IUCLouvain

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Monte-Carlo Physics

Monte-Carlo Physics

Our goal

- Cross-section
- Differential cross-section
- Un-weighted events

Simulation of collider events

Simulation of collider events

Question time

 $\mathbf{1}$ **O** $\overline{2}$

Allez sur wooclap.com

Entrez le code d'événement dans le bandeau supérieur

Code d'événement **MADGRAPH**

Activer les réponses par SMS

To Remember

- ➡ New physics visible only at High scale
- ➡ Problem split in different scale
	- Factorisation theorem

Master formula for the LHC

*dx*1*dx*2*d*FS *fa*(*x*1*, µ^F*)*fb*(*x*2*, µ^F*) ⇥ $\hat{\sigma}_{ab \rightarrow X}(\hat{s},\mu_F,\mu_R)$

Parton-level cross section

Master formula for the LHC

 $f_a(x_1, \mu_F)f_b(x_2, \mu_F)\,\hat{\sigma}_{ab \rightarrow X}(\hat{s}, \mu_F, \mu_R)$

Parton density functions

Parton-level cross section

Master formula for the LHC

Parton densities

Perturbative expansion

$d\hat{\sigma}_{ab\rightarrow X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

• The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter, schematically:

$$
\hat{\sigma} = \sigma^{\text{Born}} \bigg(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi} \right)^3 \sigma^{(3)} + \dots \bigg)
$$

Perturbative expansion

$d\hat{\sigma}_{ab\rightarrow X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

• The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter, schematically:

$$
\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi} \right)^3 \sigma^{(3)} + \dots \right)
$$

Decidictions

Perturbative expansion

$d\hat{\sigma}_{ab\rightarrow X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter, schematically:

Including higher corrections improves predictions and reduces theoretical uncertainties

Improved predictions

$f_a(x_1,\mu_F)f_b(x_2,\mu_F)$ $\sum_{a,b}$ $d\sigma = \sum_{a,b} \int dx_1 dx_2 \; f_a(x_1,\mu_F) f_b(x_2,\mu_F) \, d\hat{\sigma}_{ab \rightarrow X}(\hat{s},\mu_F,\mu_R)$

$$
\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi} \right)^3 \sigma^{(3)} + \dots \right)
$$

- Leading Order predictions can depend strongly on the renormalization and factorization scales
- •Including higher order corrections reduces the dependence on these scales

Question time

 $\mathbf{1}$ **O** $\overline{2}$

Allez sur wooclap.com

Entrez le code d'événement dans le bandeau supérieur

Code d'événement **MADGRAPH**

Activer les réponses par SMS

To Remember

Monte Carlo Integration
Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$
\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)
$$

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$
\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n) \mathcal{L}^{\text{Dim}}[\Phi(n)] \sim 3n
$$

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$
\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n) \mathcal{L}^{\text{Dim}}[\Phi(n)] \sim 3n
$$

General and flexible method is needed

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$
\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n) \mathcal{L}^{\text{Dim}}[\Phi(n)] \sim 3n
$$

General and flexible method is needed

Not only integrating but also **generates events**

1000 0,636619 0,636

Question time

 $\mathbf{1}$ **O** $\overline{2}$

Allez sur wooclap.com

Entrez le code d'événement dans le bandeau supérieur

Code d'événement **MADGRAPH**

Activer les réponses par SMS

Monte-Carlo

Monte-Carlo

Monte-Carlo

Mattelaer Olivier Japan 2023 28

Why importance?

Why Importance Sampling?

We probe more often the region where the function is high!

Why importance?

Why Importance Sampling?

We probe more often the region where the function is high!

Why importance?

Question time

 $\mathbf{1}$ **O** $\overline{2}$

Allez sur wooclap.com

Entrez le code d'événement dans le bandeau supérieur

Code d'événement **MADGRAPH**

Activer les réponses par SMS

Key Point

- •Generate the random point in a distribution which is close to the function to integrate.
- •This is a change of variable, such that the function is flatter in this new variable.
- Needs to know an approximate function.

Adaptative Monte-Carlo

•Create an approximation of the function on the flight!

Adaptative Monte-Carlo

•Create an approximation of the function on the flight!

Algorithm

- 1. Creates bin such that each of them have the same contribution.
	- ➡Many bins where the function is large
- 2. Use the approximate for the importance sampling method.

More than one Dimension

- VEGAS works only with 1(few) dimension
	- ➡memory problem

More than one Dimension

- VEGAS works only with 1(few) dimension
	- ➡memory problem

Solution

•Use projection on the axis

 $p(x)=p(x)\cdot p(y)\cdot p(z)...$ →

More than one Dimension

- VEGAS works only with 1(few) dimension
	- ➡memory problem

Solution

•Use projection on the axis

$$
\overrightarrow{p}(x) = p(x) \cdot p(y) \cdot p(z) \dots
$$

More than one Dimension

- VEGAS works only with 1(few) dimension
	- ➡memory problem

Solution

•Use projection on the axis

$$
\overrightarrow{p}(x) = p(x) \cdot p(y) \cdot p(z) \dots
$$

Multi-channel

What do we do if there is no transformation that aligns all integrand peaks to the chosen axes? Vegas is bound to fail!

Multi-channel

What do we do if there is no transformation that aligns all integrand peaks to the chosen axes? Vegas is bound to fail!

Solution: use different transformations = channels

$$
p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \text{with} \qquad \sum_{i=1}^{n} \alpha_i = 1
$$

with each $p_i(x)$ taking care of one "peak" at the time

Multi-channel

Example: QCD 2 → 2

hroo vory dif \overline{a} \overline{b} \overline{c} $\overline{$ 1. 1. C Three very different pole structures contributing to the same matrix element.

Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

- **–** Any single diagram is "easy" to integrate (pole structures/suitable integration variables known from the propagators) \approx 1
- **–** Divide integration into pieces, based on diagrams
- **–** All other peaks taken care of by denominator sum

Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

- **–** Any single diagram is "easy" to integrate (pole structures/suitable integration variables known from the propagators) \approx 1
- **–** Divide integration into pieces, based on diagrams
- **–** All other peaks taken care of by denominator sum

N Integral

- **–** Errors add in quadrature so no extra cost
- **–** "Weight" functions already calculated during |*M*|2 calculation
- **–** Parallel in nature

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

P1 qq wpwm

 $s=725.73 \pm 2.07$ (pb)

P1 gg wpwm

 $s=20.714 \pm 0.332$ (pb)

term of the above sum.

each term might not be gauge invariant

Question time

 $\mathbf{1}$ **O** $\overline{2}$

Allez sur wooclap.com

Entrez le code d'événement dans le bandeau supérieur

Code d'événement **MADGRAPH**

Activer les réponses par SMS

To Remember

- Phase-Space integration is difficult
- We need to know the function
	- \rightarrow Be careful with cuts
- MadGraph split the integral in different contribution linked to the Feynman Diagram

 \rightarrow Those are not the contribution of a given diagram

Can we do Better?

- •Importance sampling/VEGAS is learning a function
	- ➡ HOT TOPIC: Machine Learning
	- ➡ Lot of work in progress

VEGAS

Can we do Better?

- •Importance sampling/VEGAS is learning a function
	- ➡ HOT TOPIC: Machine Learning
	- ➡ Lot of work in progress

Event Generation

What is the goal?

• Cross-section

•But large theoretical uncertainty

• Differential Cross-Section

- Provided as sample of events
- •Sample size is problematic
	- Those events will need to have full detector simulation

How to get sample?

Do we need to keep small weight? the estional

• Discard events below the minimum

Do we need to keep small weight? the estional

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself

• Let's put a minimum

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself

• Let's put a minimum

threshold $* 50$ \blacksquare . But keep 50% of the events below

• Let's put a minimum

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself

• Let's put a minimum

- But keep 50% of the events below
- Multiply the weight of each event by 2 (preserve cross-section)

• Let's put a minimum

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself

• Let's put a minimum

- But keep 50% of the events below
- Multiply the weight of each event by 2 (preserve cross-section)
- We loose information
- But we gain in file size

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

• We could reject more event (change X) where the function is small

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

• Let's improve

• Let's make the threshold proportional to the weight

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)

• Let's improve

• Let's make the threshold Threshold proportional to the weight

Let's put a threshold

- But keep X*100% of the events below
- Multiply the weight of each event by 1/X (preserve cross-section)
- Let's improve
	- Let's make the threshold proportional to the weight
	- Keep each event with probability

 0.2

#100

 0.8

 0.6

 0.4

 0.2

Threshold

 0.4

 0.6

wmin

 0.8

Let's put a threshold

• Multiply the weight of each event by 1/X (preserve cross-section)

• Let's improve

- Let's make the threshold proportional to the weight
- Keep each event with probability
- If kept multiply his weight by *wthres*

w

100*w*

 $\%$

wthres

Let's put a threshold

• Multiply the weight of each event by 1/X (preserve cross-section)

• Let's improve

• Let's make the threshold proportional to the weight

• If kept multiply his weight by *wthres*

• So the new weight is w_{thres}

w

 $\%$

Let's put a threshold

• Multiply the weight of each event by 1/X (preserve cross-section)

• Let's improve

- Let's make the threshold proportional to the weight
- Keep each event with probability *wthres*
- If kept multiply his weight by *wthres*
- So the new weight is w_{thres}

w

100*w*

 $\%$

Unweighted events

Mattelaer Olivier Japan 2023

O

Unweighted events

Events distributed as in nature

 $\left(\frac{\ }{\ }$

- Let's make the threshold proportional to the weight
- \cdot So the new weight is w_{thres}

- Let's all event have the same weight
	- So set $w_{thres} > \max(w)$
- Maximal compression

$$
\int f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w_{thres}} w_{thres}
$$

1. pick *xi*

2. calculate $f(x_i)$

$$
\int f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w_{thres}} w_{thres}
$$

1. pick *xi*

2. calculate $f(x_i)$

3. pick *y* ∈ $[0, max(f)]$

$$
\int f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w_{thres}} w_{thres}
$$

- 1. pick *xi*
- 2. calculate $f(x_i)$
- **3.** pick *y* ∈ $[0, max(f)]$
- 4. Compare: if $y < f(x_i)$ accept event,

$$
\int f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w_{thres}} w_{thres}
$$

- 1. pick *xi*
- 2. calculate $f(x_i)$
- **3.** pick *y* ∈ $[0, max(f)]$
- 4. Compare: if $y < f(x_i)$ accept event,
	- else reject it.

• Having smaller variance (flatter function) also allows to have $\frac{m}{n}$ or $\frac{m}{n}$ closer to one and therefore better unweighting efficiency (i.e. faster code) *w wthres w max*(*w*)