Plan

- Field theory : a short reminder
 - free fields (KG details, Fermion)
 - Scattering matrix in perturbation
 - Wick theorem to Feynman rules
- Why Monte-Carlo/automated tools?
- Lagrangian to the Feynman rules
 - Model file : Parameters, fields, gauge group and Lagrangian
 - Running FeynRules
- Demo

Why automated tools

- Algorithmic
- Less error prone
- Long $f^{abc}G^a_{\mu\nu}G^{b\nu\rho}G^{c\mu}_{\rho} \ni 4$ gluons vertex

 $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_3} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_3} p_2^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_3} p_3^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a} p_1^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a} p_1^$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_3} p_3^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_3} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_3} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_4^{\mu_4} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_4^{\mu_4} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_4^{\mu_4} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_4} \eta_{\mu_4,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_4^{\mu_4} p_4^{\mu_4} \eta_{\mu_4,\mu_4} - 6ig_s f_{a_1,a_4,a} p_4^$ $6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{\mu_1,\mu_2} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} p_1 \cdot p_4 \eta_{\mu_1,\mu_2}$ $6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}\eta_{\mu_3,\mu_4}p_2 \cdot p_4\eta_{\mu_1,\mu_2} + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}p_1^{\mu_2}p_2^{\mu_4}\eta_{\mu_1,\mu_3} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_1^{\mu_4}p_3^{\mu_2}\eta_{\mu_1,\mu_3} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_1^{\mu_4}p_3^$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_2} p_3^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_2^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} p_2^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_2^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_1} p_4^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_3} p_3^{\mu_2} \eta_{\mu_1,\mu_4} +$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_2} p_2^{\mu_3} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_3} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_3} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_3} p_2^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_3} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_3} p_1^{\mu_4} \eta_{\mu_4,\mu_4} - 6ig_s f_{a_1,a_4,a} p_{a_2,a} p_1^{\mu_4} \eta_{\mu_4,\mu_4} - 6ig_s f_{a_1,a_4,a} p_{a_2,a} p_{a_3,a} p_1^{\mu_4} \eta_{\mu_4,\mu_4} - 6ig_s f_{a_1,a_4,a} p_{a_2,a} p_{a_3,a} p_{a_4,a} p_{a_4,a} p_{a_4,a} p_{a_4,a} p_{a_4,a} p_{a$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_3^{\mu_4} p_2^{\mu_4} p_3^{\mu_4} p_2^{\mu_4} p_3^{\mu_4} p_3^{\mu$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_1} p_3^{\mu_4} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_4} p_4^{\mu_4} \eta_{\mu_4,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_4} p_4^{\mu_4} p_4^{\mu_4}$ $6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}p_3^{\bar{\mu}_4}p_4^{\bar{\mu}_1}\eta_{\mu_2,\mu_3} + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}p_1^{\bar{\mu}_3}p_2^{\bar{\mu}_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_2^{\bar{\mu}_3}p_3^{\bar{\mu}_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_3^{\bar{\mu}_3}p_3^{\bar{\mu}_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_3^{\bar{\mu}_3}p_3^{\bar{\mu}_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_3^{\bar{\mu}_3}p_3^{\bar{\mu}_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_3^{\bar{\mu}_3}p_3^{\bar{\mu}_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_3^{\bar{\mu}_3}p_3^{\bar{\mu}_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_4,a}f_{a_2,a}g_{a_1,a}p_{a_2,a}p_{a_3,a}p_{a_3,a}p_{a_3,a}p_{a_3,a}p_{a_3,a}p_{a_4,a}p_{a$ $6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}p_1^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_1}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_1}p_4^{\mu_2}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_2}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_2}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_2}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_2}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_2}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}p_4^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_3} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6ig_sf_{a_1,a_3,a}f_{a_2,a}p_2^{\mu_3}\eta_{\mu_2,\mu_4} - 6$ $6ig_sf_{\mathbf{a}_1,\mathbf{a}_2,a}f_{\mathbf{a}_3,\mathbf{a}_4,a}\mathbf{p}_3^{\mu_1}\mathbf{p}_4^{\mu_3}\eta_{\mu_2,\mu_4} + 6ig_sf_{\mathbf{a}_1,\mathbf{a}_3,a}f_{\mathbf{a}_2,\mathbf{a}_4,a}\mathbf{p}_1^{\mu_2}\mathbf{p}_3^{\mu_1}\eta_{\mu_3,\mu_4} + 6ig_sf_{\mathbf{a}_1,\mathbf{a}_4,a}f_{\mathbf{a}_2,\mathbf{a}_3,a}\mathbf{p}_2^{\mu_1}\mathbf{p}_3^{\mu_2}\eta_{\mu_3,\mu_4} + 6ig_sf_{\mathbf{a}_1,\mathbf{a}_4,a}f_{\mathbf{a}_2,\mathbf{a}_3,a}\mathbf{p}_2^{\mu_1}\mathbf{p}_3^{\mu_2}\eta_{\mu_3,\mu_4} + 6ig_sf_{\mathbf{a}_1,\mathbf{a}_4,a}f_{\mathbf$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_1} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_2} p_4^{\mu_1} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_1} p_4^{\mu_2} \eta_{\mu_3,\mu_4} 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}p_3^{\mu_1}p_4^{\mu_2}\eta_{\mu_3,\mu_4} + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_4}\eta_{\mu_2,\mu_3}p_1 \cdot p_2 - 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}p_3^{\mu_1}p_4^{\mu_2}\eta_{\mu_3,\mu_4} + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_4}\eta_{\mu_2,\mu_3}p_1 \cdot p_2 - 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_2,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_2,a}\eta_{\mu_1,\mu_2}\eta_{\mu_2,\mu_4}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_2,a}\eta_{\mu_1,\mu_2}\eta_{\mu_2,\mu_3}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_2,a}\eta_{\mu_1,\mu_2}\eta_{\mu_2,\mu_3}\eta_{\mu_2,\mu_4}p_1 \cdot p_2 + 6ig_sf_{a_1,a_2,a}f_{a_2,a}\eta_{\mu_2,\mu_3}\eta_{\mu_2,\mu_4}\eta_{\mu_$ $6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}\eta_{\mu_1,\mu_4}\eta_{\mu_2,\mu_3}\mathbf{p}_1\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_1\cdot\mathbf{p}_4 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_2\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_1\cdot\mathbf{p}_4 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_2\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_1\cdot\mathbf{p}_4 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_2\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_2\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_2\cdot\mathbf{p}_3 + 6ig_sf_{a_1,a_4,a}f_{a_2,a_3,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}\mathbf{p}_3\cdot\mathbf{p}_3$ $6ig_sf_{a_1,a_3,a}f_{a_2,a_4,a}\eta_{\mu_1,\mu_4}\eta_{\mu_2,\mu_3}p_2\cdot p_4 + 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_4}\eta_{\mu_2,\mu_3}p_3\cdot p_4 - 6ig_sf_{a_1,a_2,a}f_{a_3,a_4,a}\eta_{\mu_1,\mu_3}\eta_{\mu_2,\mu_4}p_3\cdot p_4$

Many diagrams

QCD=3. QED=

QCD=3, QED=

QCD=3, QED=

diagram 3 QCD=3, QED=1

diagram 5 QCD=3, QED=1

diagram 2 QCD=3, QED=1

diagram 4 QCD=3, QED=1

diagram 6 QCD=3, QED=1

diagram 17

Hadron colliders

Hadron colliders

LHC

Hadron collider event

ירי אראי אוועס אין אוועס אין אוועס אוועס אין אוועס אין אוועס אוועס אוועס אוועס אין אוועס אין איז איז איז איז א

U. Duyrailde

Why BSM simulation?

Plan

- Field theory : a short reminder
 - free fields (KG details, Fermion)
 - Scattering matrix in perturbation
 - Wick theorem to Feynman rules
- Why Monte-Carlo/automated tools?
- Lagrangian to the Feynman rules
 - Model file : Parameters, fields, gauge group and Lagrangian
 - Running FeynRules
- Demo

FeynRules in a nutshell

model file

(**************** This is a template model file for FeynRules **********)

```
(********** Index definition ********)
```

IndexRange[Index[Generation]] = Range[3]

IndexFormat[Generation, f]

```
(***** Parameter list *****)
```

```
M$Parameters = {
}
```

```
(***** Gauge group list *****)
```

Definition of variables in Mathematica syntaxe

```
M$GaugeGroups = {
```

```
(***** Particle classes list *****)
```

```
M$ClassesDescription = {
```

Model information

```
M$ModelName = "my_new_model";

M$Information = {

    Authors -> {"Mr. X", "Ms. Y"},

    Institutions -> {"UC Louvain"},

    Emails -> {"XQuclouvain.be", "YQuclouvain.be},

    Date -> "01.03.2013",

    References -> {"reference 1", "reference 2"},

    URLs -> {"http://feynrules.irmp.ucl.ac.be"},

    Version -> "1.0"

    };
```

Good practice for credit, issue(s) tracking

Used in parameters, gauge groups and fields

Tells FR to remplace summed indices by the explicite sum

IndexRange[Index[Colour]] = Range[3]; IndexRange[Index[SU2W]] = Unfold[Range[3]];

IndexRange[Index[Gluon]] = NoUnfold[Range[8]];

Used in parameters, gauge groups and fields

Tells FR to remplace summed indices by the explicite sum

IndexRange[Index[Colour]] = Range[3];= Unfold [Range [3]]; IndexRange[Index[SU2W]] = NoUnfold[Range[8]];

IndexRange[Index[Gluon]]

Tells FA/FC **not** to remplace summed indices by the explicite sum

Used in parameters, gauge groups and fields

Tells FR to remplace summed indices by the explicite sum

IndexRange[Index[Colour]] = Range[3]; IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexRange[Index[Gluon]] = NoUnfold[Range[8]];

Format:

IndexStyle[Colour, i]; IndexStyle[Gluon, a]; Tells FA/FC **not** to remplace summed indices by the explicite sum

Predefined indices: Lorentz, Spin, Spin1, Spin2


```
M$Parameters = {
                   param1 == { options1 },
                   param2 == { options2 },
                 };
MW == {
                                 Expression
  ParameterType -> Internal,
           -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*aEW/
  Value
Gf*MZ^2]],
  TeX
           -> Subscript[M,W],
 Description -> "W mass"
 },
```

```
M$Parameters = {
                    param1 == { options1 },
                    param2 == { options2 },
                             . . .
                  };
aEWM1 == \{
  ParameterType -> External,
  BlockName -> SMINPUTS,
  OrderBlock \rightarrow 1,
  Value
             -> 127.9,
  InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z
pole"
 },
```

```
M$Parameters = {
                   param1 == { options1 },
                   param2 == { options2 },
                 };
aEWM1 == \{
  ParameterType -> External,
  BlockName -> SMINPUTS,
                                   For the LHA cards
  OrderBlock -> 1,
             -> 127.9,
  Value
 InteractionOrder -> {QED,-2},
 Description -> "Inverse of the EW coupling constant at the Z
pole"
 },
```

```
M$Parameters = {
                   param1 == { options1 },
                   param2 == { options2 },
                 };
aEWM1 == \{
 ParameterType -> External,
  BlockName -> SMINPUTS,
  OrderBlock -> 1,
            -> 127.9,
  Value
  InteractionOrder -> \{QED, -2\},\
  Description -> "Inverse of the EW coupling constant at the Z
pole"
 },
                  Dependence in the expansion parameters
```

```
C. Degrande
```

```
M$Parameters = {
                    param1 == { options1 },
                    param2 == { options2 },
                  };
aEWM1 == \{
  ParameterType -> External,
  BlockName -> SMINPUTS,
  OrderBlock \rightarrow 1,
  Value -> 127.9,
  InteractionOrder -> {QED,-2},
  Description -> "Inverse of the EW coupling constant at the Z
pole"
 },
```
Tensor parameters

 $CKM == \{$ ParameterType -> Internal, Indices -> {Index[Generation], Index[Generation]}, ComplexParameter -> True. Unitary -> True, Value $\rightarrow \{CKM[1,1] \rightarrow Cos[cabi], CKM[1,2] \rightarrow Sin[cabi], \}$ CKM[1,3] -> 0, $CKM[2,1] \rightarrow Sin[cabi], CKM[2,2] \rightarrow Cos[cabi],$ $CKM[2,3] \rightarrow 0,$ $CKM[3,1] \rightarrow 0, CKM[3,2] \rightarrow 0, CKM[3,3] \rightarrow 1$ -> Superscript[V,CKM], TeX Description -> "CKM-Matrix" }

Tensor parameters

 $CKM == \{$ ParameterType -> Internal, Indices -> {Index[Generation], Index[Generation]}, ComplexParameter -> True, <u>Unitarv</u> -> True, Value $\rightarrow \{CKM[1,1] \rightarrow Cos[cabi], CKM[1,2] \rightarrow Sin[cabi], \}$ CKM[1,3] -> 0, $CKM[2,1] \rightarrow Sin[cabi], CKM[2,2] \rightarrow Cos[cabi],$ $CKM[2,3] \rightarrow 0,$ $CKM[3,1] \rightarrow 0, CKM[3,2] \rightarrow 0, CKM[3,3] \rightarrow 1$ TeX -> Superscript[V,CKM], Description -> "CKM-Matrix" }

Tensor parameters

 $CKM == \{$ ParameterType -> Internal, <u>Indices</u> -> {Index[Generation], Index[Generation]}, Default: Tensor is True, scalar is ComplexParameter -> True, False Unitary -> True, $-> \{CKM[1,1] -> Cos[cabi], CKM[1,2] -> Sin[cabi],$ Value CKM[1,3] -> 0, $CKM[2,1] \rightarrow Sin[cabi], CKM[2,2] \rightarrow Cos[cabi],$ $CKM[2,3] \rightarrow 0,$ $CKM[3,1] \rightarrow 0, CKM[3,2] \rightarrow 0, CKM[3,3] \rightarrow 1$ TeX -> Superscript[V,CKM], Description -> "CKM-Matrix" }

Tensor parameters

 $CKM == \{$ ParameterType -> Internal, Indices -> {Index[Generation], Index[Generation]}, ComplexParameter -> True. Unitary -> True, Hermitian, Orthogonal Value $-> \{CKM[1,1] -> Cos[cabi], CKM[1,2] -> Sin[cabi],$ CKM[1,3] -> 0, $CKM[2,1] \rightarrow Sin[cabi], CKM[2,2] \rightarrow Cos[cabi],$ CKM[2,3] -> 0, $CKM[3,1] \rightarrow 0, CKM[3,2] \rightarrow 0, CKM[3,3] \rightarrow 1$ -> Superscript[V,CKM], TeX Description -> "CKM-Matrix" }

In the SM : QCD the power of g_s

QED the power of e

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```

```
vev == {...
InteractionOrder -> {QED,-1},
Description -> "Higgs vacuum expectation value"
},
```


In the SM : QCD the power of g_s

QED the power of e

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```



```
In the SM : QCD the power of g_s
              QED the power of e
vev == {...
  InteractionOrder -> {QED,-1},
  Description -> "Higgs vacuum expectation value"
 },
yu == {...
  InteractionOrder -> \{QED, 1\},\
  Description -> "Up-type Yukawa couplings"
 },
                    Such that masses have QED=0
```



```
In the SM : QCD the power of g_s
               QED the power of e
vev == {...
  InteractionOrder -> {QED,-1},
  Description -> "Higgs vacuum expectation value"
 },
yu == {...
  InteractionOrder -> \{QED, 1\},\
  Description -> "Up-type Yukawa couplings"
 },
                     Such that masses have QED=0
```

However y_t is not a small parameter!

M\$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2}};

Max power per diagram of Λ^{-2} is 1

```
M$ClassesDescription = {
    spin1[1] == { options1 },
    spin1[2] == { options2 },
    spin2[1] == { options3 },
    ...}
```



```
\label{eq:F[3] == { ClassName -> uq, \\ ClassMembers -> {u, c, t}, \\ Indices -> {Index[Generation], Index[Colour]}, \\ FlavorIndex -> Generation, \\ SelfConjugate -> False, \\ Mass -> {Mu, {MU, <math>2.55*^{-3}, {MC,1.27}, {MT,172}}, \\ Width -> {0, 0, {WT,1.50833649}}, \\ QuantumNumbers -> {Q -> 2/3}, \\ PDG -> {2, 4, 6}, \\ \end{array}
```


$$\begin{split} F[3] &= \{ \text{ ClassName } \rightarrow \text{uq,} \\ \text{ClassMembers } \rightarrow \{\text{u, c, t}\}, \\ \text{Indices } \rightarrow \{\text{Index[Generation], Index[Colour]}\}, \\ \text{FlavorIndex } \rightarrow \text{Generation,} \\ \text{SelfConjugate } \rightarrow \text{False,} \\ \text{Mass } \rightarrow \{\text{Mu, } \{\text{MU, } 2.55^{*} ^{-}3\}, \{\text{MC,} 1.27\}, \{\text{MT,} 172\}\}, \\ \text{Width } \rightarrow \{0, 0, \{\text{WT,} 1.50833649\}\}, \\ \text{QuantumNumbers } \rightarrow \{\text{Q} \rightarrow 2/3\} \\ \text{PDG } \rightarrow \{2, 4, 6\}, \\ \end{split}$$

```
F[3] == \{ ClassName \rightarrow uq, \}
  ClassMembers \rightarrow {u, c, t},
  Indices
               -> {Index[Generation], Index[Colour]},
  FlavorIndex -> Generation,
                                           External parameters
  SelfConjugate -> False,
               \rightarrow {Mu} {MU, 2.55*^-3}, {MC, 1.27}, {MT, 172},
  Mass
               \rightarrow \{0, 0, \{WT, 1.50833649\}\},\
  Width
  QuantumNumbers \rightarrow \{Q \rightarrow 2/3\},\
  PDG
             -> \{2, 4, 6\},
       Generic label
                           Mass -> {MW, Internal}
                           Mass -> {MZ, 91.188}
                           Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
                           Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}
                                                           C. Degrande
```

```
F[3] == \{ ClassName \rightarrow uq, \}
  ClassMembers \rightarrow {u, c, t},
               -> {Index[Generation], Index[Colour]},
  Indices
  FlavorIndex -> Generation,
  SelfConjugate -> False,
              \rightarrow {Mu, {MU, 2.55*^-3}, {MC, 1.27}, {MT, 172}},
  Mass
  Width
               -> \{0, 0, \{WT, 1.50833649\}\},\
  QuantumNumbers \rightarrow \{Q \rightarrow 2/3\},\
  PDG
              -> {2, 4, 6}.
                        Not used in FR but by
                           following codes
```

Interaction eigenstates


```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
  Representations \rightarrow {T,Colour},
 SymmetricTensor -> dSUN
```



```
M$GaugeGroups = {
 U1Y == \{
              -> True
 Abelian
 CouplingConstant -> g1,
 GaugeBoson -> B.
              -> Y
 Charge
 • • • • •
SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
  StructureConstant -> f,
  Representations \rightarrow {T,Colour},
 SymmetricTensor -> dSUN
```

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations \rightarrow {T,Colour},
 SymmetricTensor -> dSUN
```

```
M$GaugeGroups = {
UlY == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G,
 StructureConstant -> f,
 Representations -> {T,Colour}
 SymmetricTensor ->>dSUN
                             Associated index
             Generator label
                                              C. Degrande
```

• Predefined strength tensor

FS[A, mu, nu(, a)]
$$\longrightarrow F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^a{}_{bc} A^b_\mu A^c_\nu$$

abelian

• Predefined covariant derivative (from the Indices and QuantumNumbers of the fields)

DC[phi, mu]
$$\square D_{\mu}\phi = \partial_{\mu}\phi - igA^{a}_{\mu}T_{a}\phi$$

Lagrangian

$$\mathcal{L}^{\mathcal{QCD}} \equiv -\frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + i \bar{d} D d$$

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a] + I dqbar.Ga[mu].DC[dq, mu]

FeynRules creates the "anti"-particle name

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

```
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]
```


In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`

Loading the model

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

```
CheckKineticTermNormalisation[L]
CheckMassSpectrum[L]
```

LoadModel[< file.fr >, < file2.fr >, ...] All the model files should be loaded at once

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L] $\left\{ \left(\begin{array}{ccc} A & 1 \\ GP & 2 \\ GP^{\dagger} & 3 \end{array} \right), ie \left(p_{2}^{\mu 1} - p_{3}^{\mu_{1}} \right) \right\} \\ \dots \\ \left\langle 0 \right| i \mathcal{L}_{I} | \text{fields} \right\rangle$

All momenta are incoming C. Degrande

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

> All momenta are incoming C. Degrande

 $\langle 0 | i \mathcal{L}_I | \text{fie}$

 $\left\{ \left(\begin{array}{cc} A & 1\\ \mathrm{GP} & 2\\ \mathrm{GP}^{\dagger} & 3 \end{array} \right), ie \left(\mathbf{p}_{2}^{\mu \mathbf{1}} \right) \right\}$

CheckHermiticity[L, options]

CheckDiagonalKineticTerms[L, options]

CheckKineticTermNormalisation[L, options]

$$\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^{2} \phi^{2} \qquad \frac{1}{2} \bar{\lambda} i \partial \!\!\!/ \lambda - \frac{1}{2} m \bar{\lambda} \lambda \qquad - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^{2} A_{\mu} A^{\mu} \\ \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^{2} \phi^{\dagger} \phi \qquad \bar{\psi} i \partial \!\!\!/ \psi - m \bar{\psi} \psi \qquad - \frac{1}{2} F^{\dagger}_{\mu\nu} F^{\mu\nu} - m^{2} A^{\dagger}_{\mu} A^{\mu}$$

CheckMassSpectrum[L, options]

Toolbox

ExpandIndices[L, options]

GetKineticTerms[L, options]

GetMassTerms[L, options]

GetQuadraticTerms[L, options]

GetInteractionTerms[L, options]

SelectFieldContent[L, list]

FeynRules outputs can be used directly by event generators

UFO : output with the full information used by several generators

Conventions

- FeynRules does not care which symbol is used
- However there are conventions for the translation to matrix element computation tools
 - α_S is hardcoded in most code (running) as well as other SM parameters (α_{EW⁻¹},G_F)
 - SU(3) representations
 - PDG numbering scheme, LHA block, ...

FeynRules takes care of all the conventions

Sherpa output

feynrules.dat: A static file, setting up the model in Sherpa.

Particle.dat: The list of all particles together with their properties.

- param_card.dat: LH-like file defining the numerical values of the external parameters.
- ident_card.dat: File linking the entries in param_card.dat to the variables used in the Sherpa code.
- param_definition.dat: File containing analytical expressions for all the internal parameters.
- Interactions.dat: File defining all the interaction vertices with their couplings.

Sherpa output

feynrules.dat: A static file, setting up the model in Sherpa.

Particle.dat: The list of all particles together with their properties.

param_card.dat: LH-like file defining the numerical values of the external parameters.

ident_card.dat: File linking the entries in param_card.dat to the variables used in the Sherpa code.

the internal para Interactions.dat: couplings.

param_definition.c 3 D[1,3] # colour structure 4 FFV # Lorentz structure

$$-\frac{i}{3}e\delta_{ij}\gamma^{\mu}\gamma_{+}-\frac{i}{3}e\delta_{ij}\gamma^{\mu}\gamma_{-}$$

Color or Lorentz structures of the SM and MSSM only

UFO

- Generic output with the **full** model information
 - coupling_orders.py, parameters.py, particles.py, write_param_card.py, __init__.py,
 - vertices.py, couplings.py, lorentz.py $ig_s T^a \gamma^{\mu}$ No basis, all the lorentz structures of the model
 - decays.py
 - CT_vertices.py, CT_couplings.py (For NLO)
- Python module used in MadGraph, Herwig, Gosam(, Sherpa)

UFO

vertices.py

Lorentz.py

couplings.py

Plan

- Field theory : a short reminder
 - free fields (KG details, Fermion)
 - Scattering matrix in perturbation
 - Wick theorem to Feynman rules
- Why Monte-Carlo/automated tools?
- Lagrangian to the Feynman rules
 - Model file : Parameters, fields, gauge group and Lagrangian
 - Running FeynRules

