FeynRules Tutorial

Celine Degrande (IPPP, Durham) Olivier Mattelaer (IPPP, Durham) Lund 2014

FeynRules

Output : vertices

FeynRules outputs

FeynRules outputs can be used directly by event generators

UFO : output with the full information used by several generators

The model: SM extension \mathbb{Z}_2 (SM Fields: +1) $SU(3) \times SU(2) \times U(1)_Y$ + $\phi_1 \sim (1, 1, 0)$ Jector-like $\phi_2 \sim (1, 1, 0)$ $U \sim (3, 1, 2/3)$ $E \sim (1, 1, -1)$

$$\mathcal{L}_{kin,scalar} = 1/2\partial_{\mu}\phi_{1}\partial^{\mu}\phi_{1} + 1/2\partial_{\mu}\phi_{2}\partial^{\mu}\phi_{2} - \frac{m_{1}^{2}}{2}\phi_{1}^{2} - \frac{m_{2}^{2}}{2}\phi_{2}^{2} - m_{12}^{2}\phi_{1}\phi_{2} + Kinetic/$$

$$\mathcal{L}_{dirac,mass} = M_{U}\overline{U}U + M_{E}\overline{E}E$$

 $\mathcal{L}_{FFS} = \lambda_1 \phi_1 \,\overline{U} P_R t + \lambda_2 \phi_2 \,\overline{U} P_R t + \lambda_1' \phi_1 \,\overline{E} P_R e + \lambda_2' \phi_2 \,\overline{E} P_R e + H.c.$

- Download FeynRules 2.0 from https:// feynrules.irmp.ucl.ac.be
- Copy the SM directory in feynrules/ models and rename it Tutorial
- Create a model file Tutorial.fr (text file)

Step 1 : model information

M\$ModelName = "Tutorial";

```
M$Information = {Authors -> {"C.
Degrande"},
Version -> "1.0",
Date -> "21. 07. 2014",
Institutions -> {"IPPP Durham"},
Emails ->
{"celine.degrande@durham.ac.uk"}
};
```

Step 2 : parameters

• 9 new external parameters : m_1 , m_2 , m_{12} , M_U , M_E , λ_1 , λ_2 , λ'_1 , λ'_2

See Step 3

```
M$Parameters = {
```

```
• • •
```

 $MM1 == {$

ParameterType -> External, Value -> 200},

```
····
};
```

Step 2 : parameters

• 9 new external parameters : m_1 , m_2 , m_{12} , M_U , M_E , λ_1 , λ_2 , λ'_1 , λ'_2

See Step 3

```
M$Parameters = {
```

```
MM1 == {
    ParameterType -> External,
    Value -> 200},
...
};
InteractionOrder ->{NP, 1},
```

• $3 \text{ internal parameters }: M_1, M_2, \vartheta$

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$

Interaction eigenstates

- ParameterType is Internal
- Value is a Mathematica expression

U	E	ϕ_1	ϕ_2	Φ_1	Φ_2
uv	ev	pi1	pi2	p1	p2

M\$ClassesDescription = {

},

```
F[100] == {
  ClassName -> uv,
  SelfConjugate -> False,
  Indices -> {Index[Colour]},
  QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
  Mass -> {Muv, 500},
  Width -> {Wuv,1}
```

U	E	ϕ_1	ϕ_2	Φ_1	Φ_2
uv	ev	pi1	pi2	p1	p2

M\$ClassesDescription = {

},

F[100] == {
 Id #: Unique (Check in SM.fr)
 ClassName -> uv,
 SelfConjugate -> False, Defined in SM.fr
 Indices -> {Index[Colour]},
 QuantumNumbers -> {Y -> 2/3, Q -> 2/3},
 Mass -> {Muv, 500},
 Width -> {Wuv,1}

U	E	ϕ_1	ϕ_2	Φ_1	Φ_2
uv	ev	pi1	pi2	p1	p2

M\$ClassesDescription = {

U	E	ϕ_1	ϕ_2	Φ_1	Φ_2
uv	ev	pi1	pi2	p1	p2

```
S[100] == {
  ClassName -> pi1,
  SelfConjugate -> True,
  Indices -> {},
  Unphysical -> True,
  Definitions -> {pi1 -> - Sin[th] p1 +
  Cos[th] p2}
},
```

\$FeynRulesPath =
 SetDirectory["~/feynrules"];
<< FeynRules`</pre>

SetDirectory[\$FeynRulesPath <> "/Models/ Tutorial"] LoadModel["SM.fr", "Tutorial.fr"]

LoadRestriction["DiagonalCKM.rst",
 "Massless.rst"]

$$\frac{1}{2}\partial_{\mu}\phi_{1}\partial^{\mu}\phi_{1} - \frac{1}{2}m_{1}^{2}\phi_{1}^{2}$$

1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2

$$\frac{1}{2}\partial_{\mu}\phi_{1}\partial^{\mu}\phi_{1} - \frac{1}{2}m_{1}^{2}\phi_{1}^{2}$$

1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2

$$i\,\bar{U}\gamma^{\mu}D_{\mu}U - M_U\bar{U}U$$

I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

Fermions anticommute

$$\frac{1}{2}\partial_{\mu}\phi_{1}\partial^{\mu}\phi_{1} - \frac{1}{2}m_{1}^{2}\phi_{1}^{2}$$

1/2 del[pi1, mu]del[pi1, mu] - 1/2 MM1^2 pi1^2

$$i\,\bar{U}\gamma^{\mu}D_{\mu}U - M_U\bar{U}U$$

I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

Fermions anticommute

$$\lambda_1 \phi_1 \, \bar{U} P_+ t$$

Defined in SM.fr

Lint:=lam1 pi1 uvbar.ProjP.t HC[Lint]

Step 5 : run FeynRules

vertices = FeynmanRules[LNew];

CheckMassSpectrum[LNew]

ComputeWidths[vertices];
PartialWidth[{uv, t, p1}]
TotWidth[uv]
BranchingRatio[{uv, t, p1}]

SetDirectory["~/mg5amcnlo/models"];
WriteUFO[LSM + LNew];