole" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  },



C. Degrande

Interaction order

aEWM1 == { … 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z pole" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  }, � ie2 (⌘µ1,µ4⌘µ2,µ3 + ⌘µ1,µ3⌘µ2,µ4 � 2⌘µ1,µ2⌘µ3,µ4)
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Interaction order

yu == {… 
    InteractionOrder -> {QED, 1}, 
    Description      -> "Up-type Yukawa couplings" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  },

Such that masses have QED=0
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Interaction order

yu == {… 
    InteractionOrder -> {QED, 1}, 
    Description      -> "Up-type Yukawa couplings" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  },

Such that masses have QED=0

However      is not a small parameter!yt
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Interaction order

M$InteractionOrderHierarchy = {  {QCD, 1}, 
                                                                  {QED, 2}};

gs ⇠ e2
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Interaction order

M$InteractionOrderHierarchy = {  {QCD, 1}, 
                                                                  {QED, 2}};

gs ⇠ e2
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M$InteractionOrderLimit = {{NP,1}};

Max power per diagram of         is 1⇤�2
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Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µTaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.
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ClassName->…, SelfConjugate->…, 
Indices->…,QuantumNumbers->…, 
FlavorIndex->…, ClassMembers, 

Mass->…, Witdh->…, PDG->…, 
Definitions->…, Unphysical->…, 

Chirality->…, MajoranaPhase->…, 
WeylComponents->…, 

Goldstone->…, Ghost->…, …(Format)
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Spin index
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Generation index distinguishes 
the class members
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Same representation
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

External parameters
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Fields definition II
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    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

External parameters

Generic label

and do not need to be specified. In addition to indices labeling how a field
transforms under symmetries, each field may have additional indices such as
flavor indices. One of these can be distinguished as the flavor index of the class
and labels its members. It is declared in the model file via the FlavorIndex op-
tion. For example, the up-type quark class uq previously introduced is usually
defined carrying two indices supplementing the spin index (automatically han-
dled by FeynRules), one of type Colour ranging from 1 to 3 and specifying
the color of the quark, and another index of type Flavour ranging from 1 to
3. The latter is specified as the flavor index of the class (via the FlavourIndex
option) so that it labels the members of the class,

Indices -> { Index[ Colour ], Index[ Flavour ] },
FlavorIndex -> Flavour

Quantum fields are not always only characterized by the tensor indices they
carry, but also by their charges under the discrete and / or abelian groups of
the model. FeynRules allows the user to define an arbitrary number of U(1)
charges carried by a field, as, e.g., in

QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}
QuantumNumbers -> {Q -> 2/3}

Next, the user can specify the symbol and the numerical value for the masses
and the decay widths of the di↵erent members of a particle class using the
Mass and Width options 3 . The argument of Mass is a list with masses for each
of the class members, as in

Mass -> {MW}
Mass -> {MU, MC, MT}
Mass -> {Mu, MU, MC, MT}

where in the last example, the symbol Mu is given for the entire class, while
the symbols MU, MC and MT are given to the members. The symbol for the
generic mass (Mu in this case) is by default a tensorial parameter carrying a
single index corresponding to the FlavorIndex of the class. In addition, the
AllowSummation property is internally set to True. The user can not only
specify the symbols used for the masses but also their numerical value as in

Mass -> {MW, Internal}
Mass -> {MZ, 91.188}
Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

3 In the following we only discuss the masses of the particles. Widths however work
in exactly the same way.
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Not used in FR but by 
following codes
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Fields definition III
V[12] == {  
    ClassName     -> Wi, 
    Unphysical    -> True, 
    SelfConjugate -> True,  
    Indices       -> {Index[SU2W]}, 
    FlavorIndex   -> SU2W, 
    Definitions   -> { Wi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2], 
Wi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3] -> cw 
Z[mu] + sw A[mu]} 
  }

FR does not export 
them to matrix 
element code

Physical fields

Interaction eigenstates
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Fields definition IV
U[11] == { 
    ClassName     -> ghB,  
    Unphysical    -> True, 
    SelfConjugate -> False, 
    Ghost         -> B,  
    Definitions   -> { ghB -> -sw ghZ + cw ghA} 
  },

S[2] == { 
    ClassName       -> G0, 
    SelfConjugate   -> True, 
    Goldstone       -> Z, 
    … 
  },

ClassName of the 
boson
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Gauge Groups
M$GaugeGroups = { 
  U1Y  == {  
    Abelian          -> True,   
    CouplingConstant -> g1,  
    GaugeBoson       -> B,  
    Charge           -> Y 
  },… 
  SU3C == {  
    Abelian           -> False,  
    CouplingConstant  -> gs,  
    GaugeBoson        -> G, 
    StructureConstant -> f,  
    Representations   -> {T,Colour},  
    SymmetricTensor   -> dSUN 
  }  
};
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Gauge Groups
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}; Generator label

Associated index
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• Predefined strength tensor 

!

!

• Predefined covariant derivative (from the Indices 
and QuantumNumbers of the fields)

Gauge groups

Table 10: Gauge group options (continued)

Representations Refers to a list of two-component lists
containing all the representations de-
fined for this gauge group. The first
component of these lists consists of the
symbol by which the generators of the
representation are denoted, while the
second component is the name of the
index it acts on.

Definitions Contains a list of replacement rules
that should be applied by FeynRules
before calculating vertices, expressing
representation matrices and/or struc-
ture constants in terms of the model
parameters and Mathematica stan-
dard objects.

Table 11

The list of all the options described above is summarized in Table 10.

2.6.2 FeynRules functions related to gauge groups

The declaration of a gauge group enables FeynRules to automatically con-
struct field strength tensors, superfield strength tensors and covariant deriva-
tives associated with this group, so that they can be further used when building
Lagrangians. In the case of abelian gauge groups, the field strength tensor is
invoked by issuing

FS[A, mu, nu]

where A is the corresponding gauge boson and mu and nu denote Lorentz
indices. Its supersymmetric counterparts can be called by the command

SuperfieldStrengthL[ V, sp ]
SuperfieldStrengthR[ V, spdot ]

respectively. In these commands, V stands for the vector superfield associated
with the gauge group and sp and spdot are left-handed and right-handed spin
indices. These three functions can be easily generalized to the non-abelian case,

FS[ A, mu, nu, a ]
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SuperfieldStrengthL[ V, sp , a ]
SuperfieldStrengthR[ V, spdot, a ]

where a stands for an adjoint gauge index. Following the FeynRules con-
ventions, these quantities are defined as

F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gfa

bcA
b
µA

c
⌫ ,

W↵ = � 1

4
D̄·D̄e2gVD↵e

�2gV ,

W ↵̇ = � 1

4
D·De�2gV D̄↵̇e

2gV ,

(2.7)

where g and f denote the coupling constant and the structure constants of
the gauge group and D and D̄ are the superderivatives defined below, in
Section 4.5. The abelian limit is trivially derived from these expressions. We
emphasize that the spinorial superfields W↵ and W ↵̇ are not hard-coded in
FeynRules and are recalculated each time. However, they are evaluated only
when an expansion in terms of the component fields of the vector superfield V
is performed.

From the information provided at the time of the declaration of the gauge
group, FeynRules can also define, in an automated way, gauge covariant
derivatives. These can be accessed through the symbol DC[phi, mu], where
phi is the field that it acts on and mu the Lorentz index. In our conventions,
the covariant derivative reads

Dµ� = @µ�� igAa
µTa� (2.8)

where Ta stands for the representation matrices associated to the represen-
tation of the gauge group in which the field � lies. The sign convention in
Eq. (2.8) is consistent with the sign convention in Eq. (2.7).

All the functions presented in this section are summarized in Table 12.

2.7 Model restrictions

In phenomenological studies, it can sometimes be useful to consider restricted
models which are obtained from a parent model by putting some of the ex-
ternal parameters to zero. As an example, one might be interested in the
Standard Model with a diagonal CKM matrix. While it is of course always
possible to make the CKM matrix numerically diagonal, it is desirable to re-
move the interaction terms proportional to the o↵-diagonal terms altogether
in order to avoid a proliferation of vanishing diagrams in Feynman diagram
calculations. This can be achieved by the use of the so-called restriction files
in FeynRules. Restriction files are text files (with the extension .rst) that
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Lagrangian

{{a11, a12} , {a21, a22}}] , {u, d}].

As already discussed in Section 2.6, gauge invariant derivatives can be con-
veniently defined via the functions DC[phi,mu] and FS[G, mu, nu, a]. The
first argument of both functions is the relevant field, mu and nu are Lorentz
indices and a represents an index of the adjoint representation of the associ-
ated gauge group. The gauge fields and generators that appear in covariant
derivatives of a particular field are fixed by its indices and by the definition of
the gauge group. For example, the QCD Lagrangian for massless down quarks,

LQCD ⌘ �1

4
Gµ⌫

a Ga
µ⌫ + id̄ /Dd, (3.16)

is written as

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I dqbar.Ga[mu].DC[dq, mu]

All the predefined FeynRules functions useful for the building of the La-
grangian are given in Table 14.

Finally, it is often convenient to write a Lagrangian in terms of two-component
fermions and to let FeynRules perform the transformations to four-component
fermions. We note that this operation is mandatory for most Feynman diagram
calculators, which in general only work with four-component spinors. More
precisely, if � and ⇠̄ are left and right-handed Weyl spinors, and  = (�, ⇠̄)T

is a Dirac fermion, we can easily switch to four-component fermions by using
the replacements

�! 1� �5

2
 , ⇠ ! 1� �5

2
 c ,

�̄! 1 + �5

2
 c , ⇠̄ ! 1 + �5

2
 .

(3.17)

These transformation rules are implemented in FeynRules via the WeylTo-
Dirac function, which takes as an argument a Lagrangian written in terms of
two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a di↵erent part of the Lagrangian as described in the table.
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two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a di↵erent part of the Lagrangian as described in the table.
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definition through the Indices option, given in the same order. The di↵erent
flavors can also be accessed using the names given in ClassMembers. They have
the same indices as the full flavor multiplet, with the flavor index omitted. We
recall that, if a field is not self-conjugate, FeynRules automatically creates
the symbol for the conjugate field by adding ‘bar’ at the end of the particle
name, i.e., the antiparticle associated to psi is denoted by psibar. For a
fermion  , the conjugate field is  ̄ ⌘  †�0. Alternatively, the conjugate field
can be obtained by issuing anti[psi].

Fields (and their derivatives) can be combined into polynomials. By conven-
tion, all the indices appearing inside a monomial in FeynRules must be
contracted, i.e., all indices must appear pairwise 6 . Furthermore, all indices
must be spelled out explicitly. For anticommuting fields (fermions and ghosts),
the Mathematica Dot function has to be used, in order to keep the relative
order among them fixed. For example, the interaction between the gluon and
all the down quarks can be written as

gs Ga[mu, s, r] T[a, i, j] dqbar[s, f, i].dq[r, f, j] G[mu, a]

There is however one case where indices do not need to be spelled out com-
pletely but can be omitted. If in a fermion bilinear, all the indices of the
rightmost fermion are connected to all the indices of the leftmost fermion
(perhaps with intermediate matrices), then these indices can be suppressed
and FeynRules takes care of restoring them internally, such as in

dqbar.Ga[mu].T[a].dq
! Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j] .

In case of doubt, the user should always spell out all indices explicitly.

The Dot product is mandatory for anticommuting fields or parameters. It
should be noted that Mathematica does not keep the Dot product between
the components of vectors or matrices after computing their product explicitly

{ubar, dbar}.{u, d} = u ubar + d dbar

The appropriate treatment requires, therefore, use of the Inner function for
each Dot, e.g.

Inner[Dot, {ubar, dbar}, {u, d}] = ubar.u + dbar.d

or for more than one multiplication,

Inner[Dot, Inner[Dot, {ubar, dbar} ,

6 With the exception of single-index parameters for which the AllowSummation

option is set to True (see Section 2.3).
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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All the model files should 
be loaded at once

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules



C. Degrande

8
<

:

0

@
A 1
GP 2
GP† 3

1

A , ie (pµ1
2 � pµ1

3 )

9
=

;

n o

…

All momenta are incoming

h0| iLI |fieldsi

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.

51

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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CheckHermiticity[ L, options ] 

CheckDiagonalKineticTerms[ L, options ] 

CheckDiagonalMassTerms[ L, options ] 

CheckDiagonalQuadraticTerms[ L, options ] 

CheckKineticTermNormalisation[ L, options ] 

!

!

CheckMassSpectrum[ L, options ]

+

Table 15: Manipulating a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in
the Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms
in the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms
in the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to
the field content specified in
list.

Table 15

Once the Lagrangian is implemented, several sanity checks can be performed
by means of the functions presented in Table 16. First, the function

CheckHermiticity[ L ];

checks if the Lagrangian L is Hermitian. Next, three functions are available to
check if the kinetic terms and the mass terms are diagonal, CheckDiagonalKi-
neticTerms, CheckDiagonalMassTerms and CheckDiagonalQuadraticTerms.
Finally, two functions, CheckKineticTermNormalisation and CheckMass-
Spectrum, allow to check the normalization of the kinetic terms and compare
the masses computed from the Lagrangian to those of the model description.
The FeynRules conventions on the normalization of the kinetic and mass
terms for the scalar, spin 1/2 and vector fields are

(1) Scalar fields:
- Real:

1

2
@µ�@

µ�� 1

2
m2�2,

- Complex (including ghost fields):

@µ�
†@µ��m2�†�,
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(2) Spin-1/2 fermions:
- Majorana:

1

2
�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,

(3) Vectors:
- Real:

� 1

4
Fµ⌫F

µ⌫ � 1

2
m2AµA

µ,

- Complex:

� 1

2
F †
µ⌫F

µ⌫ �m2A†
µA

µ.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
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C. Degrande

Toolbox

ExpandIndices[L, options] 

GetKineticTerms[L, options]  

GetMassTerms[L, options]  

GetQuadraticTerms[L, options]  

GetInteractionTerms[L, options]  

SelectFieldContent[L, list] 



C. Degrande

FeynRules outputs

FeynRules 
outputs  can be 
used directly by 
event generators

UFO : output with 
the full information 
used by several 

generators 



C. Degrande

• FeynRules does not care which symbol is used 

• However there are conventions for the translation to 
matrix element computation tools 

• αS is hardcoded in most code (running) as well 
as other SM parameters (αEW-1,GF ) 

• SU(3) representations 

• PDG numbering scheme, LHA block, …

Conventions
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FeynRules outputs

FeynRules takes care of all the conventions Generating the output
WriteCHOuput[ L ]  
WriteFeynArtsOutput[ L ] 
WriteSHOutput[ L ] 
WriteWOOutput[ L ] 
WriteUFO[ L ]
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FeynRules outputs

FeynRules takes care of all the conventions Generating the output
WriteCHOuput[ L ]  
WriteFeynArtsOutput[ L ] 
WriteSHOutput[ L ] 
WriteWOOutput[ L ] 
WriteUFO[ L ]

Predefined 
basis for most 
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C. Degrande

feynrules.dat: A static file, setting up the model in Sherpa.!
Particle.dat: The list of all particles together with their properties. !
param_card.dat: LH-like file defining the numerical values of the 

external parameters. !
ident_card.dat: File linking the entries in param_card.dat to the 

variables used in the Sherpa code. !
param_definition.dat: File containing analytical expressions for all 

the internal parameters. !
Interactions.dat: File defining all the interaction vertices with their 

couplings.

Sherpa output



C. Degrande

feynrules.dat: A static file, setting up the model in Sherpa.!
Particle.dat: The list of all particles together with their properties. !
param_card.dat: LH-like file defining the numerical values of the 

external parameters. !
ident_card.dat: File linking the entries in param_card.dat to the 

variables used in the Sherpa code. !
param_definition.dat: File containing analytical expressions for all 

the internal parameters. !
Interactions.dat: File defining all the interaction vertices with their 

couplings.

Sherpa output

Color or Lorentz structures of the SM and MSSM only

VERTEX 5 22 5   # b a b 
    1 -0.3333333333333333*ee*(0,1)  # right-handed coupling 
    2 -0.3333333333333333*ee*(0,1)  # left-handed coupling 
    3 D[1,3]  # colour structure 
    4 FFV  # Lorentz structure

� i

3
e�ij�

µ�+ � i

3
e�ij�

µ��



C. Degrande

• Generic output with the full model information 

• coupling_orders.py, parameters.py, particles.py, 
write_param_card.py, __init__.py, 

• vertices.py, couplings.py, lorentz.py 

!

• decays.py 

• CT_vertices.py, CT_couplings.py (For NLO) 

• Python module used in MadGraph, Herwig, Gosam(, Sherpa)

UFO

igsT
a�µ No basis, all the lorentz 

structures of the model



C. Degrande

UFO
V_135 = Vertex(name = 'V_135', 
               particles = [ P.u__tilde__, P.u, P.g ], 
               color = [ 'T(3,2,1)' ], 
               lorentz = [ L.FFV1 ], 
               couplings = {(0,0):C.GC_11})

FFV1 = Lorentz(name = 'FFV1', 
               spins = [ 2, 2, 3 ], 
               structure = 'Gamma(3,2,1)')

GC_11 = Coupling(name = 'GC_11', 
                 value = 'complex(0,1)*G', 

                 order = {'QCD':1})

vertices.py

Lorentz.py

couplings.py



C. Degrande

• Field theory : a short reminder 

• free fields (KG details, Fermion) 

• Scattering matrix in perturbation 

• Wick theorem to Feynman rules 

• Why Monte-Carlo/automated tools? 

• Lagrangian to the Feynman rules 

• Model file : Parameters, fields, gauge group and Lagrangian 

• Running FeynRules 

• Demo

Plan


