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Chapter 1

Introduction

HELAS ! 2 (HELicity Amplitudes Subroutines) is a set of FORTRAN77 subroutines
which enable us to compute the helicity amplitudes of an arbitrary tree-level
Feynman diagram with a simple sequence of CALL SUBROUTINE statements.

1t is easy to write down a FORTRAN program to calculate the helicity
amplitudes of a given process by calling HELAS subroutines. For instance,
the helicity amplitudes of the process WtW~ — ¢l can be evaluated by
the following program with just 11 lines. First, the two incoming (W* and
W~) and the two outgoing (¢ and f) particle wavefunctions are calculated by
calling the following 4 subroutines:

CALL VXXXXX(PWM,WMASS,NHWM,-1 , WM)
CALL VXXXXX(PWP,WMASS,NHWP,-1 , WP)
CALL OXXXXX(PT ,TMASS,NHT ,+1 , FO)
CALL IXXXXX(PTB,TMASS,NHTB,-1 , FI)

Second, the 4 Feynman diagrams of Fig. 1 (see page 9) are calculated with
the following 6 lines:

CALL J3XXXX(FI,FO0,GAU,GZU,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WP,WM,J3,GW , AMPS)

CALL FVIXXX(FI,WM,GWF,0.,0. , FVI)

CALL IOVXXX(FVI,FO,WP,GWF , AMPT)

1This name has nothing to do with the ancient Greek ‘EAAag’ since Greek is completely
Greek to us.
?[heldsd] means to decrease in Japanese. Does HELAS decrease your tasks?

1



2 Chapter 1. Introduction

CALL HIOXXX(FI,F0,GCHT,HMASS,HWIDTH , HTT)
CALL VVSXXX(WM,WP,HTT,GWWH , AMPH)

Finally, the helicity amplitudes are obtained by adding the above sub-amplitudes

AMP = AMPS + AMPT + AMPH.

The meaning of each line will become clear in the next chapter {Sect. 2.3).

Even the program to compute the helicity amplitudes of the process
e"et — e p,W+Z, which has 80 Feynman diagrams, has only 65 lines of
CALL sentences (see Appendix B.6 for a sample program). This compactness
of the helicity amplitude programs i1s the main advantage of using HELAS.

Another advantage of the HELAS system is that it is very easy to allow ex-
ternal heavy particles to decay into light quarks and leptons without loosing
the spin correlation. This is achieved simply by replacing the relevant exter-
nal wavefunction subroutine by a sequence of HELAS subroutines describing
the decay chain. Then the above program can be used as a kernel for all
branching processes without modification. For instance, it is straightforward
to extend the above program to calculate the amplitude for the sequential
process WIW~— — t: t — bW, i - bW Wt - wd W™ — 77057 —
vray;a; — 7w, Correlation among the 9 external particles (b, b, u,d, v, 7,
and three 7’s) is automatically kept at all kinematical configurations. Simi-
larly, by replacing an initial state wavefunction by a sequence of subroutines
describing an initial state splitting, the program can calculate the essential
part of the fusion process ete™ — v D tt.

The cross sections are then calculated by linking the above amplitude
program with HELAS and a main program which generates the four-momenta
and helicities of external particles. For each phase space point and for each
helicity combination, the amplitude program calculates the helicity ampli-
tude by calling HELAS. The main program should then square the amplitude
and sum over phase space and all possible helicity combinations. For this
purpose, you can use your favorite Monte Carlo integration program such as
VEGAS [1] or BASES [2].

To summarize, you can calculate cross sections of an arbitrary process
with the help of HELAS as follows;

¢ Draw the Feynman diagrams contributing to the process.



o Write the amplitude program as asequence of CALL HELAS-Subroutine

lines.

¢ Prepare the four-momenta and helicities of the external particles in a

given reference frame.

‘e Calculate the amplitude, square it, and sum over phase space and he-

licities using a standard integration program.

That’s all you have to do. The following characteristics of the HELAS system
are worth noting.

1.

By using the standard HELAS subroutines only, you can calculate arbi-
trary tree-level helicity amplitudes of the standard model.

. In order to minimize the number of Feynman diagrams, the weak boson

propagators are given in the unitary gauge form. Numerical accuracy
of the program is found to be good up to a few TeV in the weak boson
pair invariant mass (see Sect. 2.5).

. In order to make the program run fast, all the standard HELAS sub-

routines, except those of the 4-vector boson vertices, use only single
precision manipulation. Subtle gatge theory cancellations are treated
carefully to ensure the reliability of the single precision computation

(see Sects. 2.4, 2.5).

Numerical accuracy of the program can be tested by the double pre-
cision version DHELAS, which contains COMPLEX#32 numbers in the 4-
vector boson vertices and may not be supported by all systems. DHELAS

has been written by J. Kanzaki and is available from him on request
(Bitnet address: kanzaki@jpnkekvx).

. No effort has been made to develop efficient subroutines for purely glu-

onic vertices. 3-and 4-gluon vertices are handled merely as a special
case of the 3- and 4-weak boson vertices. The QCD gauge coupling con-
stant and the color factors should be supplied by the user {see Sect. 2.9).

It is relatively ecasy to add a user-made subroutine for the non-standard
vertices expected.in many extensions of the standard model and also
in the loop-level corrections {see Sect. 2.9).
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If you want to learn how to use HELAS as quickly as possible, then we advise
you to read only Chap. 2, and after that try to use the example programs.
This will make you familiar with most of the HELAS subroutines. We will
present some examples of the typical use of HELAS and they will be sufficient
for you to start using the HELAS subroutines.

In Chap. 3, the subroutines in HELAS are explained separately in much
more detail. We believe that you don’t have to read the chapter until you
wish to modify HELAS to include non-standard couplings and new particles.

You may worry whether your program written with HELAS is correct or
not. The programs of HELAS_CHECK have been made to help you find bugs.
Its use is just the same as HELAS, except that you should link HELAS_CHECK
instead of HELAS when you compile the program. Then HELAS_CHECK will
test the consistency of all the inputs of the subroutines. If there appears
to be something wrong with the inputs, HELAS_CHECK will tell you either
HELAS-ERROR or HELAS-warn. They will be displayed on your terminal, and
you can find their meanings in Chap. 4.

We have summarized our conventions for spinors, polarization vectors and
coupling constants in Appendix A. Various example programs are presented
in Appendix B, in which brief comments are given on what you should re-
member when programming amplitudes with HELAS. Appendix C contains a
list of HELAS subroutines, HELAS.LIST1 and HELAS.LIST2. Once you have
read through Chap. 2, then all you need is HELAS.LIST1, which contains the
list, as well as brief descriptions, of the inputs and outputs of each HELAS
subroutine. When you become accustomed to HELAS, a much shorter list,
HELAS.LIST2, will suffice when coding programs.

The subroutine packages HELAS .FOR and HELAS _CHECK .FOR, together with
HELAS.LIST1, HELAS.LIST2 and the example programs that appear in Ap-
pendix B, are available on request from the authors {Bitnet address: mu-
rayama@jpnkekvx).

Acknowledgments:

We would like to thank B.K. Bullock, H. Twasaki, J. Kanzaki, A. Miyamoto,
D. Zeppenfeld, and the members of the JLC (Japan Linear Collider) physics
working group for collaborations that contributed to the present form of
HELAS. We also thank Ben Bullock and Neil McDougall for many useful com-
ments on the manuscript.



Chapter 2

How to use HELAS

In this chapter, we will describe the use of the HELAS package, using the
process :

WIW~ = (2.1)

as an example. We believe that reading this chapter is enough for learning
the basic use of HELAS.

2.1 Basic Idea

Let us first discuss the general characteristics of tree-level diagrams. As
can be seen from the word ‘tree’, they have a common structure. However
there may be many external lines. As they approach the centre of Feynman
diagrams, the external lines meet to give an off-shell internal line, and then
meet again to make another internal line, until all the lines meet at a single
point.

The basic idea of HELAS is to begin with the external lines by creating the
wavefunctions explicitly using a fixed notation, and to give rules to join the
lines. You may suppose that there are too many possibilities for a complete
set of joining rules but in fact they can all be classified into a finite set in
renormalizable theories. We will show all the possible rules of renormalizable
theories in Table 2.1.

Thus the package basically consists of two parts: wavefunctions and ver-
tices. Then the amplitudes can be computed as follows; first, the external

5



6 Chapter 2. How to use HELAS

Table 2.1: List of the possible vertices in renormalizable theories. All these
vertices are incorporated in the HELAS system.

Vertex interaction
FFV | vector or axial vector couplings
FF3 Yukawa couplings
VvV Yang-Mills couplings
VVS Higgs interaction
38V scalar gauge couplings
558 scalar self-couplings
VVvv Yang-Mills couplings
VVSS | scalar gauge couplings (seagull)
5555 scalar self-couplings

wave functions are evaluated as functions of the particle momenta and helic-
ities. Second, off-shell scalar/spinor/vector (S/F/V) lines obtained from the
external lines via renormalizable vertices are evaluated as functions of the
external wave functions. This second step can be repeated, giving internal
off-shell lines as functions of external off-shell lines, until all the off-shell lines
meet. We will first present the list of necessary subroutines, and then discuss
their application.

2.2 List of Subroutines

In this section, we will explain what kind of subroutines are provided in the
HELAS package. The whole package can be divided into three areas;

o External lines
¢ Vertices
e Utilities

The external lines are computed with the subroutines IXXXXX, OXXXXX,
VXIXXZX and SXXXXX from input four-momenta and helicities.

As discussed in the first section, the number of possible renormalizable
vertices in quantum field theory is finite. For each type of vertex, we can
obtain either one off-shell internal line, or an amplitude. Detailed description
of each subroutine is found in Chapter 3.




2.2. List of Subroutines

Table 2.2: List of 'External Lines’ Subroutines

l External line | Subroutine |
Flowing-In Fermion IXXXXX
Flowing-0ut Fermion DXXXXX
Vector Boson VXXXXX
Scalar Boson SXXXXX

Table 2.3: List of the vertex subroutines in HELAS system.

[ Vertex | Inputs | Output | Subroutine |
FFV | FFV | Amplitude TOVEXX
FF¥ V JIOXXX, J3XXXX
FV F FVIXXX, FYOXXX
FFS FFS | Amplitude I0SXXX
F¥ S HIOXXX
F3 F FSIXXX, FSOXXX
VVV | VVV | Amplitude VYVIXX
Vv Vv JVVIXX
VVS VVS | Amplitude VVSXXX
Vs - v JVSXXX
LAY S HVVXXX
VSS VSS | Amplitude VSSXXX
58 v JS8XXX
%A 3 HVSXXX
555717 SSS | Amplitude SSSXXX
85 S HSSXXX
VVVV | VVVV | Amplitude | WWWWXX, W3W3XX
VvV v JWWWXEX, JW3WXX
VVSS | VVSS | Amplitude VVSSXX
VSS Vv JVSSXX
A% S HVVSXX
85585 SSSS | Amplitude S888iX
585 . S HSSSXX
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Table 2.4: List of ‘Utility’ Subroutines

Utilities for Momentum Manipulations:

p*(energy,mass,costh,phi) : set Up momentum | MOMNTX
7 & ph : set up two momenta in c.m. frame | MOM2CX
Pboosted : Lorentz boost of momentum | BOOSTX
Protated : rotation of momentum | ROTXXX
Standard Model Coupling Constants: '

for VVV,VVVV vertices CQUP1X
for FFV vertices COuP2X
for VV5,388,VVSS,5558 vertices COUP3X
for FFS vertices COUP3X

The special subroutines provided to compute the singularities from elec-
tron-photon coupling are EATXXX, EAOXXX, JEEXXX.

There are also some utility subroutines. Most of them are for dealing with
phase space variables and kinematics. These can compute four-momenta
from angles, and can also rotate or boost four-momenta. In Appendix B.5,
we demonstrate their use in the calculation of e”et — e~ P, W,

The rest of the utilities are coupling subroutines for the Standard Model.
The outputs of these subroutines should be regarded as templates for defin-
ing the couplings appropriate for the HELAS subroutines. COUP1X computes
couplings among gauge bosons, COUP2X gauge couplings of fermions, COUP3X
the Higgs and gauge boson couplings, and COUP4X computes Higgs couplings
to fermions. These subroutines provide all possible coupling constants in
the Standard Model except for modification by Kobayashi-Maskawa matrix
elements, which should be multiplied with the amplitudes ‘by hand’ outside
the subroutines.

2.3 Example: WW~ — tt

To show how HELAS subroutines are used, we will present part of an example
program in this section. The complete example program will be presented
later.

The Feynman diagrams of the process WTW ™~ — ¢ are presented in
Fig. 1. There are four Feynman diagrams. The first diagram, with ¢-channel
bottom quark exchange, will be referred to as the ¢-channel diagram. The
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r—"

E i t 1 t
g B é + § + //;\H\\\
W W+ w- w+ W-— W+
(a) (b) (c)

Figure 1: Feynman diagrams for the process W*W™ — ti.

next two diagrams with s-channel photon and Z exchange, will be called s-
channel diagrams. We will call the last diagram with s-channel Higgs boson
exchange the Higgs diagram. All these diagrams can be computed with just
the following CALL sequences.

As mentioned in the previous section, we start from the external lines.

We call the following subroutines to compute the external wavefunctions of
~ the initial W—, W™, and final ¢, £.

CALL VEXXXX(PWM,WMASS,NHWM,-1 , WM)
CALL VXXXXX(PWP,WMASS,NHWP,-1 , WP)

and

CALL OXXXXX(PT ,TMASS,NHT ,+1 , FO)
CALL IXXXXX(PTB,TMASS,NHTB,-i , FI)

The subroutine VXXXXX computes the wavefunction of a vector boson {polar-
ization vector), IXXXXX the flowing-In spinor (u- or v-spinor), and OXXXXX the
flowing-0ut spinor (&@- or ¥-spinor). Here, the inputs are the four-momenta
of the external particles PWM(0:3), PWP(0:3), PT(0:3), PTB(0:3) of W~
(WMinus), W+ (WPlus), -t (Top) and £ (TBar), respectively. WMASS and TMASS
are the masses of W and ¢. NHWM, NHWP, NHT, NHTB are their helicities.



10 Chapter 2. How to use HELAS

Table 2.5: An example HELAS program to compute the amplitude W‘W"‘ —
tt. |

C
C The initial state wavefunction of the W’s:
C
CALL VXXXXX(PWM,WMASS,NHWM,-1 , WM)
CALL VXXXXX(PWP,WMASS,NHWP,-1 , WP)
C
C The final state wavefunction of top and tbar.
C
CALL OXXXXX(PT ,TMASS,NHT ,+1 , FO)
CALL IXXXXX(PTB,TMASS,NHTB,-1 , FI)
C
C First, we compute the t-channel bottom exchange diagram.
c
CALL FVIXXX(FI,WM,GWF,0.,0. , FVI)
CALL IOVXXX(FVI,FO,WP,GWF , AMPT)
c :

C Next we compute the s-channel Z, photon exchange diagram.

CALL J3XXXX(FI,F0,GAU,GZU,ZMASS,ZWIDTH 13}

CALL VVVIXX(WP,WM,J3,GW , AMPS)
C Finally we compute the s-channel Higgs exchange diagram.

CALL HIOXXX(FI,FO,GCHT,HMASS,HWIDTH , HTT)
CALL VVSXXX(WM,WP ,HTT,GWWH , AMPH)



2.3. Example: WtW~ — tt 11

Note that helicities £1/2 of fermions will be referred to as +1. The final
input requires some explanation. For vector bosons and scalar bosons, +1
means that they are flowing out from the Feynman diagram (hence final
state particles), and -1 the contrary.! For fermions, +1 means that it is a
particle (u- or @-spinor) while -1 means an anti-particle (v- or 7-spinor). The
wavefunctions will be contained in the outputs WM(6) ,WP(6), FO(6), FI(6).
Actually, the four-momenta of the external lines are also contained in these
output arrays.
The t-channel diagram Fig. 1(a) is very simple.

CALL FVIXXX(FI,WM,GWF,0.,0. , FVI)
CALL IOVXXX(FVI,FO,WP,GWF , AMPT)

The subroutine FVIXXX computes the internal fermion lines from the flowing-
In fermion FI (final f) and a Vector boson WM (initial W™—). GWF is the charged
current coupling universally to all fermions. The next two inputs are the mass
and width of the off-shell bottom quark, which we are neglecting. Then the
output off-shell spinor FVI is combined with the flowing-Out spinor F0 (final

t) and vector boson WP (initial W) to obtain the T-matrix element AMPT,
by using the ‘amplitude’ subroutine IOVKXX. You can find exactly the same
amplitude by first combining W with ¢;

CALL FVOXXX(F0,WP,GWF,0.,0. , FVD)
CALL IOVXXX(FI,FVOD,WM.GWF , AMPT)

which gives the same answer.
The s-channel diagram Fig. 1(b) is computed as follows

CALL J3XXXX(FI,F0,GAU,GZU,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WP,WM,J3,GW , AMPS)

The subroutine J3XXXX computes the weighted sum of the photon and Z
currents emerging from fermion lines. The subroutine VVVXXX computes the
Feynman amplitudes from three vector bosoms. FI, F0, WM, WP are the
external wavefunctions obtained above. You can already see here the general
rules of using HELAS. You combine several external lines (here, FI, FO) to
obtain internal lines (here, J3, off-shell photon and Z current) including their
propagators, and the computed internal lines can be used again to compute
further internal lines (not necessary here). Finally, you take several external
or internal lines to compute the T-matrix elements (here, AMPS).

1We use the terms flowing-in and flowing-out as seen from the vertex. On the other
hand, incoming particles are the initial states while outgoing particles are the final states.
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The use of J3XXXX requires more explanation. The current from the top
quark line here will couple to W-bosons with the gauge boson non-abelian
vertex, hence only the combination

W3 = A, sinfy + Z, cos Oy (2.2)

is relevant. J3XXXX automatically takes this combination. If you want to do
this in a different way,

CALL JIOXXX(FI,FO,GZU,ZMASS,ZWIDTH , JZ)
CALL JIOXXX(FI,FG,GAU,0. ,0. , JA)
CALL VVVXXX(WP,WM,JZ,GWWZ , AMPSZ)

CALL VVVXXX(WP,WM,JA,GWWA , AMPSA)

AMPS = AMPSZ + AMPSA

will do exactly the same job. The subroutine JIOXXX computes any J {vector
current) from flowing-In and flowing-Out fermions. However, if you don’t
need to compute the Z- and photon-exchange amplitudes separately, it is
always better to use J3XXXX since the cancellation between Z- and photon-
exchange is done analytically in J3XXXX when possible, which makes J3XXXX
better numerically than computing the Z- and photon-exchange amplitudes
separately and adding them afterwards.

As you may have guessed, GZU and GAU are coupling constants of Up-
type quarks to the Z (Z-boson) and & (photon). GWWZ and GWWA are the
coupling constants of W (W-boson) with Z and A. The ordering of the three
input vectors in VVVXXX is essential to fix the sign of the amplitude, due
to the anti-symmetry of the structure coustants of the SU(2) Lie group.
It should be W, W, W?3 for flowing-out vectors; see subsection 3.4.1 in
the next chapter for details. In this case, WP is an incoming W™ boson, or
equivalently, it is a flowing-out W~ boson as seen from the vertex. Thus, WP

takes the first position in the subroutine VVVEXX.
The Higgs diagram Fig. 1(c) is also very simple.

CALL HIOXXX(FI,F0,GCHT,HMASS,HWIDTH , HTT)
CALL VVSXXX(WP,WM,HTT,GWWH , AMPH)

The subroutine HIOXXX computes the off-shell scalar wave function (generi-
cally denoted H), analogous to JIOXXX for the vector case. The output off-shell

scalar is combined with initial W—, W using VVSXXX to obtain the T—matnx
element AMPH. Or, we can combme the vector bosons first, as
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CALL HVVXXX(WP,WM,GWWH, HMASS HWIDTH , HWW)
CALL IOSXXX(FI,FO,HWW,GCHT , AMPH)

The ordering of the two vectors in VVSXXX and HVVXXX is arbitrary. Now
the calculation of all the diagrams is complete, and the helicity amplitude is

simply the sum AMPT + AMPS + AMPH. :

In the above, we showed two different ways to calculate the s-channel
amplitude AMPS. It is instructive to see that you can easily find yet another
expression to obtain the same amplitude.

CALL JVVXXX{WP,WM,GUWZ,ZMASS,ZWIDTH , JZWW)
CALL JVVIXX(WP,WM,GWWA,0. ,0. , JAWW)
CALL IOVXXX(FI,FO,JZWW,GZU , AMPSZ)

CALL IOVXXX(FI,FO,JAWW,GAU , AMPSA)

AMPS = AMPSZ + AMPSA

Here the subroutine JYVXXX computes the off-shell vector currents from the

two vector bosons.
The coupling constants which appeared in this section are computed by
CALLing the COUP subroutines.

CALL COUP1X(SW2 , GW,GWWA,GWWZ)

CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)

CALL COUP2X(SW2,ZMASS,HMASS , GWWH,GZZH,CGHHHE,GWWHH,GZZHH,GHHHH)
CALL COUPAX(SW2,ZMASS,TMASS , GCHT)

The inputs required here are SW2 (sin®fy), ZMASS, HMASS, TMASS. The
weak-scale fine-structure constant o = 1/128 is built-in. - If you need to
use a = 1/137 instead, you modify this by multiplying the final amplitude
with the appropriate power of 128/137.

As we have shown with this simple (but non-trivial) example, there are
always many ways to compute one 7-matrix element. This provides a useful
check of the numerical accuracy of HELAS. For most electroweak processes,

the subroutines we described in this example should be suflicient.

One point should be noted concerning the VVVV vertex. In any process
which possesses the four-vector-boson vertex, there also appear two of the
t-, s- or u-channel vector boson exchange diagrams as well. Furthermore, it
~ is well known that there is a cancellation between those diagrams. To make
the numerical accuracy better even in the presence of such a cancellation,
we combined all the VV — V'V diagrams into a single subroutine, which is
computed using double precision internally. By combining three diagrams
into a single subroutine, the HELAS program is made more compact. For
example, two-photon production of a W-pair can be computed with a single
subroutine W3W3XX,
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CALL VXXXXX (PWM,WMASS,NHWM,+1 , WM)
CALL VXIXXX(PWP,WMASS,NHWP,+1 , WP)
CALL VXXXXX(PA1,0. ,NHAl1,-1 , A1)
CALL VXXXXX(PA2,0. JNHAZ, -1 , A2)

CALL W3W3XX(WHM,A1,WP,A2,GWWA,GWWA,WMASS,WWIDTH , AMP)

That's all. Here, first four VXXXXX’s compute the wavefunctions of WMinus,
WPlus, photon #1 (A1) and photon #2 (A2) from their four-momenta (PWM,
PWP, PA1, PA2) and their helicities (NHWM, NHWP, NHA1, NHA2). Then W3W3XX
computes their four-point scattering amplitude, including #- and u-channel
W exchange. Further examples are given in Appendix B.

2.4 Collinear Singularities

Though the subroutines we described in the last section may be sufficient for
most purposes, we may also encounter collinear photon singularities. Since
such singularities appear mostly for the electron-photon couplings with an
electron initial state, it is useful to have a numerically safe expression for the
collinear photon or electron emerging from the initial electron beam. Even
though the quantitative predictions for such a configuration require careful
treatment of the QED radiative effects, we find it very useful to be able to
compute accurately exact tree-level amplitudes with such singularities.

The simplest process with such a singularity is e"e™ — Z+, where the
t-channel electron propagator produces a singularity. We provide special
subroutines EAIXXX, EAOXXX for this purpose. By using the usual HELAS

subroutines FVIXXX and FVOXXX described in the previous section, you can
evaluate the amplitudes by

C External lines
CALL IXXXXX(PEM,EMASS,NHEM,+1 , FI)
CALL DXXXYXX(PEP,EMASS,NHEP,-1 , FO0)
CALL VXXXXX(PZ ,ZMASS,NHZ ,+1 , Z )
CALL VXXXXX(PA ,0. JNHA ,+1 , &)
C 1st amplitude
CALL FVIXXX(FI,A,GAL,EMASS,0. , FVI)
CALL IOVXXX(FVI,F0,Z,GZL , AMP1)
C 2nd amplitude
CALL FVOXXX(FO,A,GAL,EMASS,0. , FVD)
CALL IOVXXX(FI,FVD,Z,GAL , AMP2)

However, this program will suffer from numerical errors when computing the
electron propagators in FVIXXX, FVOXXX. (See Appendix A.4 for a detailed
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explanation of the numerical problem associated with the collinear configu-
rations.) This problem is resolved by using the special subroutines EAIXXX,
EAOXXX for the particular yee vertex. You can now compute the above am-
plitude as follows:

C External lines
CALL VXXXXX(PZ,ZMASS,NHZ,+1 , Z)
C 1st amplitude
CALL EAIXXX(ER,EA,SHLF,CHLF,PHI,NHEM,NHA , EAI)
CALL IOVXXX(EAI,FD,Z,GZL , AMP1)
C 2nd amplitude
CALL EAOXXX(EB,EA,SHLF,CHLF,PHI ,NHEP,NHA , EAQ)

CALL IOVXXX(FI,EAD,Z,GZL , AMP2)

The subroutine EAIXXX computes the off-shell electron line from an initial
electron with four-momentum EB(1, 0, 0, 3) (EB is the Energy of the Beam),
by emitting a photon with energy EA at polar angle 8. The inputs SHLF,
CHLF are sin{#/2) and cos(6/2) respectively, which are found to be useful in
efficiently evaluating the electron propagator factor to the necessary accuracy.
EADXXX does the same job from the initial positron with four-momentum
EB(1, 0, 0, —23).

A similar singularity occurs for off-shell photons emitted from the initial
electron or positron line. If you use the standard HELAS subroutine JIDXXX
for such a configuration, then you will encounter a severe numerical problem
because of the subtle gauge theory cancellation. In order to compute ac-
curately the amplitude with nearly on-shell photon propagators, we provide
you with another special subroutine JEEXXX. In this subroutine, the output
current is modified to avoid this subtle gauge cancellation by shifting a term
proportional to its four-momentum ¢* :

Tl le) = S-St (23

We note here that it is nontrivial to prove that the above modification leaves
the helicity amplitudes invariant in the electroweak theory, especially when
two incoming off-shell photon lines are replaced by the above shifted currents.
(We give a proof [3] based on the BRS invariance [4] of the electroweak theory
in Appendix A.4.) The subroutine JEEXXX can be used in much the same way
as the other special subroutines EATXXX, SAOXXX. (We give an example of
its use in Appendix B.4, where we show an example program for calculating
the process e”e™ — v,eTW™.)
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2.5 Numerical Accuracy

The numerals used in HELAS are INTEGER*2, REAL*4 and COMPLEX*8. # The
output amplitudes or currents are given in the single precision complex num-

ber COMPLEX*8 {or its array).

The HELAS program has been coded with a great deal of care, in order that
it does not lose numerical accuracy. For example, in getting SINTH (= sin.§)
from COSTH (= cos ), we adopted

SINTH = SQRT({1.0-COSTH)*{L{.0+COSTH))
rather than

SINTH = SQRT(L.0-COSTH#*2)

which is less accurate at JCOSTH| ~ 1.0. Furthermore, the gauge cancella-
tions and collinear singularities have been prudently treated in VVVIXX® and
EAIXXX, EADXXX, JEEXXX subroutines; see Chapter 3 and Appendix A for the
details.

The numerical accuracy of the HELAS outputs is evaluated in the process
ere; — W[ W7. There are two diagrams in this process, i.e. t-channel by
v, exchange and s-channel with W* current. Each amplitude is given as

2 3
G 8 . 2cos@—-38+p
= —=% 6 2.4
M. 4 m%vsm- 1482 —2Fcosb’ (24)
2 L2
Iw S5 . N 1/2 —sin® Oy \
= 2% sinfB{(3 — e :
M, ey sin96(3 — 3°) (sm Ow + [ mils ) (2.5)

where sin § and 3 are the scattering angle and the velocity of the W—. Note
here that both amplitudes are proportional to s/m2, in the high energy limit.
However, the sum of above two behaves as a constant asymptotically, due to
the gauge cancellation between the two diagrams.

M = M+ M,
gy s sin 4
4 s—m2 1+ p8%—28cosh

203(3 — %) — 4(2 — %) cos

ZAs a special case, REAL*8 and COMPLEX*16 are used inside the four-point vector cou-
pling type subroutines WWWWXX, JWWWXX, W3W3XX and JW3WXX, since there may be a severe
gauge cancellation at these vertices.

3We do not take special care with the JVVXXX subroutine.
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p)
my

——TT—L?V— {(3,6 — 3% — 2cos8) —sin® 8y B3(3 — B7)(1 + 8% - 23 cosB)}].
(2.6)

Thus, there is a cancellation of order O(s/m3,) which is about 10? at /s =
1 TeV, and 10* at /s = 10 TeV.

Since HELAS computes amplitudes diagram by diagram, it is impossible
to make it do efficiently the gauge cancellation between diagrams of different
structure. Thus, the HELAS output may not reproduce the required cancella-
tion in the above process. We first study the numerical accuracy of the HELAS
output by comparing it with the above analytic formula for the process

ep +et — Wi + Wy (2.7)

The program which produces the momenta and the amplitude can be
written as follows.

C nmomenta of beam e~ and e+

CALL MOM2CX{RDOTS,EMASS,EMASS, +1.0,0.0 , PEM,PEP)
c
C momenta of final W- and W+

CALL MOM2CY(ROOTS,WMASS,WMASS,COSTH,PHI , PWM,PWP)

(]

C external e- e+ wavefunctions
CALL IXXXXX{PEM,EMASS,-1,+1 , FI)
CALL OXXXXX(PEP,EMASS,+1,-1 , FO)

[

C external W- W+ polarization vectors
CALL VXXXXX(PWM,WMASS, 0,+1 , WM)
CALL VXXXXX(PWP,WMASS, 0,+1 , WP)

[+

C t-channel diagram
CALL FVIXXX(FI,WM,GWF,0.0,0.0 , FVI)
CALL IOVXXX(FVI,FO,WP,GWF , AMPT)

(o

C s-channel diagram
CALL J3XXXX(FI,F0,GAL,GZL,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WM,WP,J3,GW , AMPS)

C sum of two diagrams
AMPL = AMPT + AMPS

The SM coupling constant subroutines COUP1X, COUP2X must be called be-
fore the above program. The output of this program is then compared to



18 Chapter 2. How to use HELAS

(ﬂ) LR TTTTY T T L TT3T LILELEI TTTT TTTT LR A | TTTT LI TrT
103 - i I l | i ]
¥3= 0.2TeV [ va= 1.0Tev ]
1r 1r  Ya=10.0TeV .
1073 — = — -
L L4 1l R
10-6 '.";.— B -
../‘f -'\uu'- .J".'.\"--\":'.‘ ". "‘" """J"f:"./h.ﬁ:-",:‘.'.u \'.-.-. :"._;:' -.‘\\-'.."."., d‘m.\t.
b 4 . " - o,
10_9 1t T Lot d ; 1t )l 1 11 D i L1111 f 1+ 11 ! 111" I 11 1.k 1 r1 I Pl )l b’ r i l 0.4t

-1 =05 0 0.5 -1 05 o 0.5 -1 -05 o Q.5 1

(b) Illi]llllililllllll Illl'glllillll;l'llli TTTF TV T T TR Tt TY

™ V3= 0.2TeV 1T V8= 1.0Tav =
iF TF Ve=10.0Tav -
100 — e — — — —
10~9 - — = - |~ —
i 108 L ¢ o = —
; [ AR LAy i g ' P 3
:' .,._ AT LA _..,.r.i :__ X ;ﬁ“.""h'\ . ..-J-"";' -\ ] :: .e ',,.;!.,-.. ‘_.-‘.\.s;‘ ';\\:.""-
10—9 1113 [ 11 4] l L ) i 1 1.t 4 1l I 11 1l | L1l l ! LI ] |3 L) l | I 14 01 I Bkl
~1 -05 0 05 -1 05 0 05 -1 -05 © 05 1
(0)103 TTTY ' LIRBLER) | TTTLT i TT ] ;l T FTET I L I'I rrTT LELELEL I TIrTr E TFTT TT 7V
— V== 0.2TeV Va= 1.0TeV I Va=10.0Tsv I
t0? }W: - 4r -
103 - - d“l’"'J"" “"_"‘,'.r-,' \a-n
I N A, TN : "','
108 .‘“‘-rﬂ v".“"u""“""r — S— T ) —

L 5 M\u

4!
bk

10_9 lf!llllllllll'llll LII!I!'!]!!;II?I Lll’l!'][!r'rlll-
-1 -~05 [ 0.5 -1 -05 0 0.5 -1 -05 0 0.5 1
cosd cosf cosd

Figure 2: The test of the numerical accuracies in the proces ejel — W, W} .

The figures (a) show the s-channel v and Z exchange amplitude, (b) the
t-channel v, exchange amplitude, and (c) their sum. The solid lines are
the amplitudes plotted vs. cosé in the laboratory frame, computed by the
analytic expressions Eqs. (2.5) and (2.6). The dots represent the relative
error of the HELAS amplitudes.
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the analytic formulae (2.4), (2.5) and {2.6) in Fig 2. The solid lines are the
magnitudes of each amplitude M, (a), M, (b) and M = M, + M, (c),
as functions of cosf at three energies /s = 0.2, 1, and 10TeV. The dots
represent the relative error of the numerical result at each cosf point.

The orders of the errors in the amplitudes as compared with the above
analytic formulae averaged over many COSTH points are summarized in Ta-
ble 2.6. You can see from this table that HELAS keeps an accuracy of the
order 107 up to a few TeV for the gauge cancellation in this process.

The severest gauge theory cancellation in the 2 — 2 process is expected
to take place in the longitudinally polarized weak boson processes

wWiw; — Wiwg, (2.8)
b d _ZLZL, (29)

at high energies when the Higgs boson is light. If the off-shell weak boson is
in the unitary gauge, the helicity amplitude of the above processes receives
" two types of contributions: Myy is the sum of all the weak boson exchange
amplitudes as shown in the Feynman diagrams in Fig. 9, and My is the sum
of the s- and t-channel Higgs boson exchange amplitudes. In the high energy
limit E 3> my, both the amplitudes My, and My are known to behave as
E? while their sum remains as a constant at F > mpy. Even worse, each
diagram contributing to My, behaves as E* initially, and it. is only because
of the electroweak gauge invariance of all the couplings appearing in the
diagrams of Fig. 9 that the sum My behaves as E?. Therefore, we should
expect cancellation between order (E/mw )? terms in these processes.

We show in Fig. 3, the magnitude of the amplitudes for the process (2.8)
as functions of the c.m. scattering angle; |[Mw| in (a), [Mg] in (b), and

Table 2.6: Average of the order of error for the amplitudes M, M, and M
computed by HELAS. We set sin? By =0.23, my=80.0GeV, mz=my/ cos Oy,
I'z=0., and m.=0.

Js M, [M, [ M
0.2 TeV || 1075% | 10=7° | 1075
1.0 TeV || 10768 | 1077+ | 107
10.0 TeV || 107 | 10772 | 1032
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Figure 3: The test of the numerical accuracies in the proces Wy Wi —
Wy Wi . The figures (a) show the sum of s and #-channel 7, Z exchange
amplitudes as well as the four-point contact diagram, (b) the s- and ¢-channel
Higgs boson exchange amplitude, and (c) their sum. The solid lines are the
amplitudes plotted vs. cosd in the c.m. frame, computed by DHELAS. The
dots represent the relative error of the RELAS amplitudes.
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|IM] = |Mw + Mg in (c), at three energies /s = 0.2, 1 and 10TeV. The
dots represent the relative errors of the amplitudes evaluated by standard
HELAS and those obtained by its double precision version PHELAS:

MugrLas — MpuerLas (2.10)

b

Mbpugras

at each cos@ point. The averages of the order of the errors-are again sum-
marized in the Table 2.7.

We can clearly see from Fig. 3 and Table 2.7 that the numerical error
of the single precision program increases rapidly with rising energies E for
My, exhibiting the cancellation between order E* terms resulting in the £
behaviour. '

The numerical error in the Higgs boson exchange diagrams in Mg re-
mains small since there is no subtle cancellation between the s- and t-channel
exchange diagrams. The terms of order E? in My and My then cancel in
the sum, and the numerical accuracy of the standard HELAS program is lost
at /s = 10TeV. If one requests that the numerical error should be less than
1% at every phase space point, then the two weak boson invariant mass
should be restricted to be less than a few TeV when the process contains the
VVVV vertices. At higher invariant masses, the double precision version of the
program DHELAS is needed.

It is worth noting here that the loss of numerical accuracy discussed
in this section is solely due to the subtle gauge theory cancellation among
several Feynman diagrams and that it has nothing to do with our choice
of the unitary gauge for the weak boson propagators. In fact, we repeated
the above calculation of the W;W; - W W; amplitude in the t’'Hooft-
Feynman gauge and found virtually no improvement in the accuracy of the

Table 2.7: Average of the order of error in the amplitudes My, Mg
and M computed by HELAS. The adopted parameters are sin®fy=0.23,
my=80.0GeV, mz=myy [ cos Oy, ['z=0., and mz=0.

V'S Mw | Mg | M
0.2 TeV | 107%¢ [ 1079 | 107°°
1.0 TeV || 107%¢ [ 10752 | 10-%¢

10.0 TeV || 102 | 1076+ | 10102
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results. This can be easily understood if one recognizes that the strongest
cancellation between order E* terms inside My (which may now include the.
Goldstone boson exchange diagrams) occurs between the contact four weak
hoson vertex and the weak boson exchange diagrams which are present in an
arbitrary gauge. The gauge term p{:p% /mi in the unitary gauge propagator
does not give rise to a cancellation of order E* terms, because inside the
HELAS subroutine, the scalar quantities like py - Jy (WTW ™) are computed
first. Inside of this scalar quantity, there is a cancellation between order £*
terms to reproduce the order E® Goldstone boson di-weak boson vertex of
the t'Hooft-Feynman gauge. This cancellation of order E* terms, leaving
a term of order E3, leads to numerical errors which are negligibly small as
compared to those coming from the cancellation between the order £* terms,
leaving a term of order E2, common to both gauges.

In conclusion, the standard HELAS subroutines give reliable numerical re-
sults {error < 1 %) in the region myy < 50 TeV for processes with three
weak boson vertices, and at myy S 3TeV in processes with four weak boson
vertices. We do not anticipate any other sources of severe numerical inaccu-
racy in the use of HELAS subroutines, as long as one makes proper use of the
special subroutines JEEXXX, EAIXXX and EAOXXX when dealing with collinear
singularities.

2.6 Naming Schemes and Conventions

You may worry that there are too many subroutines to remember. However,
the names of the subroutines and their inputs/outputs are systematically
determined, and one can easily guess the name of the desired subroutine, or
find out its function from its name.

The necessary ingredients to determine the names for subroutines are

Table 2.8: Naming schemes for inp'.uts and outputs. The codes in brackets
stand for particular particles. '

[ particle | input output |
F LO,(E)  F,(E)
\% V,(AW,3) J
3 S H
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Table 2.9: Naming schemes of the ’external’ subroutines.

| external | subroutine name |

F LO
A4 Vv
S ]

Table 2.10: Naming schemes of the 'vertex’ subroutines.

| vertex | inputs output | subroutine name |

FFV FFV  amplitude ov

FV F FVLFVO

FF Vv JIO
FFS FFS  amplitude 108

FS F FSLFSO

FF¥ S HIO
VVV | VVV  amplitude VvV

VA A% JVV
VAL VVS  amplitude VVs

VS v A

VA 5 HVYV
VSS VS5  amplitude AS)

58 \Y J55

VS 8 HVS
35S 558 amplitude 555

55 S HSS
VVVV | VVVV  amplitude | WWWW, W3W3

VvV v JWWW, JW3IW
VVSS | VVSS  amplitude VVSS

VS8 \'% JVSS

VVS S HVVS
SS8SS 85855  amplitude 5838

SSS S HSSS

Table 2.11: Naming schemes for special subroutines, to treat the collinear
electron (positron) photon vertex.

[ vertex [ input output [ subroutine name |

EEA | EA E EALEAO
EE A JEE
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Table 2.12: Table for ‘reverse’ coding.

code subroutine name variable name
input | output
A photon
C complex coupling
E et /e et/e” et /e
F fermion fermion
G coupling
H scalar
I flowing-in fermion flowing-in
J vector
O flowing-out fermion flowing-out
P momentum momentum
Q momentum
S scalar scalar
A% vector vector
W W+ /W- Wt/ w-
X null meaning
3 W?/Z ]~ W3 /2]~ W3 Z [~
VC vector
SC scalar
VERTEX amplitude
MOM momentum :
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listed in Tables 2.8-2.12. The most frequently used codes are I or 0 for
fermion, V for vector boson and 8 for scalar boson. Ounly if one deals with
the output, does one use other codes: F for fermion, J for vector boson (like
currents J*), and H for scalar.? There are only a few exceptions. E stands
for electron or positron in subroutines which deal with collinear singularities
(electron mass singularity). W means W# hoson, and 3 stands for W? boson
(including photon-or Z). The X’s in subroutine names don’t mean anything,
except to tell the user that they are HELAS subroutines.

When you get accustomed to HELAS, then you will surely want to mod-
ify or extend it, to compute your favourite new physics model. Then the
important point is how the coupling constants and amplitudes in HELAS are
defined. We will explain these points briefly, though the details are postponed
to Chapter 3.

The basic rule for fixing the convention of the couplmg constants is that
the coupling constants are the coefficients in the Lagrangian themselves For
example if you wish to compute the vertex

R (2.11)

then you take
—A (2.12)

as the input of the 8SSSXX or HSSSXX. Though you may think A itself is more
appropriate, since it is positive to make the potential stable, we took the
coefficient in the Lagrangian itself to avoid confusion between the various
vertices.

One confusing situation appears when dealing with derivative interac-
tions, which appear in VSS and VVV vertices. Since derivative interactions
are anti-symmetric under the interchange of particle and anti-particle, we
used the following convention. We always start from the covariant derivative

D, = 8, +igVeT® (2.13)

for all gauge groups, with a postive gauge coupling constant g. Then the self-
interactions among the gauge bosons are fixed uniquely using the structure

+We couldn’t think of a good letter for an output scalar. Here, the letter H refers to a
Higgs boson, though the subroutine can be used for any scalar boson such as s-fermions
in supersymmetric theories.
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constants of the Lie groups. However, they depend on which gauge bosons
are flowing out from the vertex. So, we fixed the ordering and couplings
explicitly for the W*, Z and A (photon) using COUP1X.

The output of the ’amplitude’ subroutines is just a T-matrix element. In
other words, the outputs are Feynman amplitudes with one ¢ stripped off. If
you want to-add effective higher order amplitudes to the HELAS amplitudes,
the sign and phase conventions are essential.

The conventions of the external wavefunctions are given in Appendix A.
If you want to add an amplitude computed by other means, please be careful
about whether the conventions of the external wavefunctions are the same. If
they differ, one cannot simply add a new amplitude to the output of HELAS.

The propagators for the gauge bosons are written in unitary gauge if
they are massive, and in Feynman gauge if they are massless. The choice
of the unitary gauge is partly because this gauge requires the minimum
number of Feynman diagrams. However, there is a physics motivation for
this gauge which is that you can easily go to the infinitely heavy Higgs boson
limit just by dropping the Higgs exchange diagrams.

2.7 How You Actually Work with HELAS

Now we will outline how you actually work with HELAS to compute the cross
sections. |

The first thing to do is to draw the Feynman diagrams. Though there may
be many diagrams to be drawn for multi-body process, you should always
include at least a set of diagrams which preserve the gauge invariance of the
theory. Note that HELAS is written in the unitary gauge, so you don’t have
to include the Goldstone boson exchange diagrams.

Then you write down the amplitudes (7-mairix elements) for each Feyn-
man diagram. If you have a four-point vector boson coupling, then three
diagrams, such as a four-point contact vertex and - and u-channel vector
boson exchange, will be combined into one HELAS diagram. The diagrams

representing each subroutine are given in the next section 2.8. If you wish to
include the decay of final state particles, we recommend you to write down-a
program without decays first. Once a program without decays is ready, then
it is always straightforward to include their decays.

The phase space integration should be made by your favourite method.
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For most purposes, we find that the Monte Carlo method is suitable.

Next you do a test run, linking your program to HELAS_CHECK first, to see
whether the inputs and outputs of HELAS subroutines are appropriate. You
will sometimes encounter error messages even if your program is correct; this
happens at the extreme boundaries of phase space. Apart from this bug, the
HELAS-ERROR messages will tell you if they find your program has something
wrong with its amplitudes. HELAS-warn messages tell you that some part of
the calculations may be unnecessary, such as a charged-current interaction
of the right-handed electron. If you are worried about the meanings of the
error or warning messages, then Chapter 4 will help you.

After you have debugged your program, the final step is to link it to
HELAS and run it.

When you are actually writing down the code for the amplitudes using
HELAS subroutines, the only information you need is what the inputs and
outputs are. Once you get used to HELAS coding, then you will need only
HELAS.LIST2 given in Appendix C, which is just a listing of all SUBROUTINE
program lines in HELAS. If you cannot figure out what the inputs and outputs
stand for, then look at HELAS.LIST1. It is a listing of the comment lines in
HELAS, which explains all the inputs and outputs. We believe that our naming
scheme is systematic enough that you can easily remember the names of all
the subroutines.

We will explain the steps you follow when writing code using HELAS, with

the example _
WHW~ — tf - bW bW . (2.14)

Part of this diagram was dealt with in section 2.3. We will take the s-channel
v, Z exchange diagram as the example here; see Fig. 4(a).

I. You start from the external lines for the initial W—, W:

CALL VXXXXX(PWMI,WMASS,NHWMI,-1 , WMI)
CALL VXXXXX(PWPI,WMASS NHWPI,-i , WPI)

and final b, W+, b, W—:

CALL OXXXXX(PB, 0., -1, +1,B )
CALL IXXXXX(PBBAR,O., +1, -1 , BBAR)
CALL VXXXXX(PWMF, WMASS,NHWMF,+1 , WMF )
CALL VXXXXX(PWPF, WMASS,NHWPF,+1 , WPF )
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(a) (b)

Figure 4: The steps you follow when coding with HELAS . The shown example
is the s-channel v-, Z-exchange amplitudes in the process W—WT — {f, with
the subsequent decays ¢t — bW and £ — bW . The steps are labeled by
the roman numbers. See the discussions in the text. The figures (a) and (b)
show the different ways to compute the same diagrams.
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This completes step L.

II. You start combining the external lines computed above to approach

the centre of the diagram, in step IL.

CALL FVOXXX(B, WPF ,GWF ,TMASS,TWIDTH , FTO )
CALL FVIXXX(BBAR,WMF,GWF,TMASS,TWIDTH , FTI )
CALL JVVXXX(WPI,WMI,GWWA,0., e. , JWWA)
CALL JVVXXX(WPI,WMI,GWWZ,ZMASS,ZWIDTH , JWWZ)

" Here, we compute the off-shell t-quark wave function FT0(6) and the -

I1I.

quark wave function FTI(6), and the off-shell s-channel photon current
JWWA(6) and the Z-current JWWZ(6).

Finally, in step Iil, we combine the s-channel photon or Z current,
off-shell t-quark and f-quark spinors to obtain the amplitudes,

CALL IOVXXX(FTI,FTO,JWWA,GAU , AMPA)
CALL IOVXXX(FTI,FTO,JWWZ,GZU , AMPZ)
AMP = AMPA + AMPZ

In this way, you can easily write down the code for using HELAS subroutines.
The way to combine various lines depends on your taste. For example,

the same diagram above can be computed in an alternative way. Here we
follow the Fig. 4(b).

I
IL

IIL.

The step I for computing the external lines is the same as above.

Now you can combine b and W+, b and W~ to obtain the internal
t-quark line FT0(6) and the t-quark line FTI(6) just like the first two

“lines in the second step above (step IIy in Fig. 4(b)). After that, you

combine these off-shell top quark lines to obtain the s-channel w3
current JTT3(6): '

CALL J3XXXX(FTI,FTO,GAU,GZU,ZMASS,ZWIDTH , JTT2)

This is step II; in Fig. 4(b).

Finally we combine the initial W~, W+ and the above s-channel W3
current '

CALL VVVXXX(WPI,WML,JTT3,GW , AMP)
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in step IIL

Of course, the amplitude AMP obtained here should be the same as that
obtained in the previous method to within a numerical accuracy of O(10°%),

Summing up, the HELAS amplitudes are calculated by the following three
steps:

step I  setting up external particle wave functions
HELAS: | step II.  computing off-shell S/F/V lines
step III: computing the helicity amplitude

The subroutines that appear in each of the above steps are clearly distin-
guished by our naming convention:

step I: step II: step III:
S: SXXXXX S: HIOXXX FFV: TIOVXXX
HVVXXX FF3: I0SXXX
F: IXXXXX HVSXXX
OXXXXX HSS5XXX VVV: VVVIXX
VVS: VVVEXX
V: VXXXXX F: FVIXXX EAIXXX V85: VSSXXX
FVDXXX EADXXX 588: SS8SKXX
FSIXXX
FB0XXX VVVV: WWWWXX
W3W3XX
V: JIDXXX JEEXXX VV8S: VVSSXX
J3XXXX 8885: SSSSXX
JVVXXX
JVSXXX
JBSXXX
JWWWXX
JW3IWXX
JVSSXX

In step I, the 4 external wave function subroutines are called the same number
of times as the number of external particles. In step II, we calculate off-shell
S/F/V lines from the external wave functions by the above 19 subroutines.
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Figure 5: The steps ybu follow when coding with HELAS . The shown example
is an extended version of Fig. 4(a), where the final W™ decays'into ud, and
W~ into 7.

The off-shell lines as calculated in this step can appear repeatedly as inputs of
other off-shell line subroutine. Examples of such cases are shown in Fig. 4(b)
and in Fig. 5. Finally, in step III, the evaluation of one Feynman diagram
terminates with just one of the above 10 amplitude subroutines.

2.8 HELAS Feynman Rules

In this subsection, we list all the HELAS subroutines in Figs. 6—12. In each
figcure, we give a Feynman diagram representation on the left, the HELAS
symbol in the middle, and the corresponding HELAS subroutine name on the
right. Using these rules, you can write down the amplitude and the FORTRAN
code without refering to the conventional Feynman rules. Details of each
HELAS subroutine convention are found in Chapter 3. Here, we give the
correspondences between HELAS Feynman rules and the conventional one for
the most frequently used subroutines.

Shown in Fig. 6 are the four external wave functions; flowing-in and
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> IXXXXX
<fl OXXXXX
vF VXXXXX
S SXXXXX

Figure 6: The HELAS subroutines for the external wave functions. IXXXXX for
the flowing-in fermion, 0XXXXX for the flowing-out fermion, VXXXXX for the
vector boson, and SXXXXX for the scalar boson.
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flowing-out spinors, vector and scalar. For fermions, the correspondences are

_ | ulpg, Ap) for Sf = +1,

for §y = +1,

— ﬁ(P.fa /\f)
R B el e iy (2.16)

where the sign factor Sy distinguishing the particle from the antiparticle
appears as an integer variable NSF in the subroutines IXXXXX and OXXXXX.
We note that the input four-momentum and the helicity of external particles
are physical ones in the HELAS convention. The sign factor S; takes care of
the appropriate crossing relations between an amplitude with an out-going
particle and that with an in-coming antiparticle for a flowing-out fermion
wave function, and similarly for the flowing-in fermion case.
For vector bosons, we have

V”(pV')AV:SV) = { GF(pV’AV) o SV _ +1, (217)

E”(pv,)\v) for SV = —1.

Here we introduced another sign factor Sy, which is denoted by NSV in the
subroutine VXXXXX, in order to distinguish an out-going vector boson (Sy =

+1) and an in-coming one (Sy = —1).
The scalar wave function is simply normalized to unity
S(ps, Ss) = 1. | (2.18)

We still assign the sign factor Ss (the integer variable NSS in the subroutine
SXXXXX), which distinguishes an out-going scalar (Sg = +1) from an in-
coming one (Ss = —1). The role of the sign factor here is solely to fix the
fiow of the four-momentum in the Feynman amplitude.

In Figs. 7—12, we list all the vertices that appear in renormalizable local
field theory. Each vertex can either appear at the end of an amplitude pro-
gram to represent the helicity amplitude of a given Feynman diagram, or at
an intermediate step to represent an off-shell line (denoted by a blob in the
left-hand-side of diagrams in the figures) made by the vertex. For instance,
in Fig. 7, the interaction Lagrangian

75 1+

_ 1 — _
Lint = Ppy* [QL 5 +4r 5 (AP (2.19)
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JIOXXX

J3XXXX

Figure 7: The HELAS subroutines for the FFV vertex. I0VXXX gives the T-
matrix element, while FVIXXX and FVOXXX give off-shell fermion lines. Both
JIOXXX and J3XXXX give off-shell vector current, however J3XXXX computes a
weighted sum of v~ and Z-current appropriate for the inputs of VVVXXX etc.
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W“MLA.\ w* T(W . W+, W3 ) VVVXXX

Jyr(Vy,Vy) JVVXXX

Figure 8: The HELAS subroutines for the VVV vertex. VVVXXX gives the
T-matrix element, while JVVXXX gives off-shell vector current.

can lead to an amplitude (IOVXXX)

_ 1- 14
(fiVify=ap ¥V [QL 275 + 9z 275] ug, (2.20)
or to an off-shell f' wave function (FVIXXX)
(B +myr) Cl-y 14y
Vi) = o BL T [ ] , (221
|f ) 1f) P?u — m%‘ T imﬂrf' gL 5 + 29r 2 ° ( )
an off-shell f wave function (FVOXXX)
, o o l- 1+’75] i(#s + my)
(f\Vifl=tap ¥V [sz 3 + igr 2 | 75— mltimTy’ (2.22)

or an off-shell V' wave function (JIOXXX)

gk +igr

1 i(—g + 28
+75] ; v (2.23)

L1 —
L A0R A = s ; *
NIDESIEN e T | Y T T imyTy
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Figure 9: The HELAS subroutines for the VVVV vertex. WWWWwXX and W3W3XX
give the 7-matrix elements, while JWWWXX and JW3WXX give off-shell vector
currents. Note that four-point contact term as well as vector boson exchange
diagrams are included. These subroutines are written in double precision.
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f" ¢ 1f,5,f> FSIXXX
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t'o——_ <f,S,fl FSOXXX
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fl
S@-- | Js(<f'1,11>) HIOXXX
f

Figure 10: The HELAS subroutines for the FFS vertex. I0SKXX gives the 7-
matrix element, while FSIXXX and FS0XXX give off-shell fermion lines. HIOXXX
gives the off-shell scalar current. '
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Vy AV, [ (Vy,V,,5) VVSXXX

- B :
v Jy (V,S)

V,
S o- -< Ts(Vy,Vp) HVVXXX
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i
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Figure 11: The HELAS subroutines for the VV.S, VS5 and SSS vertices.
VVSXXX, VSSXXX and SSSXXX give the T-matrix elements, JVVEXX, JSSXXX
give off-shell vector currents, and HVVXXX, HVSXXX and HSSXXX give off-shell
scalar currents.
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Sl"\ 154
e I(Sy,54,53,54)  SSSSXX
82,/ \\Sa
33
S'.“'“"c‘::“Sz Js'(si,32,33) HSSSXX

Figure 12: The HELAS subroutines for the VV SS and SSSS vertices. VVSSXX
and SSSSXX give the T-matrix elements, JVSSXX gives off-shell vector current,
and HVVSXX and HSSSXX give off-shell scalar current.
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The fermion wave function u(%) above can also be (%) for antiparticles.
The real coupling constants g, and g are denoted by G{1) and G(2) in
these subroutines. We note that all off-shell wave functions include the prop-
agator of the off-shell particle. We employ the unitary gauge propagator for
massive vector bosons and the Feynman gauge one for massless vector bosons
(my = 0). Details of our convention for each subroutine are found in the
corresponding section of Chapter 3.

These examples show our convention rather clearly. All external parti-
cle wave functions are assigned a sign factor (S; for a fermion, Sy for a
vector, and Sg for a scalar) which controls the fermion number and the four-
momentum flow in the diagram. Because of this convention, the crossing
relation among amplitudes is made trivial in the HELAS system.

The conventional factors of 7 in the vertices and those in the propagators
are both included in the off-shell wave functions, such as egs. (2.21), (2.22),
or {2.23) above. This convention allows us to use the off-shell wave functions
as inputs of all HELAS subroutines, in place of external wave functions. For
instance, the off-shell f' wave function (2.21) can appear as an input of
another off-shell fermion wave function made by a V' f” f vertex

VLAV Dy = 17V LV ), (2.24)

or as an input of an off-shell vector wave function

T (117 V2 1)), (2.25)

from the same vertex.
Likewise, the off-shell vector wave function (2.23) can appear as an input
of an off-shell fermion wave function

(fmaJV((f’]’|f>>)1f”|s (226)

ina Vf"f" vertex.

Finally, the HELAS amplitude, obtained by one of the 10 vertices, gives the
contribution to the T' matrix element without the factor of 7. For example,
the amplitude (2.20) does not have the usual factor of ¢ for the coupling

factor g; and gg. These points should be kept in mind when you introduce
new interactions and new particles to the HELAS system.



2.9. How to add New Interactions and New Particles 41

2.9 How to add New Interactions and New
Particles

In this section, we briefly give comments that may help HELAS users to eval-
uate helicity amplitudes with new interactions and new particles. It is on
such occasions that the detailed description of each subroutine in Chapter 3
will be useful. Here, we give only general remarks.

As advertised in the introduction, the standard HELAS subroutines handle
all possible renormalizable interactions of scalar, fermion and vector bosons.
Therefore, you do not need to introduce a new subroutine as long as your new
vertices are renormalizable. Only whex you introduce non-renormalizable
interactions or when you evaluate radiatively corrected amplitudes, will you
need to add new subroutines to the HELAS system.

‘Let us start with a few remarks within the standard mode, where some
care is needed in treating QCD interactions (2.9.1), the KM matrix ele-
ments (2.9.2), and the Goldstone boson interactions in the renormalizable
gauges of the electroweak theory (2.9.3). As examples of new renormaliz-
able interactions, we give brief comments on supersymmetric theories (2.9.4)
and theories with additional heavy weak bosons (2.9.5). Possible advantages
of using HELAS in studying the consequences of non-renormalizable vertices
(2.9.6) and electroweak loop corrections (2.9.7) are also addressed.

2.9.1 QCD

Since there are several excellent programs [5] to evaluate matrix elements
of massless quarks and gluons, we made no effort to make efficient HELAS
subroutines for the gluon vertices.

The gqg vertex can be evaluated by the subroutines IOVXXX, FVIXXX,
FVDXXX and JIOXXX with the real couplings

G(1) = G(2) = ~v4ra,, (2.27)
and also _
VMASS = VWIDTH = 0, (2.28)

in JIOXXX for an off-shell gluon. The colour factor (I"*);; should be handled
separately. The sign of the coupling (2.27) is fixed by our conventions (2.13)
and (3.16).
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The ggg vertex is computed by the subroutines VVVXXX and JVVXXX, with

the real coupling
GS = +/47ma, (2.29)

and a vanishing gluon mass (2.28). The colour factor % should be multi-
plied by hand, where the ordering of the three gluons is chosen as

CALL VVVXXX(VA,VB,VC,GS, VERTEX), (2.30)
CALL JVVXXX(VA,VB,GS,0.,0., JVV). (2.31)

Finally, when the gggg vertex appears, you should employ the special
‘WMASS = 0.0 option of the HELAS subroutines W3W3XX and JW3WXX. This op-
tion was introduced for this purpose, because in the HELAS subroutines for
the four vector boson vertices, contributions from the contact interaction
and those of the two vector boson exchange diagrams (see Fig. 9) are added
inside the subroutines in order to minimize the number of CALL lines in the
program. This is, however, not possible in general non-Abelian gauge theo-
ries, including QCD. By setting ‘WMASS = 0.0’ in the subroutines W3W3XX and
JW3WXX, only half of the contact term and just one massless vector boson ex-
change diagram contribute to the output. More specifically, a 4 gluon vertex
(GGGG) and an off-shell gluon made from three gluons (JGGG) are computed
as follows;

CALL W3W3XX(VA,VB,VC, VD, S, GS,0.0,0.0, GGGG), (2.32)
CALL JW3WXX(VA,VB,VC,GS,G5,0.0,0.0,0.0,0.0,J060).  (2.33)

Here the gluons VA, VB, VC, and VD have the colour a, b, ¢, and d, respec-
tively, and the off-shell gluon JGGG has the colour d. The associated colour
factor is then fabe fode,

By introducing the new subroutines GGGGXX and JGGGXX in place of the
above options of the present HELAS subroutines, you can improve the effi-
ciency of QCD manipulations. Sumimation over the colour degrees of freedom
should be done algebraically to get good numerical efficiency.

2.9.2 KM matrix elements

The coupling constants G(1) and G(2) in the FFV vertex subroutines, TOVXXX,
FVIXXX and FVOXXX are assumed to be real numbers. This is to ensure fast nu-
merical manipulation since these vertices appear many times in the standard
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model amplitudes. Therefore, when the complex phase of the KM matrix
elements needs to be kept in the amplitude, you should multiply the phase
factor to the relevant output of the HELAS subroutine. The magnitude of the
KM matrix elements can be included in the input G(1), e.g. as

a(1) = -y, (2.34)

V2

with gw = e/ sin Oy, for the charged current transition via the Wg;q; vertex.

2.9.3 QGoldstone bosons and the BRS invariance tests

There are occasions when the calculation of the amplitudes in the renormal-
izable R; gauge, the t'Hooft-Feynman gauge in particular, of the electroweak
theory can be useful. We find that the use of the covariant R, gauge for the
weak boson propagators inside tree-level helicity amplitude does not lead to
a non-trivial test of the amplitude, nor does it lead to a superior numerical
accuracy at high energies as compared to the unitary gauge manipulation
(see sect. 2.5). We therefore choose all the massive vector boson propagators
to take the unitary gauge form in the HELAS subroutines.

What we find most efficient in testing the helicity amplitudes with one or
more external vector bosons is the BRS identity [4]

{phys; out| (8*V,, — Eymyxv) |phys; in) = 0, (2.35)

where £y is the covariant R, gauge parameter and xy the Goldstone mode
associated with the vector boson V. The states (phys; out| and |phys; in)
are arbitrary physical states of on-shell external particles. By using the
reduction formula, the identity (2.35) leads to an exact relationship between
the S-matrix elements of the four-divergence of the vector boson and those
of the associated Goldstone boson |

(phys, Vs; out|phys; in) = —(phys, xv; out, |phys; in), (2.36)

where Vs denotes the ’scalar’ component of the vector boson. Eq. {2.36)
relates an amplitude with a Vg emission, which is obtained from the vector
boson emission amplitude with the replacement

& (pv, My, 8y) — 2L, (2.37)
: my .
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to that with the associated Goldstone boson xy emission. The amplitudes
with Goldstone boson emission are often very simple and can easily be eval-
nated numerically with HELAS. Tt is worth noting that the identity (2.36)
between the matrix elements does not depend explicitly on the gauge pa-
rameter v [3] and that it is valid even in the unitary gauge limit & — oc.
The standard HELAS subroutines can hence be used in the test. The identity
turns out to be very efficient in testing the amplitudes as well as the numeri-
cal accuracy of the program. See discussions in refs. [3, 6, 7, 8] and examples
in Appendices B.4 and B.6.

In order to perform the tests conveniently, the vector boson wave func-
tion subroutine VXXXXX has an option tt NHEL = 4 in the checking program
HELAS_CHECK.FOR, for which the polarization vector is simply,

“ .
EV(pVaAV —4)—€V(pVyt\V —4) = { p!{;/p% lfmv = 0.
(2.38)

Simply by setting the helicity of an external vector boson to be ‘4’, you
can calculate the amplitude for the scalar vector boson emission multiplied
by the vector boson mass. The HELAS subroutines for the VVS, VSS and
VVSS vertices are found to be useful in calculating the associated Goldstone
boson emission amplitudes: see e.g. Figs. 14 and 16 in Appendices B.4 and
B.6, respectively. By writing down the relevant Lagrangian term with the
Goldstone boson in the R, gauge, and by comparing the couplings with those
appearing in the defining Lagrangian of each vertex in Chapter 3, you can
easily determine the input coupling constants for these subroutines. A simple
example of the BRS invariance test is worked out in Appendix B.4.

2.9.4 Supersymmetric particles

Superpartners of the standard model particles are among the most popular of
the new particles. Since all the interactions in the softly broken supersymmet-
ric standard model are renormalizable, arbitrary tree-level amplitudes in the
model can be evaluated by the HELAS subroutines. In fact many subroutines
with scalar particles are prepared such that they are convenient in calculating
processes with supersymmetric particles. For instance, the couplings in the
FFS vertices are chosen chiral and complex for this purpose. Various phases

appearing in the mixing phenomenon can therefore be included as complex
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couplings in these subroutines. This was possible because the vertices with
scalar particles rarely appear in the standard model amplitudes, and we did
not need to make these subroutines very efficient.

In theories with several vertices with a universal coupling, the relative
phases of these vertices should be evaluated correctly. The supersymmetric
standard model is a good example of such a theory, where many particles
interact with a universal gauge coupling. Our convention of using the co-
efficients of the interaction Lagrangian as inputs of the HELAS subroutines
was introduced for this reason, since the term ‘charge’ of a particle can be
ambiguous.

Finally, there is one technical remark on the HELAS spinor convention
which may be helpful in dealing with the interactions with Majorana particles
or charge-conjugated fermion operators. We employ the chiral representation
of the v matrices (see Appendix A for details), where the charge conjugation
matrix C as defined by

CyreTt = —(y), (2.39)
CyC™t = (%), (2.40)
takes the form
;2
a9 _f 0 0 -
C =iyy —-( 0 -z'cr2.)’ (2.41)
which satisfies
C=C"=-C'=-C=-C". (2.42)

The relative phases of u and v spinors in the HELAS spinor convention (Ap-
pendix A} are so chosen that the following identities

Clp, AT = v(p, M),  (243)
Co(p, M = u(p, M), (2.44)

hold. Therefore, no special care is needed in handling the charge conjugated
fermionic operators. Wave functions of Majorana fermions can take either of
the u or v spinor form according to the above identity, without introducing
an extra phase factor. See ref. [9] for some worked out examples in our
convention [10].
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2.9.5 Additional weak bosons

New gauge boson interactions with fermions and scalars can be treated ex-
actly the same as the standard weak boson interactions: the couplings in
the FFV and VVS subroutines are real and possible complex phase factors
from the weak boson mixing should be multiplied explicitly to the output of
the HELAS subroutines just as in the case of the KM phase (see sect. 2.9.2).
The HELAS subroutines for the VVV couplings can also be used to evaluate
all new vertices by choosing the coupling and the vector boson mass inputs
appropriately.

The HELAS subroutines for the four vector boson vertices can be used
without modification if the new gauge boson belongs to an additional U(1)
or SU(2) gauge group. In the former case, you merely change the input
WW Z coupling according to the mixing with the new Z boson. In the latter
case, you can calculate the effects of the new four weak boson interactions by
choosing appropriate coupling and mass inputs. In models with the gauge
group SU(3) or a larger group, a modification similar to the ‘WMASS = 0.0’
option of the subroutines W3W3XX and JW3WXX as explained in subsection 2.9.1
will become necessary.

2.9.6 Non-renormalizable interactions

When studying the consequences of composite models of elementary particles
or low energy effective theories of a renormalizable model with heavy parti-
cles, you may encounter non-renormalizable effective vertices among the light
particles. Since the HELAS subroutines contain only renormalizable vertices,
you may need to write a new subroutine for such cases. It may be worth
noting, however, that this is not always the case.

When a non-renormalizable vertex is obtained as the limit of a tree-
level exchange of a heavy particle with renormalizable interactions, then the

standard HELAS subroutines can be used to evaluate the vertex easily. For
instance, an arbitrary contact four fermion interaction is obtained by using
the FFV and FFS subroutines as the limit of heavy vector or scalar boson
exchange amplitudes,

Ounly when the new interaction cannot be obtained easily in this way,
should you add a new subroutine to the HELAS system. You will find that
the detailed explanations of each subroutine in the next chapter and those
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of our conventions in Appendix A are useful in such occasions.

2.9.7 Loop corrected amplitudes

Use of HELAS in radiative correction studies can be advantageous since it
allows you to evaluate radiatively corrected helicity amplitudes rather than
just the cross sections. We give a few brief remarks which may be helpful
when you make such applications.

¢ When the loop integral contains a dimensionally regularized divergence,
then a proper renormalization should be made prior to the use of HELAS,
since all the HELAS subroutines assume four dimensional spinors and
vector bosons. ’

e When the loop corrected amplitude is expressed as a sum of terms which
are products of a scalar function and renormalizable vertices, then the
standard HELAS subroutines are sufficient to generate the radiatively
corrected amplitudes.

¢ When non-renormalizable type vertices are necessary to express the
radiatively corrected amplitudes, then the comments in the previous
subsection apply. You may or may not need to introduce a new sub-
routine.



Chapter 3
HELAS Subrout ines

In this chapter, we will explain the contents of each subroutines and their
use. The HELAS subroutines can be grouped in the following three subsets:

I[. Wave-Functions
II. Vertices

L FFV
. FFS
L. Vvv
IV. VV§
V. V8§
VI. SS§
VIL VVVV

VIIL VVSS
IX. S589

ITT. Tools and Standard Model Coupling Constants

The vertex subroutines are further divided into “amplitude” subroutines
and “off-shell” subroutines.

We explain the contents of the subroutines with the above groupings in
the following sections.

48
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3.1 Wave-Functions

We have four subroutines in this group:

IXZXXXX
OXXXXX
VEXXXX
SXXXXX .

3.1.1 IXXXXX

This subroutine computes the flowing-In spinor wavefunction of fermion;
namely, u(p) and v(p)’s combined with its four-momentum.
This subroutine will be called as

CALL IXXXXX(P,FMASS,NHEL,NSF , FI)

We have four inputs P,FMASS,NHEL,NSF and one output FI.
THE INPUTS

I

II.

I1I.

IV.

real P(0:3) :

This is a real four-dimensional array which contains the four-momentum p#
of the fermion. The four-momentum may be either time-like (p% > 0) for a
massive fermion or light-like (p? = 0) for a massless fermion.! The energy
P{0) must be always positive.

real FMASS 4
This is a real variable which contains the mass of the Fermion.

integer NHEL | |
This variable specifies the helicity of the fermion. If NHEL = 1 the helicity
is +1/2, and if NHEL = -1 the helicity is —1/2.

integer NSF

This variable specifies whether the fermion is particle or anti-particle. If NSF
= 1 the fermion is particle, and the subroutine computes the u(p)-spinor.
If NSF = -1 the fermion is anti-particle, and the subroutine computes the

- v(p)-spinor.

! The space-like momentum (p° < 0) is not allowed. We believe that there is no tachy-
oni¢ fermion so this is not: a restriction in computing helicity amplitudes. However, who

knows?
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THE OUTPUT

1. complex FI(6)

This is a complex six-dimensional array which contains the Fermion’s flowing-
In spinor combined with its four-momentum. The first two components
FI(1) and FI(2) contain the chirality left part of the spinor,

( gig; ) = ! _2751:,(13) or L _z’ysv(p). (3.1)

The second two components FI(3) and FI(4) contain chirality right part of
the spinor,

FI(3) \ 1+ 1+
( FI(4_) ) =— u(p) or 5 v(p). (3.2)

The last two components FI(5) and FI{6) contain the four-momentum
along the fermion number flow,

FI(8) \| _ P(0) +4P(3)
( FI(6) ) = NSF ( P(1) +tP(2) ) ' (3.3)

We denote the outputs of the subroutine symbolically as

|7)- (3.4)

For more about the conventions of the spinors, see Appendix A.

3.1.2 O(OXXXXX

This subroutine computes the flowing-Out spinor wavefunction of fermion;
namely, @(p} and %(p)’s combined with its four-momentum.

This subroutine will be called as

CALL OXXXXX(P,FMASS,NHEL,NSF , FO)

We have four inputs P,FMASS,NHEL ,NSF and one output FO.
THE INPUTS

I. real P(0:3)

This is a real four-dimensional array which contains the four-momentum p*
of the fermion. The four-momentum may be either time-like (p? > 0) for a
massive fermion or light-like (p? = 0) for a massless fermion. The energy

P(0) must be always positive.
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real FMASS
This is a real variable which contains the mass of the Fermion.

integer NHEL
This variable specifies the helicity of the fermion. If NHEL = 1 the helicity
is +1/2, and if NHEL = -1 the helicity is —1/2..

integer NSF : .

This variable specifies whether the fermion is pa,rtlcle or a.ntl-partlcle If NSF
= 1 the fermion is particle, and the subroutine computes the u(p) -spinor.

If NSF = -1 the fermion is anti-particle, and the subroutme computes the

v(p)-spinor.

THE OUT_PUT

complex FO(8) :
This is a complex six-dimensional array which contains the Fermion’s flowing-
Out spinor combined with its four-momentum. The first two components
FO(1) and FO(2) contain the chirality right part of the spinor,

(Fo(1), FO(2) = 3(p) 52 or

. - (35)

The second two components FI(3) and FI{4) contain chlrallty left part of
the spinor, :

(F0@@), FO(8) =2(p) £ o SR (36)

The last two components FO(5) and FO(6) contain the four-momentum
along the fermion number flow,

(FO(5), FO(6)) = NSF(P(0) + iP(3), P(1) + iP(2)). (3.7)

We denote the outputs of the subroutine symbolically as

e | (3.8)

For more about the conventions of the spinors, see Appendix A.
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3.1.3 VXXXXX

This subroutine computes the Vector particle wavefunction (polarization vec-
tor); namely, ¢(p) and *(p)’s combined with its four-momentum.
This subroutine will be called as

CALL VXXXXX(P,VMASS,NHEL,NSV , VC)

We have four inputs P,VMASS,NHEL,NSF and one output VC.
THE INPUTS

I

IL

II1.

real P(0:3)

This is a real four-dimensional array which contains the four-momentum p#
of the vector boson. The four-momentum may be either time-like (p? > 0)
for a massive vector or light-like (p? = 0) for a massless vector. The energy
P(0) must be always positive.

real VMASS
This is a real variable which contains the mass of the Vector boson.

integer NHEL

This variable specifies the helicity of the vector boson. If NHEL = 1 the
helicity is +1, and if NHEL = -1 the helicity is —1. The longitudinal polar-
ization NHEL = 0 is allowed only for the massive vector hoson. There is a
special option NHEL=4 in HELAS_CHECKEOR, which gives the “scalar polariza-
tion” as the output. This output is useful if one uses the BRS-invariance of
the amplitude to check the program. However, this option is nof supported
in HELAS.FQOR.

integer NSV

This variable specifies whether the vector boson is final state or initial state
particle. If NSV = 1 the vector boson is in final state, and the subroutine
computes the polarization vector ¢(p)*. If NSV = -1 the vector boson is in
initial state, and the subroutine computes the polarization vector e(p).

TaE QUTPUT

I

complex VC{(6)

This is a complex six-dimensional array which contains the VeCtor boson’s
polarization vector combined with its four-momentum. The first four com-
ponents VC(1), VC(2), VC(3) and VC(4) contain the polarization vector,

(ve(1), ve(2), ve(3), ve(4)) = *(p), (3.9)
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for NSV = 1, and
(Ve(1), ve(2), ve(3), ve(4)) = «(p), (3.10)

for NSV = -1. The last two components VC(5) and VC(6) contain the
flowing-out four-momentum,

(VC(5), VC(6)) = NSV(P(0) + iP(3), P(1) + iP(2)). (3.11)

We denote the outputs of the subroutine symbolically as

Al

Ve, (3.12)

For more about the conventions of the polarization vectors, see Appendix

3.1.4 SXXXXX

This subroutine computes the ‘S’calar wavefunction of scalar boson, com-
bined with its four-momentum. However, since scalar boson do not have any
Lorentz structures, its wavefunction is simply unity.

This subroutine will be called as

CALL SXXXXX(P,NSS , SC)

We have two inputs P,NSS and one output SC.
THE INPUTS

I

II.

real P{0:3)

This is a real four-dimensional array which contains the four-momentum p*
of the scalar boson. The four-momentum may be either time-like (p? > 0)
for a massive scalar or light-like (p? = 0) for a massless scalar. The energy
P(0) must be always positive.

integer NSS _

This variable specifies whether the scalar boson is final state or initial state
particle. If NSS = 1 the scalar boson is in final state, and if NSS = -1
the scalar boson is in initial state. However, the wavefunction of an external
scalar boson is simply unity, and the only difference between initial and final
state particles is the sign of their four-momenta contained in the output.
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THE OUTPUT

I. complex SC(3)
This is a complex three-dimensional array ‘which contains the SCalar bo-
son’s wavefunction combined with its four-momentum. The first component
SC(1) contain the wavefunction, '

sc(1)=1. (3.13)

The last two components SC(2) and SC(3) contain the flowing-out four-

momentum
5¢(2) P(0) + iP(3)
( 5¢(3) ) = NS ( P(1) +ZP(2) ) ' (3.14)

We denote the outputs of the subroutine symbolically as -

S, (3.15)

3.2 Vertices I: FFV vertex

This subgroup contains five subroutines.

I0VIXX
FVIXXX
FVOXXX
JIOXXX
J3XXXX

The FFV vertex computed by these subroutines are defined by

L+7s

o = P (50252 o) 4

5 ) v (3.16)

3.2.1 TOVIXX

The subroutine computes the amplitude of the FFV vertex from the flowing-In
fermion spinor, flowing-Out fermion spinor and the Vector boson polarization
"~ vector.

This subroutine will be called as

CALL IOVXXX(FI,FO,VC,G , VERTEX)
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We have four inputs FI,F0,VC,G and one output VERTEX.
THE INPUTS

1. complex FI(6)
This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.

II. complex FO(6)
This is 2 complex six-dimensional array which contains the wavefunction
" of the flowing-Out Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FVOXXX, FSOXXX or EADXXX are suitable here.

TII. complex VC(6) _
This is a complex six-dimensional array which contains the wavefunction of
the VeCtor boson, and its four-momentum. The output of the subroutines
VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSSXX,
or JEEXXX are suitable here. '

IV. real G(2) ‘
This is a real two-dimensional array which contains the coupling constant of
the fermion with the vector boson. G(1) is the coupling of the chirality left
fermion, and G(2) is the coupling of the chirality right fermion.

THE QUTPUT

1. complex VERTEX
This is a complex number which is the amplitude of the FFV vertex including
the coupling constant.

What we compute here is the following T-matrix:

VERTEX = (FO) [y/ (G(i)1 _275 + G(z)l—'gl"l)] (FI).  (3.17)
Here we used the notation |
FI(1)
_ | FI(2)
(FI) - FI(3) )
FI(4)

(FO) = (FO(1),
Ve = V(p+1).
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We denote the output of the subroutine symbolically as
VERTEX = (f/|V|f). (3.18)

3.2.2 FVIXXX

This subroutine computes an off-shell fermion wavefunciion attached with
the Fermion propagator from the interaction of a Vector boson, or a Vector
current with the flowing-In fermion.

This subroutine will be called as

 CALL FVIXXX(FI,VC,G,FMASS,FWIDTH , FVI)

We have five inputs FI,VC,G,FMASS,FWIDTH and one output FVI.
THE INPUTS

I. complex FI(8)
This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.

II. complex VC(86)
This is a complex six-dimensional array which contains the wavefunction
and the flowing-out four-momentum of the VeCtor boson, or VeCtor current.
The output of the subroutines VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX,
JSSXXX, JWWWIX, JW3WIX, JVSSIX, or JEEXXX are suitable here.

ITL. real G(2)
This is a real two-dimensional array which contains the coupling constant of
the fermion with the vector boson. G(1) is the coupling of the chirality left
fermion, and G(2) is the coupling of the chirality right fermion.

IV. real FMASS, FWIDTH
These are the mass and the width of the output fermion. Note that the
FMASS may be different from the mass of the input fermion, as in the case
of the W¥ vertex. FMASS has to be non-negative.

THE QUTPUT

I. complex FVI(86)
This is a complex six-dimensional array including the off-shell Fermion wave
function obtained from the flowing-In fermion and the Vector boson. The
fermion propagator is also attached.
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What we compute here is the following portion of the Feynman amplitude:

(FVI) = {7 +m) V(z'c(nl—fﬂﬂc(z)l;%)(n), (3.19)

p? — m2 4+ iml 2
and,
FVI(5) = FI(5)— VC(5), (3.20)
FVI(6) = FI(6)— VC(6). (3.21)

Here we used the notation

[ FVI(1
FVI(2
FVI(3

\ FVI(4

(FVI) =

(FI) =

VE = VC{p+1),

p* = (ReFVI(5), ReFVI(6), SMFVI(6), SmFVI(5))
m = FMASS,

' = FWIDTH,

We denote the outputs of the subroutine symbolically as

[FVI) =1V, §). | (3.22)

3.2.3 FVOXXX

This subroutine computes an off-shell fermion wavefunction attached with
the Fermion propagator from the interaction of a Vector boson, or a Vector
current with the flowing-Out fermion.

This subroutine will be called as

CALL FVOXXX(F0,VC,G,FMASS,FWIDTH , FV0)
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We have five inputs F0,VC,G,FMASS,FWIDTH and one -cutput FVOQ.
THE INPUTS

1. complex FO(6)
This is a complex six-dimensional array which contains the wavefunction
of the flowing-Out Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FVOXXX, FSOXXX or EAOXXX are suitable here.

II. complex VC(6)
This is a complex six-dimensional array which contains the wavefunction
and the flowing-out four-momentum of the VeCtor boson, or VeCtor current.
The output of the subroutines VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX,
JSSXXX, JWWWXIX, JW3WXX, JVSSXX, or JEEXXX are suitable here,

II1. real G(2)
This is a real two-dimensional array which contains the coupling constant of
the fermion with the vector boson. G{1) is the coupling of the chirality left
fermion, and G(2) is the coupling of the chirality right fermion.

IV. real FMASS, FWIDTH
This is the mass and the width of the output fermion. Note that the FMASS
may be different from the mass of the input fermion, as in the case of the
W vertex. FMASS has to be non-negative.

THE QUTPUT

I. complex FVO(6)
This is a complex six-dimensional array consists of the off-shell Fermion
wave function and its four momentum made from a flowing-Out fermion and

a Vector boson.

What we compute here is the following portion of the Feynman amplitude:

(FV0) = (FO) ¥ (f.;<;(1)1 2 ig(2) ! 275) = i(fl jfjmr (3.23)
and,
FVO(5) = FO(5) + v¢(5) (3.24)

FVO(6) = FO(6)+ VC(6). - (3.25)
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Here we used the notation

(FVD) = (Fv0(1), FV0(2}, FVO(3), FVD(4)),
(FO) = (Fa(1), Fo(2), Fo(3), Fo(4)),

m = FMASS,
p* = (ReFVO(5), ReFVO(6), ImFVO(6), SmFV0(5))
I' = FWIDTH,

VE = Ve(p+1).
We denote the outputs of the subroutine symbolically as
(FVO| = (f,V,f]. (3.26)

3.2.4 JIOXXX

This subroutine computes the bi-spinor vector current J attached with the
vector boson propagator from the flowing-In and flowing-Out fermions by a
FFV vertex. The gauge of the propagator is taken to be the unitary gauge
for the massive vector boson, and the Feynman gauge for the massless gauge
boson. |

This subroutine will be called as

CALL JIOXXX(FI,F0,G,VMASS,VWIDTH , JIO)

We have five inputs FI,F0,G,VMASS,VWIDTH and one output JIO.
THE INPUTS

I. complex FI(6)
This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.

II. complex FO(6)
This is a complex six-dimensional array which contains the wavefunction
of the ﬂowing—ﬂut Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FVOXXX, FSOXXX or EADXXX are suitable here.

I11. real G(2)
This is a real two-dimensional array which contains the coupling constant of
the fermion with the vector boson. G(1) is the coupling of the chirality left
fermion, and G(2) is the coupling of the chirality right fermion.
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IV. real VMASS, VWIDTH
These are real variables which contain the mass and the width of the vector
boson, respectively. VMASS has to be positive, and VWIDTH has to be non-
negative. '

THE QUTPUT

I. complex JIO(6) 7
This is a complex six-dimensional array which contains the bi-spinor vector
current attached with the massive vector boson propagator in the unitary
gauge, combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

JIo(p+1) = ki ( f“’+q“qv)
# @2 —m24imD g m?

< (FO), (’iG(l)l —% L ga2)tt 1) (1), (321)
for the massive gauge boson, or,
0+ 1) = (o) (16(0) 52 +ic(@) 5 ) (1), (328)
for the massless gauge boson, and
JI0(5) = -FI(5)+ F0(5), (3.29)
JI0(6) = —FI(8)+ F0(s). (3.30)

Here we used the notation

(FO) = (FU(i), FD(Q), FO(B): FD(4)),

FI(1)
FI(2
e = | o |
FI(4))
¢¢ = (ReJI0(5), ReJIO(6), IMII0(6), IMII0(5))
m = VMASS,
' = VWIDTH.

We denote the output of the subroutine symbolically as
L0 (3.31)
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3.2.5 J3XXXX

61

This subroutine computes the Weighted Su_m of the photon current J4 and Z
boson current Jz: J3 = cosfy Jz + sinfy Jy, to be used as the input of the

subroutines VVVXXX or W3W3XX.2 3
This subroutine will be called as.

CALL J3XXXX(FI1,FO,GAF,GZF,ZMASS,ZWIDTH , J3)

We have six inputs FI,F0,GAF,GZF,ZMASS,ZWIDTH and one output J3.
THE INPUTS

I. complex FI(6)

This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the

subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.

II. complex FO(6)

This is a complex six-dimensional array which contains the wavefunction
of the flowing-Out Fermion, and its four-momentum. The outputs of the

subroutines 0XXXXX, FVOXXX, FSOXXX or EADXXX are suitable here.

ITI. real GAF(2),GZF(2)

These are real two-dimensional arrays which contain the coupling constants
of the fermion with the photon and the Z boson, respectively. GAF(1),GZF(1)

are the couplings of the chirality left fermion, and GAF(2) ,G2F(2) are the

couplings of the chirality right fermion.

IV. real ZMASS, ZWIDTH

These are real variables which contain the mass and the width of the Z

boson. ZMASS has to be positive, and ZWIDTH has to be non-negative.

THE OUTPUT

3To combine the photon and Z current is more than a matter of convenience. In the
Standard Model, the gauge theory cancellation between the photon and Z current occurs
in the right-handed current, since in the high-energy limit only the hypercharge gauge
boson B, couples to the right-handed fermions and the Wi‘ component decouples. This

cancellation is treated carefully in this subroutine.

3Note that one cannot use this subroutine for the neutral fermions like neutrinos. For
the Z current of the neutrino, use JIOXXX subroutine. Then the output can be used as
the input of VVVXXX or W3W3XX by setting the coupling constant to GWWZ rather than GW.
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I. complex J3(6)
This is a complex six-dimensional array which contains the bi-spinor vector
current attached with the Z boson propagator in the unitary gauge and the
photon propagator in the Feynman gauge.

What we compute here is the following portion of the Feynman amplitude:

33(p) = cosf i ( W+qwj
p) = cos V& —m2+imD 9

x (FO)y, (——iGZF(i) ! ";75 — iGZF(2) J;%) (FI)

+sin ew—;—,; (=) (FO)(—ieQy,) (FT)

— -1 "
(q2 ey E,mFGZF(i) + ?eQ) Ji

o DG 1)+ 625 @) Te)
. P_iml
+e@ sin Oy qz(qzm_ mg?z z'mI‘)JR’ (3.32)
and,
33(8) = —FI(5)+F0(5), (3.33)
33(6) = —FI(6) +F0(6). (3.34)

Here we used the notation

(FG) = (FU(l), FU(2)5 FD(3)3 F0(4)):
FI(i)

(FI) = ﬁg% ,
FI(4)

g = (RelI3(5), Rel3(6), IMI3(6), IMI3(5)),
m = ZMASS,
ZWIDTH,

=3
I
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and -

1-T
7 = (o i=logen),
1+

Jp = (FO)¢* (FI),

We denote the output of the subroutine symbolically as

T (1 15))- (3.35)

3.3 Vertices 1I: FFS vertex

This subgroup contains four subroutines.

IOSXXX
FSIXXX ,
FSDXXX
HIOXXX

‘The FFS vertex computed by these subroutines are defined by

Leps = f' (Gc(l)l _275 + GC(?,)L-;—%) 5% (3.36)

3.3.1 IOSXXX

The subroutine computes the amplitude of the FFS vertex from the flowing-In
fermion spinor, flowing-Out fermion spinor and the Scalar boson wavefunc-
tion.

This subroutine will be called as

CALL IOSXXX(FI,F0,SC,GC , VERTEX)

We have four inputs FI,F0,SC,GC and one output VERTEX.
THE INPUTS

I. complex FI(6)
This is a complex six-dimensional array which contains the wavefunction
of the flowing-In -Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.
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II. complex FO(6)
This is a complex six-dimensional array which contains the wavefunction

of the flowing-Out Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FV0XXX, FSOXXX or EAOXXX are suitable here.

III. complex SC(3)
This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HS35SXX are suitable
here.

IV. complex GC(2)
This is a Complex two-dimensional array which contains the coupling con-
stant of the fermion with the scalar boson. GC(1} is the coupling of the
chirality left fermion and the chirality right anti-fermion, and GC(2) is the
coupling of the chirality right fermion and the chirality left anti-fermion.

TaE OUTPUT

I. complex VERTEX
This is a complex number which is the amplitude of the FFS vertex including
the coupling constant.

What we compute here is the following T-matrnx:

VERTEX = (F0) [SC(l) (GC(l)l _275 +ac(2) 275)] (FI). (3.37)

Here we used the notation

| )
(F1) = ? ,
(FO) = (FO(1), FO(2), FO(3), FO(4)).

We denote the outputs of the subroutine symbolically as

VERTEX = (f'|S|). (3.38)
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3.3.2 FSIXXX

This subroutine computes an off-shell fermion wavefunction attached with
the Fermion propagator made from the interaction of a Scalar boson, or a
Scalar current with the flowing-In fermion.

This subroutine will be called as

CALL FSIXXX(FI,SC,GC,FMASS,FWIDTH , FSI)

We have five inputs FI,8C,GC,FMASS,FWIDTH and one output FSI.
THE INPUTS

I

IT.

IIL.

IvV.

complex FI(6)

This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here,

complex SC(3)

This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are suitable
here.

complex GC(2)

This is a Complex two-dimensional array which contains the coupling con-
stant of the fermion with the scalar boson. GC(1) is the coupling of the
chirality left fermion and the chirality right anti-fermion, and GC(2) is the
coupling of the chirality right fermion and the chirality left anti-fermion.

real FMASS, FWIDTH

These are the mass and the width of the output fermion. Note that the
FMASS may be different from the mass of the input fermion, as in the case
of the charged Higgs boson vertex. FMASS has to be non-negative.

THE OUTPUT

I

complex FSI(6)

This is a complex six-dimensional array which contains the off-shell Fermion
wave function and its momentum made from the flowing-In fermion and the
Scalar boson. The fermion propagator is also attached.
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What we compute here is the following portion of the Feynman amplitude:

(FST) = {p+m) sc(1)(z‘Gc(i)}-%ﬁﬂGc(z)l“L%)(FI), (3.39)

p? — m? +iml 2
and,
FSI(5) = FI(5) -~ SC(2), (3.40)
FSI(6) = FI(6) —SC(3). | (3.41)

Here we used the notation

FSI(1)
FSI(2
(Fs1) = stgsg
\ FSI(4)
FI(1)
| FI(2)
(F1) = FI(3)
FI(4)
p* = (ReFSI(5), ReFSI(6), SmFSI(6), SmFSI(5)),
m = FMASS,
I' = FWIDTH.

We denote the outputs of the subroutine symbolically as

|FSI) = |fla‘5'7f>‘ (3'42)

3.3.3 FSOXXX

This subroutine computes an off-shell fermion wavefunction attached with
the Fermion propagator from the interaction of a Scalar boson, or a Scalar
current with the flowing-0ut fermion.

This subroutine will be called as

CALL FSOXXX(FO0,SC,GC,FMASS,FWIDTH , FS0)

We have five inputs F0,SC,GC,FMASS ,FWIDTH and one output FSO.
THE INPUTS
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L. complex FO(&) .
This is a complex six-dimensional array which contains the wavefunction
of the flowing-Out Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FVOXXX, FSOXXX or EADXXX are suitable here,

II. complex SC(3)
This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are suitable
. here.

ITI. complex GC(2)
This is a Complex two-dimensional array which contains the coupling con-
stant of the fermion with the scalar boson. GC(1) is the coupling of the
chirality left fermion and the chirality right anti-fermion, and GC(2) is the
coupling of the chirality right fermion and the chirality left anti-fermion.

1V. real FMASS, FWIDTH ,
These are the mass and the width of the output fermion. Note that the
FMASS may be different from the mass of the input fermion, as in the case
of the charged Higgs boson vertex. FMASS has to be non-negative.

THE OUTPUT

I. complex FSO(86)
This is a complex six-dimensional array which contains the off-shell Fermion
wave function and its momentum, made from the flowing-Out fermion and
the Scalar boson. The fermion propagator is also attached.

What we compute here is the following portion of the Feynman amplitude:

(FS0) = (F0)Sc(1) (z‘G(i)m +i6(2)> _275) = jfi';_-:nz)mF’ (3.43)
and,

FSO(5) = FO(5)+5C(2), (3.44)

FS0(6) = FO(6) + SC(3). (3.45)

Here we used the notation

(FO) = (FU(ii), F0(2), FO(3), F0(4)),
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(FS0) = (FS0(1), Fs0(2), FS0(3), FS0(4)),
p* = (ReFS0(5), ReFS0(6), ImFS0(6), ImFS0(5)),
m = FMASS,
' = FWIDTH.

We denote the outputs of the subroutine symbolically as

(FSO|=(£,5,f (3.46)

3.3.4 HIOXXX

This subroutine computes the bi-spinor scalar current H attached with the
vector boson propagator from the flowing-In and flowing-Out fermions by a
FFS vertex.

This subroutine will be called as

CALL HIOXXX(FI,F0,GC,SMASS,SWIDTH , HIO)

We have five inputs FI,F0,GC,SMASS,SWIDTH and one output HIO.
THE INPUTS

I

I1.

II1.

IV,

complex FI(6)

This is a complex six-dimensional array which contains the wavefunction
of the flowing-In Fermion, and its four-momentum. The outputs of the
subroutines IXXXXX, FVIXXX, FSIXXX or EAIXXX are suitable here.

complex FO(8)

This is a complex six-dimensional array which contains the wavefunction
of the flowing-Out Fermion, and its four-momentum. The outputs of the
subroutines 0XXXXX, FVDXXX, FSOXXX or EADXXX are suitable here.

complex GC(2)
This is a Complex two-dimensional array which contains the coupling con-

stant of the fermion with the scalar boson. GC(1) is the coupling of the
chirality left fermion and the chirality right anti-fermion, and GC(2) is the
coupling of the chirality right fermion and the chirality left anti-fermion.

real SMASS, SWIDTH

These are real variables which contain the mass and the width of the scalar
boson, respectively. SMASS has to be positive, and SWIDTH has to be non-
negative.
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THE OQUTPUT

I. complex HIOD(3)
This is a complex three-dimensional array which contains the bi- -spinor scalar
current attached with the scalar boson propagator, combined with its four-

momentum.

What we compute here is the following portion of the Feynman amplitude:

HIO() = ———gsr X(FO) (i(}c( )2 ';75) (FI), (3.47)
and,

HIO2) = —FI(5)+ FO(5), (3.48)

HIO3) = —FI(6)+ FO(6). (3.49)

Here we used the notation

(FO) = (FU(i), F0(2), FO(3), FO(4)),
=
(FI) = FI(3) |’
FI(4))
¢ = (ReHID(2), ReHIO(3), ImMHIO(3), ImHIO(2)),
m = SMASS,
I' = SWIDTH,

We denote the output of the subroutine symbolically as
Ts((F], 1F))- (3.50)

3.4 Vertices III: VVV vertex

This subgroup contains two subroutines.

VVVXXX |,
JVVXEX. .
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The VVV vertex computed by these subroutines are defined by

Lywy = —iG { (O V5 NVEVY — VI V™)
+(0, Vo, (VE V™ — V3 V7)
HOL Vi VIV — VIV (3.51)

3.4.1 VVVXXX

This subroutine computes the three Vector-boson vertex from the polariza-
tion vectors or the vector currents. Though this subroutine can be used for
any type of the non-Abelian gauge three-point vertex, we refer to the elec-
troweak gauge bosons W=, Z and v in the followings. If you wish to use
this subroutine for other non-Abelian gauge bosons like gluons, you have to
multiply the vertex with an appropriate group theory factor by hand.

This subroutine will be called as

CALL VVVXXX(WM,WP,W3,G , VERTEX)

We have four inputs WM,WP,W3,G and one output VERTEX.
THE INPUTS

I. complex WM(8),WP(6)

These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the flowing-out W~, W~ boson (W-
Minus, W-Plus), or vector current of the W—, W boson, respectively. The
output of the subroutines VXXXXX, JIOXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX,
JW3WXX, or JVSSXX are suitable here. Note that the order of WM and WP should
be preserved to be consistent with the SU(2) group theory factor appearing
in the FFV vertices. Since the quantum numbers are defined by flowing-out
charges, W boson which flows into the diagram is regarded as flowing-out
W, and vice versa.

IT. complex W3(6)
This is a complex six-dimensional array which contains the wavefunction
and the flowing-out four-momentum of the Z or A boson (photon), or vector
current of the Z, A boson. Since only one linear combination of these vector
bosons (namely Z cos 8y + Asin 8y) interacts with the W=, we generically
call this input as the third component of the SU(2) gauge bosonr W3, If the
input is actually the Z boson, then the coupling should be GWWZ= gy cos By,
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while it should be GWWA= e = gy sin Ay for photon. If the input is already
a linear combination Jys = cosfy Jz + sin Oy J4 like the output of the
J3XXXX subroutine, then the SU(2) gauge coupling GW= g is appropriate.
The output of the subroutines VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX,
JSSXXX, JW3WXX, JVSSXX, or JEEXXX are suitable here.

III. real G

This is a real variable which contains the coupling constant of the W and
W3 boson. If the W? boson is the output of the subroutine J3XXXX, G
must be the weak gauge coupling GW (= e/sin fy). If the W3 boson is the
external Z boson or the output of the JIOXXX of the neutrino current, then

" G must be GWWZ=GWx cos . If the W3 boson is a photon, G must be GWWA
(= GW * sin Oy = e).

TuHE OUTPUT

I. complex VERTEX
This is a complex variable which contains the vertex function of the W,
W+ and W3 (or Z or photon).

What we compute here is the following T-matrix:

VERTEX = ~G{((p™ —p*) - V(Y™ -V} + ((0* = %) -V HVF - V)
+H(P® - p7) VIVE- V)L, B (3.52)
where we used the notation
V, o= W(u+1)
V.h o= We(u+ 1)
Vo= w3(u+1)
Py = (ReWM(5), RewM(6), SmwM(6), SmM(5))

p; = (ReWP(5), ReWP(6), SmWP(6), SmWP(5))

P5 = (ReW3(5), ReWd(6), ImW3(6), Imw3(5)).
However, there is a gauge theory cancellation between the three terms,
which can be hardly handled within the single-precision subroutine. Fortu-

nately, there is an identical expression which can avoid such a cancellation
at the high-energy:

VERTEX. = —G {{(p” —a_ V™ —pt+a V). VIV~ .VH)
+((pt - o VT — PP+ aaV?) . VYV V)
(@ - asVi—p  +a V) - VH(V3- V7)), (3.53)
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for any set of the real numbers a_, ay, ag. * Our choice for the a’s are

o = /i, (3.54)
o = PV, (3.55)
s = po/VE (3.56)

which significantly reduces the numerical values of the scalar and longitudinal
component of the vector current.?
We denote the output of the subroutine symbolically as

PV, VT V3. (3.57)

3.4.2 JVVXXX

This subroutine computes an off-shell vector current from the VVV vertex
attached with the vector boson propagator, from the two Vector boson po-
larization vectors.

This subroutine will be called as

CALL JVVXXX(V1,V2,G,VMASS,VWIDTH , JVV)

We have five inputs V1,V2,G,VMASS,VWIDTH and one output JVV.
THE INPUTS

I. complex V1(8),V2(6)
These are complex six-dimensional arrays which contain the wavefunctions
of the Vector bosons, and their four-momenta. The output of the subroutines
VEIXXXX, JIOXXX, J3XXXX, JVVXXX, JVSEXX, JSSXXX, JWWWXX, JW3WXX, JVSSIX,
or JEEXXX are suitable here.

II. real G
This is a real coupling constant of the VVV vertex. It should be GW for
W-W+W? coupling, GWWZ for W~ W Z coupling, and GWWA for W-W+ A4
coupling. '

III. real VMASS,VWIDTH
The mass and the width of the vector boson emitted from the VVV vertex.

“We thank H, Iwasaki for this idea.
5We thank D. Zeppenfeld for this idea.
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THE QUTPUT

I. complex JVV(6) :
This is a complex six-dimensional array which contains the off-shell vector
current from the VVV vertex attached with the vector boson prepagator,
combined with its four-momentum.

The possible choice of the inputs and outputs are:

V1 V2 vV G VMASS VWIDTH

W Wt 1 AJ/Z| GWWA/GWWZ | 0./ZMASS | 0./ZWIDTH

W3AIZ | W~ W+ | GW/GWWA/GWWZ | WMASS WWIDTH
Wt | W3/A/Z ] W~ | GW/GWWA/GWWZ | WMASS WWIDTH

What we compute is the following portion of the Feynman amplitude:

JE = i (It — g J), (3.58)

s —m?2 4+ imIl

where,
Jio = Pr—p)* (Vi-Va) +((p2—q) - V1)) V&' + ((g —p1) - V2) V', (3.59)
Js = (AR (A V) + (oY) (b1 ) ~ (2 ) (2 W),

(3.60)
and,

IVV(5) = Vi(5)+ V2(5), (3.61)
IVV(6) = Vi(6) + V2(6). (3.62)

Here we used the notation
JE = IVV(p+1), (3.63
Vi = vi(p+1), (3.64
Vi = v2(p+1), (3.65

)
)
)
P = (ReVi(5), Revi(6), SmV1(6), IMmV1(5)), (3.66)
vh = (ReVv2(5), Rev2(6), ImV2(6), ImV2(5)), (3.67)
g = (ReJVV(5), ReIVV(6), ImIVV(6), IMIVV(5)),  (3.68)
m = VMASS, (3.69)
I' = VUWIDTH. - (3.70)
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We denote the output of the subroutine symbolically as
T Vi, Va). e

3.5 Vertices IV: VVS vertex

This subgroup contains three subroutines.

VVSXXX
JVSXXX ,
HVVXXX

The VVS vertex computed by these subroutines is defined by
ﬁvvs == GV{L*I/Z,:LS*. (372)

3.5.1 VVSXXX

This subroutine computes the amplitude of the VVS vertex from the two
Vector boson polarization vectors and the Scalar wavefunction.
This subroutine will be called as

CALL VVSXXX(V1,V2,5C,G , VERTEX)

We have four inputs V1,V2,SC,G and one output VERTEX.
THE INPUTS

I. complex Vi(6),V2(6)
These are complex six-dimensional arrays which contain the wavefunctions
of the Vector bosons, and their four-momenta. The output of the subroutines
VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSSXX,
or JEEXXX are suitable here.

11. complex SC(3)
This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIDXXX, HVVXXX, HVSXXX, H835XXX, HVVSXX or HSSSXX are suitable
here. : '

IIL real @
This is a real coupling constant of the VVS vertex,
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THE QUTPUT

1. complex VERTEX
This is a complex number which is the amplitude of the VVS vertex including
the coupling constant.

What we compute here is the following T-matrix:

3
VERTEX = G ) V1(p + 1)V2(p + 1)8C(1). (3.73)
p=0 .

We denote the output of the subroutine symbolically as

I'(V1, V3, 5). (3.74)

3.56.2 JVSXXX

This subroutine computes an off-shell vector current from the VVS vertex,
from a vector boson polarization vector and a scalar boson wavefunction.
This subroutine will be called as '

CALL JVSXXX(VC,SC,G,VMASS,VWIDTH , JVS)

We have five inputs VC,SC,G,VMASS,VWIDTH and one output FVI.
THE INPUTS

I. complex VC(6)
This is a complex six-dimensional array which contains the wavefunction of
the VeCtor boson, and its four-momentum. The output of the subroutines
VXXXXX, JTOXXX, J3XXXX JVVXXIX, JVSXXX, JSSXXX, IWWWXX, JW3WXX, JVSSXX
or JEEXXX are suitable here.

II. complex SC(3)
This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SYXXXX, HIDXKX HVVXXX HVSXKX HSSXXX, HVVSXX or HSSSXX are suitable
. here.

III. real G
This is a real coupling constant of the VVS vertex.
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IV. real VMASS, VWIDTH
The mass and the width of the vector boson emitted from the VVS vertex.

THE OUTPUT

I. complex JVS(6)
This is a complex six-dimensional array which contains the off-shell vector
current from the VVS vertex attached with the vector boson propagator,
combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

Pt (P L)) s, (79)

and,
JVs(8) = VC(B) + Sc(2), (3.76)
Jvs(6) = vVC(8) + SC(3). (3.77)

Here we used the notation

J* = Jvs(p +1),

VE = V(e +1),

g = (Re(IVs(5)), Re(3Vs(6)), (Sm(IVS(6)). Im(IVS(8)),
m = VMASS,

' = VWIDTH.

We denote the output of the subroutine symbolically as

JE(V, 9). (3.78)

3.5.3 HVVIXX

This subroutine computes an off-shell scalar current from the VVS vertex,
attached with the scalar propagator, combined with its four-momentum.
This subroutine will be called as

CALL HVVXXX(V1i,V2,G,SMASS,SWIDTH , HVV)
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We have five inputs V1,V2,G,SMASS,SWIDTH and one output HVV.
THE INPUTS

I. complex V1(8),V2(8)
These are complex six-dimensional arrays which contain the wavefunctions
of the Vector bosons, and their four-momenta. The output of the subroutines
VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSs8iX,
or JEEXXX are suitable here.

II. real G
- This is a real coupling constant of the VVS vertex.

III. real SMASS , SWIDTH
The mass and the width of the scalar boson emitted from the VVS vertex.

THE QUTPUT

I. complex HVV(3)
This is a complex three-dimensional array which contains the off-shell scalar
current from the VVS vertex attached with the scalar boson propagator,
combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

1

HYV(1) = S - —(V1- V), (3.79)

and,
HVV(2) = Vi1(5)+ V2(5), (3.80)
HVV(3) = V1(6) +V2(6). (3.81)

Here we used the notation
VI = Vi(p+1), (3.82)
Vi = v2(u+1), (3.83)
¢ = (Re(HVV(2)), Re(HVV(3)), Sm(HVV(3)), Sm(HVV(2))), (3.84)
m = SMASS, (3.85)
I' = SWIDTH. (3.86)

We denote the output of the subroutine symbolically as

Is(V1, Va). (3.87)
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3.6 Vertices V: VSS vertex

This subgroup contains three subroutines.

VSSXXX
JSSXXX
HVSXXX

The VSS vertex computed by these subroutines are defined by
Lyss =GV S5 8 57 (3.88)

Note that we should define which is particle $1 and antz-partzcle 52, If we
reverse the ordering of 81 and S2, then the sign of the couphng will be
reversed.

3.6.1 VSSXXX

This subroutine computes the amplitude of the VSS vertex.
This subroutine will be called as

CALL VSSXXX(VC,S1,82,G , VERTEX)

We have four inputs VC,81,52,G and one output VERTEX.
THE INPUTS

1. complex VC(6)
This is a complex six-dimensional array which contains the wavefunction of
the VeCtor boson, and its four-momentum. The output of the subroutines
VXXXXX, JIOXXX, J3XXXX, JVYXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSSKX,
or JEEXXX are suitable here.

II. complex S1(3),52(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momentum. The outputs of the
subroutines SXXXXX, HIOXXX, HVVIXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are
snitable here. Note that the array S1 should contain the flowing-out scalar
particle, and S2 the flowing-ouf scalar anti-particle. The ordering is crucial
since the wrong ordering gives the amplitude in the reversed sign.
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III. real G
This is a real coupling constant of the VSS vertex.

THE QUTPUT

I. complex VERTEX
This is a complex variable which contains the amplitude of the VSS vertex.

What we compute here is the following T-matrix element: -
VERTEX = ~GV,(p} + p4). (3.89)
Here, we used the notation
VE = VC(p+1), | (3.90)
pi = (Re(81(2)), Re(81(3)), Im(S1(3)), Im(s1(2))),  (3.91)
o= (Re(52(2), Re(52(3)), Sm(s2(3)), Sm(s2(2))).  (3.92)
We denote the output of the subroutine symbolically as

T(V, S, Sa). (3.93)

3.6.2 JSSXXX

This subroutine computes an off-shell vector current from the VSS vertex.
This subroutine will be called as

CALL JSSXXX(S1,S2,G,VMASS,VWIDTH , JSS)

We have five inputs 81,52,G,VMASS,VWIDTH and one output JSS.
THE INPUTS

I. complex 81(3),82(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momentum. The outputs of the
subroutines SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are
suitable here. Note that the array S1 should contain the flowing-out scalar
particle, and 52 the flowing-out scalar anti-particle. The ordering is crucial
since the wrong ordering gives the amplitude in the reversed sign.

II. real G
This is a real coupling constant of the VSS vertex.




80 . Chapter 3. HELAS Subroutines
III. real VMASS, VWIDTH
The mass and the width of the vector boson emitted from the VSS vertex.
THE OUTPUT

I. complex JSS(6)
This is a complex six-dimensional array which contains the off-shell vector
current from the VS8 vertex combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

_— . 3 q_qu i
ety (<o + B ) Vi ). 099

for massive vector boson, or

-
Jt = —zG?V“(p’f + ph)- (3.95)

for massless vector boson, and

Jss(6) = 81(2) + 82(2), (3.96)
Jss(6) = S1(3)+52(3). (3.97)

Here, we used the notation

JE = Jss(u+1), (3.98)
VE o= VO(u+1), (3.99)
Pt = (Re(51(2)), Re(51(3)), Im(81(3)), Sm(81(2))), (3.100)
pb = (Re(S2(2)), Re(52(3)), Im(82(3)), Im(82(2))), (3.101)
g = [Re(ISS(5)), Re(ISS(6)), Im(ISS(8)), IM(ISS(5))), (3.102)
m = VMASS, (3.103)
[' = VWIDTH. (3.104)

We denote the output of the subroutine symbolically as

JE(S1, Sa). | (3.105)
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3.6.3 HVSXXX

This subroutine computes an off-shell scalar current from VSS vertex.
This subroutine will be called as

CALL HVSXXX(VC,SC,G,SMASS,SWIDTH , HVS)

We have five inputs ¥C,SC,G,SMASS,SWIDTH and one ouiput HVS.
THE INPUTS

L.

IL.

IIL.

Iv.

complex VC(6)

This is a complex six-dimensional array which contains the wavefunction of
the VeCtor boson, and its four-momentum. The output of the subroutines
VXXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWHWXX, JW3WXX, JVSSXX,
or JEEXXX are suitable here.

complex SC{3)

This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are suitable
here.

real G _

This is a real coupling constant of the VSS vertex. It is assumed that the
scalar SC is a flowing-out particle. If the scalar is a flowing-in particle, then
the coupling should have the reversed sign.

real SMASS, SWIDTH
The mass and the width of the scalar boson emitted from the VSS vertex.

THE OUTPUT

L

HVS(3) .
This is a complex three-dimensional array which contains the off-shell scalar
current from VSS vertex combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

and,

i

HVS(1) = —iG Va(p* — ¢¥), (3.106)

@2 —-—m2+iml *

HVS(2) = VC(5) + Sc(2), | (3.107)
HVS(3) = ve(6) + Sc(3). (3.108)
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Here we used the notation

VE = Ve(p 1), (3.109)
p* = (Re(SC(2)), Re(SC(3)), Im(SC(3)), IM(SC(2))),  (3.110)
¢ = (Re(HVS(2)), Re(HVS(3)), Im(HVS(3)), Sm(HVS(2))), (3.111)
m = SMASS, (3.112)
' = SWIDTH. (3.113)

We denote the output of the subroutine symbolically as

Js:(V, S). (3.114)

3.7 Vertices VI: SSS vertex

This subgroup contains two subroutines.

SSSXXX
HSSXXX

The 8$SS vertex computed by these subroutines are defined by
Lgss = G 575555, _ (3.115)

If some of the scalars are identical, then the coupling should be divided
by an appropriate statistical factor. Anyway, the coupling G has the same
normalization as that appears in the Feynman rule.

3.7.1 SSSXXX

This subroutine computes the amplitude of the SSS vertex.
This subroutine will be called as

CALL SSSXXX(S1,52,83,G , VERTEX)

We have four inputs $1,82,83,G and one output VERTEX.
THE INPUTS
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I

IL.

complex S1(3),82(3),83(3)

These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momentum. The outputs of the
subroutines SXXXXX, HI0XXX, HVVXXX HVSXXX, HSSXXX, HVVSXX or HSSSXX

~ are suitable here.

real G

This is a real coupling constant of SSS vertex. Though the coupling can be
complex in general, the input should be real. If you wish to compute the
885 vertex with complex coupling, you should multiply the output VERTEX
by the appropriate factor by hand.

THE OUTPUT

L

VERTEX
This is a complex amplitude of the $$S vertex including the coupling con-

~ stant.

What we compute here is the following T-matrix element:

VERTEX = @ S1(1) $2(1) $3(1). (3.116)

We denote the output of the subroutine symbolically as

T(S1, S, Ss). (3.117)

3.7.2 HSSXXX

This subroutine computes an off-shell scalar current from the SSS vertex.
This subroutine will be called as

CALL HSSXXX(S1,52,G,SMASS,SWIDTH , HSS)

We have five inputs 51,52,G,SMASS, SWIDTH and one output HSS.
THE INPUTS

I

complex S1(3),52(3)

These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momentum. The outputs of the
subroutines SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX
are suitable here.
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Ii. real G
This is a real coupling constant of S8S vertex.

III. real SMASS, SWIDTH
The mass and the width of the scalar boson emitted from the SSS vertex.

Tar OUTPUT

I. complex HSS(3)
This is a complex three-dimensional array which contains the off-shell scalar
current combined with its four-momentum.

What we compute here is the following portion of the Feynman amplitude:

i

HSS(1) = qu2 -y imrs1(1) 82(1), (3.118)

| and,
3 HSS(2) = S1(2) + 52(2), (3.119)
HSS(3) = S1(3) 4 82(3). (3.120)

Here we used the notation

¢ = (Re(HSS(2)), Re(HSS(3)), Im(HSS(3)), Im(HSS(2))), (3.121)
m = SMASS, (3.122)
' = SWIDTH. (3.123)

We denote the output of the subroutine symbolically as

Js(S1, S2). (3.124)

3.8 Vertices VII: VVVV vertex

We have four subroutines in this group:

WWWWEX
JWWWEX
W3W3XX
JW3WEX
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In all of these subroutines, we take all the momenta flowing-out, and name
the particles by the flowing-out quantum number. For example, the W~
boson in the initial state will be called flowing-out W+, and has a negative
energy in these subroutines. '

The most important point in their use is that these subroutines con-
tain four-point contact vertex as well as s-, t-, or #-channel vector boson
exchange. This is convenient since any diagram which contains the four-
point contact vertex has always vector boson exchange diagrams, and they
have numerical cancellation among themselves. WWWWXX, JWWWXX, W3W3XX and
JW3WXX subroutines in HELAS are written in double precision to deal with the
cancellation. .

The W~WTW? vertex computed by these subroutines are defined by

Low = —iGW { (8FWU_*)(W+F*W3V* — W
+(3ﬂWf*)(W3"‘*W.“”* - W3V*W—M*)
O W) (129

The contact four-point vertex is defined by

Gw2 —% * — *
Lwwww = T {(W,,; W — W, W)

_(Wu—*WE* _ W;*Wﬁ*)(W}L+*WV3* _ Wu—*pr*)} . (3.126)

3.8.1 WWWWXX

This subroutine computes the four W boson vertex (W"W'W~W*) from the
polarization vectors or the vector currents. This vertex function contains the
four-W contact term and s-channel and {-channel W2 exchange diagrams as
well. Note that the s-channel and ¢-channel Higgs-exchange diagram is not
included.®

This subroutine will be called as

81t is well-known that the Higgs-exchange diagram cures the bad high-energy behavior
of the four W scattering amplitude. Since the gauge theory cancellation occurs twice, once
within the W self-coupling diagrams which are included in this subroutine, and again with
the Higgs-exchange amplitude, the W self-coupling diagram must he computed sufficiently
precise. Our choice is to make this subroutine in double precision.
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CALL WWWWXX(WM1i,WP1,WM2,WP2,GWWA,GWWZ,6ZMASS,ZWIDTH ,

& VERTEX)

We have eight inputs WM1,WP1 ,WM2 ,WP2,GWWA ,GWWZ , ZMASS ,,ZWIDTH and one
output VERTEX.
THE INPUTS

I. complex WM1(6), WM2(6)
These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the flowing-out W~ boson (W-Minus),
or vector current of the W~ boson. The output of the subroutines VIXXXX,
JIOXXX, JUVIXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX or JVSSXX are suitable
here.

II. complex WP1(6), WP2(6)
These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the fowing-out W boson (W-Plus), or
vector current of the W1 boson. The output of the subroutines VXXXXX,
JI0XXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX or JVSSXX are suitable
here.

III. real GWWA,GWWZ
These are real variables which contain that coupling constants to photon
GWWA = e and Z boson GWWZ = e cos By / sin By .

TV. real ZMASS, ZWIDTH
These are real variables which contain the mass and the width of the Z
boson, respectively. ZMASS has to be positive, and ZWIDTH has to be non-
negative.

THE QUTPUT

I. complex VERTEX
This is a complex variable which contains the vertex function of the W7,

W+, W, and W.
What we compute here is the following T-matrix:
VERTEX = —¢°
x { (Wi - W)Wy - W) + (W - W)Wy - W) — 2(Wy - Wy ) (Wi - W)
+ (Dz(qz) cos® Oy + D a(g?) sin® QW) (J12 - J34)
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+ (D (k) cos? r + D 4 (k) sin® Oy ) (Jug - J32)

cos2 @ cos? 6
.—Dz( ) W(q J12)(q J34) Dz(kg) W(k J14)(k Jsz)}
Z
(3.127)
where,
WiH = wMi(p+1),
Wi = WPi(u+ 1),
Wy ¥ = wM2(p + 1),
Wi = we2(u+1),
pi" = (ReWwM1(5), ReWM1(6), SmWML(6), SmWMi(5)}),
pT* = (ReWP1(5), ReWP1(6), ImWP1(6), SmUPL(5)),
pat = (ReWwM2(5), ReWM2(6), ImWM2(6), ImWM2(5)),
pa? = (ReWP2(5), ReWP2(6), ImWP2(6), ImWP2(5)),
g = pi*+p"
kp. = 'PI“"’PE_N
-1
DZ(G) - a—m22+z'msz’
-1
DA(G’) = T:
mz = ZMASS,
'z = ZWIDTH,
g = GWWA? 4 GwWz2,
Ow = tan '(GWWA/GWWZ),
and,
by = (Wi - Wi)(p1 - Pl)p+(P1+‘1) Wi (Wi )y +(—q—p1)- W( 1)
JE = (Wy - 2+)(P2_ —pfY+(pf —q)- W (WP + (+q—ps) - W (Wz )%,
Jfy = (Wy - 2+)(p1— pi)e + (p5 + k) Wi (W )P + (—k — pr) - Wy (W )P,
Jh =Wy - W1 )(p 5—pf’)f’+(pf—k)-W (WP + (+k —pg) - WY (Wz ).

As is in the VVVXXX subroutine, there is a gauge theory cancellation be-
tween the three diagrams, which can be hardly handled within the single-
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precision subroutine. Thus we decided to compute only the four-vertices in
the double precision subroutines. 7
We denote the output of the subroutine symbolically as

D(wy, Wi, Wy, W), (3.128)

3.8.2 JWWWXX

This subroutine computes an off-shell W boson current from the WWWW four-
point vertex. This subroutine will be called as

CALL JWWWXX(W1,W2,W3,GWWA,GWWZ,ZMASS,ZWIDTH,WMASS ,WWIDTH , JWWW)

We have nine inputs W1,W2,W3,GWWA,GWWZ,ZMASS,ZWIDTH,WMASS ,WWIDTH

and one output JWWW.
THE INPUTS

I. complex W1(6), W2(6), W3(6)
These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the W~ bosons. Their ordering should
be either flowing-out W—, W+, W, or W+, W—, W+, The output of the
subroutines VXXXXX, JIOXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX or
JVSSXX are suitable here.

I1. real GWWA,GWWZ
These are real variables which contain that coupling constants to photon
GWWA = ¢ and Z boson GWWZ = e cos fy/ sin fyy.

III. real ZMASS, ZWIDTH
These are real variables which contain the mass and the width of the Z
boson, respectively. ZMASS has to be positive, and ZWIDTH has to be non-
negative.

IV. real WMASS, WWIDTH .
These are real variables which contain the mass and the width of the W=
boson, respectively. WMASS has to be positive, and WWIDTH has to be non-
negative.

THE OUTPUT

. "This is a platitude idea by the authors. We wish to express special regret to ourselves.
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I. complex JWWW(6)
This is a complex six-dimensional array which contains the vector boson
four-point couplings attached with the massive vector boson propagator in
the unitary gauge, combined with its four-momentum.

What we compute here is the sum of five diagrams, one is the four-
point contact vertex among the vector bosons, and the other four are photon
and Z boson exchange diagrams. Their exact expressions are too tedious
to be displayed here, although they can be obtained in a straight-forward
calculation from the vertices given in this section. Note that the W and Z
boson propagators are attached in the unitary gauge.

The possible inputs and outputs are:

Wi | W2 | W3 | GWWA | GWWZ | ZMASS | ZWIDTH | WMASS | WWIDTH || JWWW

W= | W+ | W~ | GWWA | GWWZ | ZMASS | ZWIDTH | WMASS | WWIDTH || W+
W* | W~ | W' | GWWA | GWWZ | ZMASS | ZWIDTH | WMASS | WWIDTH | W~

We denote the output of the subroutine symbolically as

Jh (Wi, WE, WF). | (3.129)

3.8.3 W3W3XX

This subroutine computes the four W boson vertex (W-WW*Ww3) from the
polarization vectors or the vector currents. This vertex function contains the
four-W contact term and s-channel and f-channel W exchange diagram as
well. The u-channel Higgs-exchange diagram is not included.

This subroutine will be called as

CALL W3W3XX(WM,W31,WP,W32,GW31,GW32,WMASS,WWIDTH ,
& VERTEX)

We have eight inputs WM,W31,WP,W32,GW31,GW32,WMASS,WWIDTH and one
output VERTEX.
THE INPUTS

I. complex WM(6), WP(6)
These are complex six-dimensional arrays which contain the wavefunctions
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and the flowing-out four-momenta of the flowing-out W~, W boson (W-
Minus, -Plus), or vector current of the W~, W™ boson, respectively. The
output of the subroutines VXXXXX, JIOXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX,
JW3WXX or JVSSXX are suitable here.

complex W31(6), W32(6)

These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the flowing-out W* bosons, or vector
current of the W2 boson. They can be either Z, A (photon), or their linear
combination W3, and the coupling constants GW31 and GW32 should be chosen
from GWWZ ,GWWA , GW correspondingly. The output of the subroutines VXXXXX,
JIDXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JW3WXX, JVSS8XX, or JEEXXX are
suitable here.

real GW31, GW32

These are real variables which contain the coupling constants of the W=
and first or second W? boson, respectively. If the W* boson is the output of
the subroutine J3XXXX, GW3 must be the weak gauge coupling CW. Tf the W3
boson is the external Z boson or the output of the JIDXXX of the neutrino
current, G must be GWWZ (= GW * cosfiyy). If the W3 boson is the external
photon, GW3 must be GWWA (= GW * sin fyr = e).

. real WMASS, WWIDTH

These are real variables which contain the mass and the width of the W
boson, respectively. WMASS and WWIDTH have to be non-negative. If WMASS
is zero, the vector boson propagator inside this subroutines will be changed
to the Feynman gauge form. This option will be useful when dealing with

QCD.

THE QUTPUT

complex VERTEX
This is a complex variable which contains the vertex function of the W,
W3, W, and W3{ or Z or photon).

The possible inputs and outputs are:
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WM | W31 | WP | W32 | @31 | G32
wW- | W | Wt | W3 | oW GW
W { WS | Wt | Z | GW | GWWZ
W- i W3 | Wt | A | GW |GWWA
W-1{ Z |W+r| Z |cwwz | Gwwz
W | Z |WHt| A | GWWZ | GWWA
W-| A | Wt | A | GWWA | GWWA

What we compute here is the following T-matrix:®

VERTEX = G31 G32
x{ (W= - WHW* - W)+ (W™ - W)W - W) — 2(W~ - WH (W} - W})
i
+DW(Q2)(J12 Ja4) — DW(Q%%}“‘"(Q’  J12)(q - Jaq)
1%
1

+ Dy (k*)(J14 - Ja2) — D (k?)—5—(k - Jua)(k - J32)} {3.130)

miy
where,

W™ = WM +1),

W = ust(u+1),

W = WP{u+1),
Wit = w32(u+1),

p* = (ReWM(5), ReWM(6), SmWM(6), ImWM(5)),

P = (ReW31(5), ReW31(6), ImW31(6), ImW31(5)),
pt* = (ReWP(5), ReWP(6), SMWP(6), IMWP(5)),
Cpat = (ReW32(5), Rew32(6), ImW32(6), Imw32(5)),

- 3
4. = p*+pt,
k,u. = p_#'i'pg“)

81f WMASS is zero, then the terms which contain 1/m?, will be dropped, and hence going
to the Feynman gauge. Only half of the remaining terms are kept, i.e.,

VERTEX = G31 G382 x { (W™ - W)W - W) — (W™ - WH)(W} - W}) - (Ju2* Jas)/4°} -



92 | Chapter 3. HELAS Subroutines

-1
a — m%/ + 'me]:\W’
mw = WMASS,

T'w = WWIDTH,
and,
T =W -WHp~ -3+l +q) - W (WP + (—q—p7) - WHW)e,
Sy =W+ -WHpT —pd)r + @3 —q) - WHWE)Y + (g —pT) - W (WT)?,
J=W W —pdy+(m+k)- W (W3y +(—k—p ) WHW),
T = (W - WHpT — by + (0} — k) - WHWP)YP + (+k —pt) - WHW ).

As is in the WWWWXX subroutine, we compute with the double precision in
this subroutine to deal with the gauge theory cancellation between the three
diagrams,

We denote the output of the subroutine symbolically as

W, W, W+, wd). (3.131)

3.8.4 JW3WXX

This subroutine computes an off-shell W+ boson or W? current from the
W3W3 four-point vertex.
This subroutine will be called as

CALL JW3WXX(W1,W2,W3,G1,G2,WMASS,WWIDTH,VMASS,VWIDTH ,
& JW3W)

We have nine inputs W1,W2,W3,G1i,G2,WMASS,WWIDTH,VMASS,VWIDTH and
one output JW3WIX.
THE INPUTS

I. complex W1(6), W2(6), W3(6)

These are complex six-dimensional arrays which contain the wavefunctions
and the flowing-out four-momenta of the W~ boson. Since the output can
be either W=, 4 or Z, the possible inputs depend on what the output is.
The possible combinations of the inputs, outputs, and the coupling constants
will be summarized helow. The output of the subroutines VXXXXX, JIOXXX,
JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX or JVSSXX are suitable here.
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IL.

1I1.

Iv.

real G1,G2

These are real variables which contain that coupling constants. The possible
combinations of the inputs, outputs, and the coupling constants will be
summarized below.

real WMASS, WWIDTH

These are real variables which contain the mass and the width of the W+
boson, respectively, which is exchanged in s-, ¢- or u-channel. WMASS and
WWIDTH have to be non-negative. If WMASS is zero, the vector boson propa-
gator inside this subroutines will be changed to the Feynman gauge form.
This option will be useful when dealing with QCD.

real VMASS, VWIDTH

These are real variables which contain the mass and the width of the output
vector boson, which can be either 0.,0. for photon, ZMASS,ZWIDTH for Z
boson, or WMASS ,WWIDTH for W boson. '

THE OUTPUT

I

complex JW3W(6)

This is a complex six-dimensional array which contains the vector boson
four-point couplings attached with the massive vector boson propagator in
the unitary gauge, or massless vector boson propagator in the Feynman
gauge, combined with its four-momentum.

What we compute here is the sum of three diagrams, one is the four-point
contact vertex among the vector bosons, and the other two are the W boson
exchange diagrams. Their exact expressions are too tedious to be displayed
here, although they can be obtained in a straight-forward calculation from
the vertices given in this section. Note that the photon propagator is attached
in the Feynman gauge, while Z boson propagator in the unitary gauge. The
W-propagator is basicaly in unitary gauge, as far as WMASS is non-vanishing.

If WMASS is zero, then the Feynman gauge propagator will be employed,
and the terms which contribute to the colour factor f°% f°% with the inputs
Ve, V? Ve, and the output Jy« are kept (see the footnote in page 91 and
sect. 2.9.1}.

The possible inputs and outputs are:



94 Chapter 3. HELAS Subroutines

wi | w2 | w3 | ¢t G2 | WMASS | WWIDTH | VMASS | VWIDTH || JW3W
w- | W3 W+ 6w | GwwZ | WMASS | WWIDTH | ZMASS | ZWIDTH || Z
W-{ W3 | W+ | GW | GWWA | WMASS | WWIDTH 0. 0. A
wW-| Z | W' | GWWZ | GWWZ | WMASS | WWIDTH | ZMASS | ZWIDTH | Z
W- | Z | WT | GWWZ | GWWA | WMASS | WWIDTH | O. 0. A
W-1| A | WT | GWWA | GWWZ | WMASS | WWIDTH | ZMASS | ZWIDTH | Z
W-1| A | W' | GWWA | GWWA | WMASS | WWIDTH | 0. 0. A
W3 |w- | W8 | oW GW | WMASS | WWIDTH | WMASS | WWIDTH || W+
W3 | Wt | W3 | oW GW | WMASS | WWIDTH | WMASS | WWIDTH | W~
W2 |w-| Z | GW | GWWZ | WMASS | WWIDTH | WMASS | WWIDTH | W+
W3 Wt Z | GW | GWWZ | WMASS | WWIDTH | WMASS | WWIDTH || W~
w3 | wW-| A | GW | GWWA | WMASS | WWIDTH | WMASS | WWIDTH | W+
W3 | W+ | A | GW | GWWA | WMASS | WWIDTH | WMASS | WWIDTH || W~
Z |W—| Z | oWWZ | GWWZ | WMASS | WWIDTH | WMASS | WWIDTH | W+
Z |W+ | Z | GWWZ | GWWZ | WMASS | WWIDTH | WMASS | WWIDTH | W~
Z |W-| A |cwWz | GwwA | WMASS | WWIDTH | WMASS | WWIDTH j§ W+
Z | W+ ! A | GWwWZ | GWwWA | WMASS | WWIDTH | WMASS | WWIDTH || W~
A (W-| A | GWWA | GWWA | WMASS | WWIDTH | WMASS | WWIDTH || W+
A |WH| A | GWWA | GWWA | WMASS | WWIDTH | WMASS | WWIDTH || W—

We denote the output of the subroutine symbolically as

or,

J{/£V3(W1:FJ W23: WS:E) (3'133)

3.9 Vertices VIII: VVSS vertex

This subgroup contains three subroutines.

VVSSXX ,
JV3SIX ,
HVVSIX

The VVSS vertex computed by these subroutines are defined by
Lyvss = G(V]" - V') ST 55 (3.134)
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If some of the scalars or vectors are identical, then the coupling should be
divided by an appropriate statistical factor. Anyway, the coupling G has the
same normalization as that appears in the Feynman rule.

3.9.1 VVSSXX

This subroutine computes the amplitude of the YVSS vertex.
This subroutine will be called as

CALL VVSSXX(V1,v2,81,52,G , VERTEX)

We have five inputs V1,V2,81,82,G and one output VERTEX.
THE INPUTS

I. complex V1(6),V2(8)
These are complex six-dimensional arrays which contain the wavefunctions
of the Vector bosons, and their four-momenta. The output of the subroutines
VIXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSSXX,
or JEEXXX are suitable here.

II. complex S1(3),52(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momenta. The outputs of the
subroutines SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX
are suitable here.

HI. real G
This is a real coupling constant of VVSS vertex.

THE OUTPUT

1. complex VERTEX
This is a complex amplitude of the VVSS vertex.

What we compute here is the following T-matrix element:
VERTEX = G (V4 - V3) $1(1) 82(1). (3.135)
Here we used the notation
V¢ = vi(u+1), (3.136)
Vi = v2(u+1). (3.137)
We denote the output of the subroutine symbolically as
r'(Va, Va, S1, Sa). (3.138)
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3.9.2 JVSSXX

This subroutine computes an off-shell vector current from the VVSS vertex.
This subroutine will be called as

CALL JVSSXX(V(C,81,S82,G,VMASS,VWIDTH , JVSS)

We have six inputs VC,S1,52,G,VMASS,VWIDTH and one output JVSS.
THE INPUTS

I. complex VC(6)
This is a complex six-dimensional array which contains the wavefunction of
the VeCtor boson, and its four-momentum. The output of the subroutines
VIXXXX, JTOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWIX, JW3WXX, JVSEXX,
or JEEXXX are suitable here.

I1. complex S1(3),52(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momenta. The outputs of the
subroutines SXXXXX, HIOXXX, HVVXXX, HVSXXX, HSSXXX, HVVSIX or HSSSXX
are suitable here.

I11. real VMASS, VWIDTH
The mass and the width of the vector boson emitted from the VVSS vertex.

TaeE QUTPUT

I. complex JVSS(6) This is a complex six-dimensional array which contains

the off-shell vector current from the VVSS vertex attached with the vector
boson propagator, combined with its four-momentum.

What we compute here is the following portion of the Feynma.n amplitude:
e

. q v v
R e (_g,“,+;_q2)v s1(1)52(1),  (3.139)

and,

JVSS(8) = Ve&(5)+51(2) + 52(2), (3.140)
JVSS(6) = VC(6) + 51(3) + 52(3). (3.141)
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Here we used the notation

Vo= VCe(p+1), (3.142)
JE = JVSS(p +1), (3.143)
¢ = (Re(IVSS(5)), Re(IVSS(6)), Sm(IVSS(6)), Sm(IVSS(5)))(3.144)
m = VMASS, (3.145)
' = VWIDTH. : (3.146)

We denote the output of the subroutine symbolically as
JE(V, S1, S2). (3.147)

3.9.3 HVVSXX

This subroutine computes
This subroutine will be called as

CALL HVVSXX(Vl,V2,SC,G,SMASS,SWIDTH , HVVS)

We have six inputs V1,V2,8C,G,SMASS,SWIDTH and one output HVVS.
THE INPUTS

I. complex V1(6),V2(6)
These are complex six-dimensional arrays which contain the wavefunctions
of the Vector bosons, and their four-momenta. The output of the subroutines
VEXXXX, JIOXXX, J3XXXX, JVVXXX, JVSXXX, JSSXXX, JWWWXX, JW3WXX, JVSSXX,
or JEEXXX are suitable here. ' o

II. complex SC(3)
This is a complex three-dimensional array which contains the wavefunction
of the SCalar boson, and its four-momentum. The outputs of the subroutines
SXXXXX, HIDXXX, HVVXXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX are suitable
here.

IIl. real G
This is a real coupling constant of the VVSS vertex.

IV. real SMASS, SWIDTH
The mass and the width of the scalar boson emitted from the V8S vertex.

THE OUTPUT
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1. complex HVVS(3)
“This is a complex three-dimensional array which contains the off-shell scalar
current from the VVSS vertex.

What we compute here is the following portion of the Feynman amplitude:

i

HVVS(1) = z‘Gq2 mpcy imI‘(Vl - V3)SC(1), (3.148)

and,
HVVS(2) = V1(5)+ V2(5) + SC(2), (3.149)
HVVS(3) = V1(6) + V2(5) + SC(3). (3.150)

Here we used the notation

Vik = (Vi(1), V1(2), V1(3), V1(4)), (3.151)
vor = (V2(1), v2(2), v2(3), V2(4)), (3.152)
g = (Re(HVVS(2)), Re(HVVS(3)), Im(HVVS(3)), Sm(HVVS(2){}3,153)
m = SMASS, _ (3.154)
' = SWIDTH. (3.155)

We denote the output of the subroutine symbolically as
Jgr(V1, V2, S). (3.156)

3.10 Vertices IX: SSSS vertex

This subgroup contains two subroutines.

SSSSkX
HSSSXX

The 8855 vertex computed by these subroutines are defined by

Lssss = GS1S3SLST (3.157)

If some of the scalars are identical, then the coupling should be divided
by an appropriate statistical factor. Anyway, the coupling G has the same
normalization as that appears in the Feynman rule.
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3.10.1 SSSSXX

This subroutine computes the amplitude of SSSS vertex.
This subroutine will be called as

CALL SSSSXX(S1,52,53,54,G , VERTEX)

We have five inputs $1,52,53,84,G and one output VERTEX.
THE INPUTS

I. complex S1(3),52(3),53(3),54(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momenta. The outputs of the
subroutines SXXXXX, HIOXXX, HVVIXX, HVSXXX, HSSXXX, HVVSXX or HSSSXX
are suitable here.

II. real G
This is a real coupling constant of the SS85 vertex.

THE OUTPUT

I. VERTEX
This is a complex amplitude of SSSS vertex.

What we compute here is the following T-matrix element:
VERTEX = G $1(1) S2(1) 83(1) $4(1). (3.158)
We denote the output of the subroutine symbolically as

I'(S1, Sa, Ss, Sa). (3.159)

3.10.2 HSSSXX

This subroutine computes an off-shell scalar current from the 8358 vertex.
This subroutine will be called as

CALL HSSSXX(S1,82,83,G,SMASS,SWIDTH , HSSS)

We have six inputs 81,82,83,G,SMASS,SWIDTH and one output HSSS.
THE INPUTS
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I. complex S1(3),52(3),S83(3)
These are complex three-dimensional arrays which contain the wavefunc-
tions of the Scalar bosons, and their four-momenta. The outputs of the
subroutines SXXXXX, HIOXXX, HVVXXX, HVSXIX, HSSXXX, HVVSXX or HSSSXX
are suitable here.

II. real G
This is a real coupling constant of the SSSS vertex.

ITI. real SMASS, SWIDTH
The mass and the width of the scalar boson emitted from the SSSS vertex.

THE OUTPUT
1. complex HSSS(3)

This is a complex three-dimensional array which contains the off-shell scalar
current from the SSSS vertex.

What we compute here is the following portion of the Feynman amplitude:

2

HSSS(1) = «.r:qu ey imI‘Sl(i) S2(1) $3(1), (3.160)

and,
HSSS(2) = 8S1(2)+S2(2) +83(2), (3.161)
HSSS(3) = S1(3)+ 52(3) + 83(3). (3.162)

Here, we used the notation

g = (Re(HSSS(2)), Re(HSSS(3)), Im(HSSS(3))}, Im(HSSS(2))§3.163)
m SMASS, : (3.164)
' = SWIDTH. (3.165)

We denote the output of the subroutine symbolically as

J5:(S1, Sz, Ss). (3.166)
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3.11 Singular Vertices: EEA vertex

This subgroup contains three subroutines.

EAIXXX ,
EAOXXX ,
JEEXXX

All of them deal with the QED electron-photon coupling defined by
LrEs = V471'a44;é’7“6. (3.167)

Note that all of these subroutines assume that the initial electron beam is
running along the positive z-axis, while positron the negative z-axis.

3.11.1 EAIXXX

This subroutine computes an off-shell electron line from the initial electron
beam after emitting a photon. Though this subroutine is particularly useful
for a collinear emission of the photon from the electron line, the analytic
expression in the subroutine is also valid for large angles. However, an ex-
pansion in terms of m./EB is made, which makes its use at low-energy not
valid. The numerical accuracy is sufficient if EB is greater than 1 GeV.

This subroutine will be called as

CALL EAIXXX(EB,EA,SHLF,CHLF,PHI,NHE,NHA , EAI)

We have seven inputs EB,EA,SHLF,CHLF,PHI ,NHE,NHA and one output EAI.
THE INPUTS

I. real EB,EA
These are Energies of the Beam electron and final photon (A) in the unit of
GeV, respectively. '

I1. real SHLF,CHLF,PHI
These are the angular variables of the final photon. Let & be the polar
angle. SHLF is defined to be sin(#/2}, and CHLF cos(#/2). PHI is simply the
azimuthal angle. We take these variables as the input to obtain completely
numerically safe expressions for the off-shell electron spinor.
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ITI. integer NHE,NHA
These are helicities of the initial Electron and final photon {4), respectively.
Both of them should be X1.

Tae OuTPUT

I. complex EAI(6)
This is a complex six-dimensional array which contains the off-shell electron
spinor, emerging from the initial electron beam after emitting a photon.

The final result should be the same with that of FVIXXX, as far as the
kinematical region is far from the singularity. The explicit expressions for
the output spinor EAI is shown in Appendix A. Note that the initial electron
beam is assumed to be running along the positive z-axis.

Note that the electron mass m. = 0.51099906 MeV and the weak scale
fine-structure constant « = 1/128 is built-in in this subroutine. Though the
use of the Thomson coupling o = 1/137 seems to be more appropriate for
the collinear processes, we use weak scale coupling for the consistency with
other coupling constants.

We denote the output of the subroutine symbolically as

le, 4, €). (3.168)

3.11.2 EADXXX

This subroutine computes an off-shell electron line from the initial positron
beam affer emitting a photon. Though this subroutine is particularly useful
for a collinear emission of the photon from the positron line, the analytic
expression in the subroutine is also valid for large angles. However, an ex-
pansion in terms of m./EB is made, which makes its use at low-energy not
valid. The numerical accuracy is sufficient if EB is greater than 1 GeV.

This subroutine will be called as

CALL EAOXXX(EB,EA,SHLF,CHLF,PHI ,NHE,NHA , EAD)

We have seven inputs EB,EA,SHLF,CHLF ,PHI ,NHE,NHA and one output EAO.
THE INPUTS

I. real EB,EA
These are Energies of the Beam positron and final photon (A) in the unit of
GeV, respectively.
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II. real SHLF,CHLF,PHI
These are the angular variables of the final photon. Let 6 be the polar
angle. SHLF is defined to be sin(#/2), and CHLF cos(#/2). PHI is simply the
azimuthal angle. We take these variables as the input to obtain completely
numerically safe expressions for the off-shell electron spinor.

III. integer NHE,NHA .
These are helicities of the initial positron (ET) and final photon (4), respec-
tively. Both of them should be £1.

THE OUTPUT

I. complex EAQ(6)
This is a complex six-dimensional array which contains the off-shell electron
spinor, emerging from the initial positron beam after emitting a photon.

The final result should be the same with that of FV0XXX, as far as the
kinematical region is far from the singularity. The explicit expressions for
the output spinor EAD is shown in Appendix. Note that the initial positron
beam is assumed to be running along the negative z-axis.

Note that the electron mass m. = 0.51099906 MeV and the weak scale
fine-structure constant o = 1/128 is built-in in this subroutine. Though the
use of the Thomson coupling @ = 1/137 seems to be more appropriate for
the collinear processes, we use weak scale coupling for the consistency with
other coupling constants.

We denote the output of the subroutine symbolically as

(e, A, el. (3.169)

3.11.3 JEEXXX

This subroutine computes an off-shell photon current from the initial elec-
tron or positron beam. Though this subroutine is particularly useful for a
collinear emission of the photon from the electron/positron line, the analytic
expression in the subroutine is also valid for large angles. However, an ex-
pansion in terms of m,/EB is made, which makes its use at low-energy not
valid. The numerical accuracy is sufficient if EB is greater than 1 GeV.

This subroutine will be called as

CAL JEEXXX{(EB,EF,SHLF,CHLF,PHI NHB,NHF,NSF , JEE)
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We have eight inputs EB,EF,SHLF, CHLF ,PHI ,NHB,NHF ,NSF and one output
JEE.
THE INPUTS

I. real EB,EF
These are Energies of the Beam electron/positron and final electron/positron,
in the unit of GeV.

II. real SHLF,CHLF,PHI
These are the angular variables of the final electron or positron. Let 8 be
the polar angle. SHLF is defined to be sin(#/2), and CHLF cos(#/2). PHI is
simply the azimuthal angle. We take these variables as the input to obtain
completely numerically safe expressions for the off-shell photon current.

III. integer NHB,NHF
These are helicities of the initial (Beam) electron/positron and Final elec-
tron/positron, respectively. Both of them should be 1.

IV. integer NSF
This integer specifies whether the beam is electron (NSF= +1) or positron
(NSF= —1).

THE OQUTPUT

I. complex JEE(8)
This is a complex six-dimensional array which contains the off-shell photon
current, emitted from the initial electron or positron beam.

The final result should be the same with that of JIOXXX, only up to a

gauge transformation of the photon current. Since the off-shell photon cur-
rent approaches a pure gauge in the collinear limit, choosing a more appro-
priate gauge is necessary to avoid a severe gauge theory cancellation. Taking
a different gauge for a single photon current in the Feynman amplitude will
not cause problems as far as all the external lines are physical states. The
explicit expressions for the output current JEE is shown in Appendix A. Note
that the initial electron beam is assumed to be running along the positive
z-axis, and initial positron beam along the negative z-axis.

Note that the electron mass m. = 0.51099906 MeV and the weak scale
fine-structure constant o = 1/128 is built-in in this subroutine. Though the
use of the Thomson coupling « = 1/137 seems to be more appropriate for
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the collinear processes, we use weak scale coupling for the consistency with
other coupling constants.
We denote the output of the subroutine symbolically as

Ja((el, le)). (3.170)

3.12 Tools

The subroutines in this group play supplementary roles in computing helicity
amplitudes which are not absolutely necessary but very useful.
We have four subroutines:

MOMNTX ,
MOM2CX
BOOSTX ,
ROTXXX

3.12.1 MOMNTX

This subroutine computes the four-MOMeNTum from the energy, the mass and
the angles, and useful to compute the four-momentum of the particles from
the phase space integration variables.

This subroutine will be called as

CALL MOMNTX(ENERGY,MASS,COSTH,PHI , P)

We have four inputs ENERGY,MASS,CUSTH,PHI and one output P.
THE INPUTS

I. real ENERGY, MASS
These are real variables which contain the energy and the mass of the par-
ticle, respectively. The MASS has to be positive, and the ENERGY has to be
greater than or equal to MASS.

II. real COSTH, PHI
These are real variables which contain the cosine of the polar angle, and the
azimuthal angle of the momentum of the particle, respectively.

THE QUTPUT
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I real P(0:3)
This is a real four-dimensional array which contains the four-vector, whose
spatial components have the angle specified by the input COSTH, PHI, and
required ENERGY and MASS.

Thus we get
P(0) = ENERGY
P(1) = |p|sinfcosPHI
P(2) — |p]sinfsinPHI (3.171)
P(3) = |plcosTH
with

[l = +(ENERGY)? — (MASS)2,
sin = +/1— COSTHZ

3.12.2 MOM2CX

This subroutine computes the four-MOMenta of two (2) particles in their
Center-of-momentum frame.
This subroutine will be called as

CALL MOM2CX(ESUM,MASS1,MASS2,COSTH1,PHI1 , P1,P2)

We have five inputs ESUM,MASS1,MASS2,C0OSTHL,PHI1 and two outputs P1,P2.
THE INPUTS

I. real ESUM

This is the invariant mass of the two particles, or equivalently, SUM of their
Energies in their center-of-momentum frame.

II. real MASS1,MASS2
These are MASSes of the particles.

IIT. real COSTH1,PHI1
These are angular variables of the particle 1.

THE OUTPUT

I. real P1(0:3),P2(0:3)
These are real four-dimensional arrays which contain the four-momenta of
the particles 1 and 2.
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What we compute here is the following kinematics.

P1* = (Fy, Psin 6 cos PHI1, Psin #; sin PHI1, PCOSTH1), * (3.172)
P2¥ = (FEy, —Psin#; cosPHI1, —Psin6, sin PHI1, — PCOSTH1), (3.173)
where,
- 1 ~ mi — m3 '
E, = Ve 1+ - , (3.174)
§
1 2 2
Ey = 5\/g (1 _mTm *sjm2) , (3.175)
1 2 2 2 232 .
P = _2_\/§ (1 oM ';"mz 4 (mi ’1:27’"'2) , (3.176)
§

sinf, = 41— COSTH12. (3.177)

Here, we used the notation

m; = MASS1, : (3.178)
mg = MASS2, (3.179)
3 = ESUM. (3.180)

3.12.3 BOOSTX

This subroutine performs the Lorentz ‘BO0ST’ on a real four-vector.
This subroutine will be called as

CALL BOOSTX(P,Q , PBOOST)

We have two inputs P,Q and one output PBOOST.
THE INPUTS

I. real P(0:3) .
This is a real four-dimensional array which contain the four-momentum
which will be boosted.

II. real Q(0:3) .
This is a real four-dimensional array which contain the four-momentum
which is the reference of the Lorentz boost.

THE OuTPUT
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I. real PBOOST(0:3)

This is a real four-dimensional array which contains the four-vector, which is
obtained by the Lorentz ‘BOOST’ from the input four-vector P. In the original
frame, the reference four-momentum @ was at rest (it had only the time-
component). The Lorentz boost is performed such that the four-momentum
at rest will be boosted to the input reference momentum Q. The same boost
is acted on the input four-momentum P and the result is the output PBDOST.
One can use the same variable name as the input P, however not {.

Thus we get

(

PBOOST(0) ) . a(0)/m Q(j)/m ) ( P(0) )

PBOOST(1)

(P(o) +(9(0) - m)%) 2y )

where

m = [Q(0)” — [§**/2.

3.12.4 ROTXXX

This subroutine computes a spatial ROTation of a four-momentum

This subroutine will be called as

CALL ROTXXX(P,Q , PROT)

We have two inputs P, and one output PROT.
THE INPUTS

I. real P(0:3)

II.

This is a real four-dimensional array which contain the four-momentum

which will be rotated.

real Q(0:3)
This is a real four-dimensional array which contain the four-momentum
which is the reference of the rotation.

THE OQUTPUT
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I. real PROT(0:3)

This is a real four-dimensional array which contains the four-momentum,
which is obtained by the ROTation from the input four-vector P. In the orig-
inal frarne, the reference four-momentum Q was pointing the positive z-axis.
The spacial rotation is performed such that the four-momentum pointing
positive z-axis will be rotated to the input reference momentum §. The
same rotation is acted on the input four-momentum P and the result is the
output PROT. One can use the same variable name as the input P, however
not Q.

What we compute here is given as follows. We rewrite the four-momentum Q
as '
Q¥ = (Q(0), |G| sin 8 cos ¢, || sin O sin ¢, |G| cos 8). (3.182)

Since we perform only a spacial rotation, the zero-th component of P will not be
modified, ‘

PROT(0) = P(0). (3.183)
The spacial components of P will be rotated as
PROT(1) cosffcos¢p —sing sinfcosg P(1)
PROT(2) | = | cosfsing cos¢ sinf@sing P(2) |. (3.184)
PROT(3) —sin @ 0 cos P(3)

However, the above definition becomes ambiguous for the limiting cases cos § = 1.
In these cases,

PROT(1) P(1)
. PROT(2) | =sgn(cosd) | P(2) |. (3.185)
PROT(3) \ P(3)

If the spatial vector § vanishes, then the vector will not be rotated at all.

3.13 Standard Model Coupling Constants

We have four subroutines in this group:

COUP1X |,
coup2x ,
COUP3X ,
COUP4X

These subroutines compute the Minimal Standard Model coupling constants
appropriate for the inputs of the HELAS subroutines. :
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3.13.1 COUP1X

This subroutine computes the Minimal Standard Moedel coupling constants for the
gauge boson self-couplings.
This subroutine will be called as

CALL COUPiX(SW2 , GW,GWWA,GWWZ) .

We have one input SW2 and three outputs GW,GWWA,GWWZ.
THE INPUT

I. real SW2
This is simply sin? Oy .

TrE OUTPUTS

I. real GW,GWWA,GWWZ
These are real variables which contain SU(2) 7, gauge coupling gy = e/ sin 6w,
WWA coupling constant e = +/4ma, and WWZ coupling constant e/ sin O cos
respectively. These coupling constants will be appropriate inputs for the
subroutines VVVXXX, JVVXXX, WWWWXX, JWWWXX, W3W3XX and JW3WXX.

3.13.2 COUP2X

This subroutine computes the Minimal Standard Model coupling constants
for the fermion gauge couplings.
This subroutine will be called as

CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)

We have one input SW2 and nine outputs GAL, GAU, GAD, GWF, GZN, GZL, GZU,
aZD, G1.
THE INPUT

I. real SW2
This is simply sin® Oy .

THE QUTPUTS

I real GAL(2),GAU(2),GAD(2)
These are real two-dimensional arrays which contain the coupling constants
of the charged lepton, up-type quark, and down-type quark, respectively,
with the photon. The first component and the second component contain

the same value —e(). These are suitable inputs for the subroutines IOVIXX,
FVIXXX, FVDXXX, JIOXXX and J3XXXX. : :
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real GWF(2)

This is a real two-dimensional array which contain the universal coupling
constant of the fermions and W*. Thus the left-handed coupling is GWF(1) =
—gw/v?2, and the right-handed coupling is zero GWF(2) = 0. These are
suitable inputs for the subroutines IOVXXX, FVIXXX, FVOXXX, JIOXXX and
J3XXXX.

real GZN(2), GZL(2), GZU(2), GZD(2)

These are real two-dimensional arrays which contain the coupling constants
of the neutrinos, the charged leptons, up-type quarks, and down-type quarks,
respectively, with the Z boson. The first component contain the left-handed
coupling constants —gz(T® — Qsin® @), and the second component con-
tain the right-handed coupling constants —gz(—Qsin?8y). Here gz =
e/(sin By cosBy). These are suitable inputs for the subroutines IOVXXX,
FVIXXX, FVOXXX, JIDXXX and J3XXXX.

Note that the fine-structure constant at the weak scale,

a(Mz) =1/128 ' (3.186)

is built-in to compute the coupling constants.

3.13.3 COUP3X

This subroutine computes the Minimal Standard Model coupling constants
for the gauge boson and Higgs boson couplings.
This subroutine will be called as

CALL COUP3X(SW2,ZMASS,HMASS ,
4 ' GWWH ,GZZH , GHHH , GWWHH , GZZHH , GHHHH)

We have three inputs SW2,ZMASS,HMASS and six outputs GWWH, GZZH, GHHH,

GWWHH, GZZHH, GHHHH.
THE INPUTS

L

II.

real SW2
This is simply sin® Oy .

real ZMASS,HMASS
These are MASSes of Z boson and nggs boson.
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THE QUTPUTS

I. real GWWH,GZZH,GHHH,GWWHH,GZZHH, GHHHH
These are real coupling constants of gauge boson and Higgs bosons which
are defined below. These coupling constants will be appropriate inputs for
the subroutines VVSXXX, JVSXXX, HYVXXX, SSSKXX, HSSXXX, VVSSXX, JVSSXX,
HVVSXX, SSSSXX and HSSSIX. .

The definitions of the coupling constants are

GWWH = gywmw, (3.187)
GZZH = gzmz, ‘ (3188)
‘GHHH = -~3\v, (3.189)
GWWHH = g%, (3.190)
GZZHH = g3, (3.191)
GHHHH = -3, (3.192)
where we used the notation
Vira
gw = S, (3.193)
sin Oy
4o
= —— 194
9z sin Oy cos By (8.194)
A = ot fmi, (3.195)
4 2
o= o2 (3.196)
9z i
mw = myzcosly. (3.197)

Note that the fine-structure constant at the weak scale,
o(Mz) = 1/128 | (3.198)

is built-in to compute the coupling constants.

3.13.4 COUP4X

This subroutine computes the Minimal Standard Model coupling constants
for the fermion Higgs Yukawa couplings.
This subroutine will be called as
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CALL COUP4X(SW2,ZMASS,FMASS , GCHF)

We have three inputs SW2,2ZMASS,FMASS and one output GCHF.
THE INPUT

I

IL

real SW2
This is simply sin® .

real ZMASS,FMASS
These are real MASSes of Z boson and Fermion whose Yukawa coupling is to
be computed. '

THE QUTPUT

I

complex GCHF(2)

This is a two-dimensional Complex array which contain the Yukawa coupling
of the Fermion with the Higgs boson. Since the Higgs boson couples to the
fermions with the same coupling constants to left- and right-handed chirali-
ties, both GCHF (1) and GCHF (2) contain the same values, —4gzFMASS/ZMASS.
One may wonder why we put the Yukawa coupling into a complex array.
This is because one may encounter complex Yukawa couplings, as in the
matter-smatter-gangino vertices.

Note that the fine-structure constant at the weak scale,

o(Mz) = 1/128 (3.199)

is built-in to compute the coupling constants.



Chapter 4
HELAS_CHECK

The HELAS subroutines are designed to run as fast as possible. For this pur-
pose, the HELAS subroutines do not check the appropriateness of the inputs
at all. There are cases that the FORTRAN77 does not give any error mes-
sages no matter how wrong your result is. In such cases, the run-time error
messages {rom HELAS_CHECK may be helpful in identifying the bugs in your
program. In cases where the FORTRAN77 gives error messages, additional
information from the HELAS_CHECK messages will make your job to find mis-
takes easy. In particular, possible typographical errors can be easily detected
by HELAS_CHECK.
For example, if you put a wrong helicity variable by mistake as,

CALL IXXXXX(P,FMASS,NHEK,NSF , FI)

where NHEK is a typo of NHEL and has not been defined in the previous part
of the program, then FORTRAN77 may assume NHEK=0. Since this input value
must be -1 or +1, HELAS_CHECK will announce a HELAS-ERROR:

HELAS-ERROR : NHEL in IXXXXX is not -1,1
NHEL = 0

By this message, you will casily understand what is going wrong in your
program.

The HELAS_CHECK subroutines are made to check the inputs as much as
they can. There are two levels of the run-time messages which HELAS_CHECK
gives.

114
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1. HELAS~ERROR
“I1. HELAS-warn

The HELAS-ERROR messages appear if the inputs cannot be accepted as suit-
able inputs, such as negative mass, tachyonic momentum etc. The HELAS-warn
messages appear if the inputs may have some mistakes, however not neces-
sarily errors, Additionaly, we supply a “scalar polarization” for the massive
vector fields in VXXXXX to check the program by making use of the BRS
invariance (see Appendix B.4).

III. “scalar polarization” option

We recommend the users to link the HELAS_CHECK first and perform a test-
run. For the main-run, use HELAS which is much faster than HELAS_CHECK.

4.1 HELAS-ERROR

4.1.1 zero momentum message

This error messages occurs if all the components of the input four-momentum are
zero. This must not happen in the most of the subroutines. There are occasions
that the kinematics allow such zero momenta at the boundary of the phase space,
however, they must be extremely rare in the Monte-Carlo evaluations. Thus the
most probable origin of the error is a typo-graphical mistake.

This error message appears if the following criterion is satisfied:

%! + |7l = 0. | (4.1)

4.1.2. non-positive energy message

This error message occurs if the input four-momenta of the wave functions have
zero or negative energy. Note that our convention of the four-momentum of the
anti-fermions is such that it is the physical four-momentum of the anti-fermion,
and not the four-momentum along the fermion number flow.1

This error message appears if the following criterion is satisfied:

P(0) < 0. O (4.2)

IThis is the same convention as that of Bjorken-Drell.
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4.1.3 inappropriate mass message

This error message occurs if the input four-momenta of the wave functions has
different mass squared compared to the input mass. Though the four-momenta
may be computed in terms of four-momenta of other particles, it should have a
mass squared consistent with its mass within the numerical accuracy. There should
be something wrong with your phase space program.

This error message appears if the following criterion is satisfied:

[p? ~ m?| > 2 x 1073 (p")? (4.3)

4.1.4 mnot -1,0,1 and not -1, 1 message

This error message occurs if the input helicity variable or sign factor takes a not -
allowed value. For massless vector and fermion, the helicity variable should be 41,
and for massive vector £1 or 0. The sign factor NSF, NSV, NSS should take either
+1 or —1.

4.1.5 not balanced momenta message

This error message occurs if the four-momenta of the input wavefunctions do not
balance in an amplitude subroutine. Since all the momentum flows terminate
at the amplitude subroutine, their momenta should sum up to zero within the
numerical accuracy.

This error message appears if the following criterion is satisfied:

| 3P4l > 4 x 107 max([p¥)). (4.4)
r [

4.1.6 zero coupling message

This error message occurs if an input coupling constant in vertex subroutine are
exactly zero. For a coupling constant with two components, such as the couplings
of FFV or FFS vertices, the error message occurs if both of the components vanish
simultaneously. Mostly likely mistake is a mis-type of the name of the coupling
constarnt.

4.1.7 MASS is negative or non-positive message

This error message occurs if an input mass of a subroutine is either negative or
non-positive. All the input masses in HELAS subroutines are expected to be (semi-
Jpositive.
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4.1.8 WIDTH is negative message

This error message occurs if an input width of a subroutine is negative. All the
input widths in HELAS subroutines are expected to be positive.

4.1.9 on MASS pole message

This error message occurs if the invariant mass of the off-shell propagator is exactly
on-pole and its width is zero. Since the kinematics hits the pole region, the width
of that particle should be included in the computation.

4.1.10 not positive energy message

This error message occurs if the input energy of some particle is not positive.
In addition, all the zero-th components of the four-momenta as the inputs of
the HELAS subroutines should be positive. Though the four-momenta which are
combined with the wave functions may have negative zero-th component, they
appear only as outputs of HELAS subroutines, not as inputs.

4.1.11 EA/EF is greater than EB message

This error message occurs only in the “collinear” subroutines, when the final parti-
cle (photon in EAIXXX, EAOXXX and electron/positron in JEEXXX) has larger energy
than the initial electron/positron beam.

4.1.12 improper message

This error message occurs if a real variable does not lie in the expected region,
such as CHLF, SHLF, COSTH, SW2 with absolute value larger than one.

4.1.13 SHLF and CHLF are inconsistent messdge

This error message occurs if the input SHLF and CHLF does not satisfy the trigono-
metric relation sin? 8 + cos? 4 = 1. )
The error message appears if the following criterion is satisfied:

|SHLF? 4 CHLF? — 1| > 107°, ) (4.5)



118 Chapter 4. HELAS_CHECK

4.1.14 energy is less than MASS message

This error message appears if the input energy of a four-momentum is smaller than
its input mass, which cannot happen.

4.1.15 1is spacelike message

This error message occurs if a four-momentum is space-like, while it shouid be
either time-like or light-like as the correct input. However, this may indeed happen
due to a small numerical fluctuation if you are dealing with massless particles
(light-like). In that case, this message does not mean that the codes are incorrect.

4.1.16 Q(0:3) in BOOSTX is not timelike message

This error message occurs if the reference momentum in BODSTX is not time-like.
Since Q is supposed to be given in its rest frame where P momentum is defined,
not time-like four-momentum will lead to an inconsistency.

4,2 HELAS-warn

4.2.1 =zero spinor/vector/scalar message

These warning messages occur if all the components of the input polarization

vector are exactly zero. Since it really happens, as in the case of the W% current

from the JIOXXX output in the chirality plus sector, this might not be an error.

However, you are recommended to check the input. Furthermore, you can often

make the program faster by suitably removing the irrelevant part of the program.
These messages appear if the following criterion is satisfied:

|310(1)| + |310(2)| + |JI0(3)| + |JI0(4)| =0 (4.6)

where we have generically denoted the input wavefunction (either spinor, vector
or scalar) by JIO.

4.2.2 non-standard coupling message

This warning message occurs if the input coupling constants appear to be very
different from the Standard Model couplings. Of course, you may use HELAS for
various exotic models, and this may not be a mistake. The criterion for this
message depends on the couplings.
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4.2.3 PHI does not lie on 0.0 thru 2.0%PI message

This warning message occurs if the input azimuthal angle PHI does not lic between
0 and 2x. The HELAS is made to handle any value of the azimuthal angle, but this
might be happening due to a mistake.

4.2,.4 EB too low message

This warning message occurs if the input EB (Beam Energy)} of the initial elec-
tron/positron is less than 1 GeV. Since the analytic expressions used in EAIXXX,
EADXXX, JEEXXX uses an expansion in terms of m./EB, the subroutine cannot be
trusted for a very low energy. One can well replace the subroutine by the ordi-
nary FVIXXX, FVOXXX, JIOXXX since there will not be any collinear singularities
at such a low energy.

4.2.5 BOOSTX messages

There are some messages special to the subroutine BOOSTX. A warning message
occurs if the input momentum P is either space-like or has a non-positive energy.
Though this might not be a mistake, it seems to be unlikely that BOOSTX is used
for such a four-momentum, as far as the Lorentz boost of phase space variables
is concerned. There will also appear a warning if the space components of the
reference momentum Q is exactly zero. This might be also OK, but unlikely.

4.3 “scalar polarization” option

When dealing with a relatively higher order process like vector boson fusion pro-
cesses (for example, see Appendix B.6), we often wish to know whether our results
are really gauge-invariant. In fact, most of the mistakes in HELAS codes will cause
violation of the gauge-invariance of the amplitudes. Thus the check of the gauge-
invariance of the amplitudes is a non-trivial test of the correctness of your program.

For that purpose, it is useful to make use of the BRS-invariance of the theory,
as discussed briefly in section 2.9.3, and in a detail in Appendix B.4. The essential
part of the technique is that for any process which has vector bosons in the external -
lines, a non-trivial identity holds,

MWS - iMx = 0, (4'7)
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where the amplitude My, is the amplitude for the “scalar” polarization

wiy ) p*/myv when my # 0, -
s(p) = { p*/p? " when my =0, (48)

and the amplitude M, is the corresponding Goldstone boson emission amplitude.
Though the Goldstone bosons are unphysical states which appear in the renor-
malizable (R¢) gauges, this identity, in fact, holds even in the unitary gauge. Of
course, there is no Goldstone bosons for massless gauge bosons, hence the “scalar”
amplitudes themselves should vanish, ‘

My, = 0. (4.9)

When you check this identity in the numerical program written in HELAS, we
need the “scalar’ polarization” of the vector bosons. So there is a special option

NHEL = 4 (4.10)

in the subroutine VIXXXX, whose output is the scalar polarization in Eq. (4.8).
Note that this option is nof supported in HELAS.FOR.
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Appendix A

Conventions

A.1 ~-matrices and Spinors

Throughout this program, we use the Weyl-basis for the spinors and ~y-matrices.
We follow the conventions of ref. {10].
We put the chirality-left sector in the upper-component:

-1 0
V5 = ( 0 1 ) . (A1)
Correspondingly, the y-matrices are: '
0 ot
where the g-matrices are defined by
o = (1, £37). (A.3)
We first define the helicity-eigenspinors x4 and x_.
L 11+ px )
X+ = ( : )
2[p1(p] + p) \ P= TPy
1 —pe +ip
x-(7) = Y ) - (A4)
2[p1(17] + p2) ( ] + P2
These helicity eigenspinors satisfy
g-p
XA (P) = Axa (P), (A.5)
ip]
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where A = £1. Since the above definition is ambiguous for the momentum p, =
—[p], we fix the notation by taking the limit where p, = 0 and p, — +0:

x+(F)

]
e
=
\"—_—/

x-() = (‘01). . (a)

The four-spinors are defined as follows:

_ | waa@)xa®)
ulp) = ( (PP )

e @xa®
vp) = (Aw_h(p)x_x(m ) (A7)

wi(p) = /B * |7, (A.8)

A.2 Polarization Vectors

where

We fix the notation for the helicity eigenvectors of the vector bosons as follows. If
the four-momentum of the vector is

k= (E, ke, ky, k), (A.9)
the three-independent polarization vectors which satisfy k - € = 0 are: _
(k1) = (klkr) 0, koks, kyks, —kF), (A.10)
e#(k,2) = (kp)7H0, —ky, ke,0), (A.11)
(k,3) = (B/mE)(P/E, ke, ky, k), (A.12)
where
m = \E2— |k, (A.13)
ke o= f(ka)? + (Ry)2. (A.14)

Since the definition of the polarization vector e(k,1) and e(k,2) is ambiguous in
the limit kr — 0, we fix our notation by taking the limit where k; = 0 and

ky — +0 (kz: > 0)
ky — —0 {k, < 0).
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The helicity eigenvectors for A = =%, 0 are:

kA=) = %(:Fe“(k,l)—ie“(k,Z)), (A.15)
kA= 0) = e(k,3). (A.16)

Of course, we don’t have the A = 0 component for the massless vector boson.

A.3 HELAS coupling constants
In general, we start with the following convention for the covariant-derivative:
D, =0, 4+ 1g4,, (A.17)

where A, is matrix-valued if the gauge-group is non-abelian. This convention
for the covariant derivative will lead to the following fermion-fermion-gauge FFV
vertex:

L= —gf’q’“fV;. (A.18)

For non-derivative couplings, we define the coefficients of the Lagrangian as
the HELAS coupling constants, use these as the inputs of the HELAS subroutines.
For example, the above FFV vertex has the HELAS coupling constant

G(I) = —g, (A.19)

where I =1 for a chirality-left fermion and = 2 for a chirality-right fermijon. The
same holds for the scalar self-couplings. The Lagrangian

L= ¢t (A.20)

for a real scalar field gives the HELAS coupling constant —A for the SSSSXX subrou-
tine. According to this definition, the electron to photon coupling is

GAL(1) = GAL(2) = +V4ra, (A.21)

since the electron has a negative charge. You can regard the outputs of COUP1X
to COUP4X as templates to define the coupling constants in your favorite model. If
oune has a Feynman rule, then the coupling constant with one 7 stripped off is the
HELAS coupling constant.

For derivative couplings, the proper definition is less clear. The definition of
the coupling constants depends on the choice of ’particle’ and ’anti-particle’. For
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the VVV vertex, we explicitly fixed the ordering of the input vector bosons in the
order W~ WTW?3, where the boson quantum numbers are defined by those flowing
out from the vertex. The coupling constants are defined such that they will be
positive for this order. If one reverses the ordering, the coupling constant should
be changed in sign. For the coupling constants in the SSV vertex, HELAS assumes
that the first input of the scalar wavefunction is 'particle’. For example, if the
first scalar wavefunction $1(3) in SSVXXX represents a scalar electron and VC(6)
a photon, then the coupling constant will be GAL(1) (or equivalently, GAL(2)).
If the first input is a scalar anti-electron, then the coupling constant should be
-GAL(1). In any case, the definition of the coupling constants in the SSV vertex
follows that of the FFV vertex as one regards the first input scalar as a ’particle’.
Here we note again that all the quantum numbers are defined to be flowing-out
from the vertex. Thus, for instance, the scalar neutrino in the initial state has the
coupling constant ~GZN(1) with the Z-boson.

The outputs of ofi-shell wavefunctions include the i’s appearing in the Feynman
rules and propagators. These points are explicitly described for each subroutines
in Chapter 3. Since HELAS coupling constants are just the coefficients of the La-
grangian, the Feynman rule is ¢ times the HELAS coupling constant. The propagator
for the scalar and fermion line also contains another factor of 7, while for the vector
line it is a factor of —i.

The outputs of the amplitude subroutines (VERTEX) are always T-matrix ele-
ments, rather than the Feynman amplitudes. A Feynman amplitude is actually an
S-matrix element which is related to the T-matrix element by

8 =TI+1T. (A.22)
Or, in other words, the HELAS amplitudes (T-matrix elements) have the same phase
as the Lagrangian itself. This point should be known to the users who wish to
add a new type of amplitudes to the HELAS outputs, as may be needed in radiative
corrections.

A.4 Collinear Singularities

For many processes including the t-channel photon exchange or initial state photon
emission, naive application of HELAS will break down due to severe numerical
cancellations. For example in the process ete™ — e~ %, W, the t-channel photon
exchange determined the character of the whole distributions as we discussed in
Chapter 4. There a wide plateau appeared in the pseudo-rapidity distribution of
the final e~, which goes up to a very forward region 1 — cosf ~ 10717, To achieve
this accuracy, we need the quadruple precision, which is not very economical.
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" To avoid this problem, we supply special subroutines to deal with the collinear
singularities which include the ¢-channel photon exchange and initial state soft
photon radiation.

First let us explain our treatment of the {-channel photon exchange. From the
general framework of HELAS , all we need is the off-shell (though almost on-shell)
wavefunction of the ¢- channel photon From the HELAS Feynman rules described
above, we need

Th(e'],1e)) = —DaR) T4 le)), (A.23)
to a high degree of numerical accuracy. The problem is two-fold. The denominator
of the propagator factor D4, and the matrix element Jh 4

The output of the JEEXXX is simply

TR 1)) = (~e)alp, o)y ulk, o), (a.29)
for the ¢-channel photon emission from the electron current. Since the problem is
limited to the case that the initial state is the electron {or positron, which will be
discussed later) beam, we completely fix the frame in the following. We take the
four-momenta to be

K = E(1, 0,0, 8)

p* = zE(1, B sinfcos¢, B sinfsing, 8 cosb), (A.25)
where
™2
ﬂ = - "E""_?‘?
y m?
g = 1__32E2' (A.26)

Now we write down the expression explicitly.
For the helicity non-flip case o = o’, the truncated current reads

a8 . .
Jh = (—e)vz(2E) (cos g, sin §e“w¢, io‘singe”w‘i’, cos g), (A.27)

where the terms of order O(m2/E?) are neglected. One can check the conservation
of the current by contracting with the four-momentum of the photon

plh = Kk —pH
= E(l-=, —zf sinfcos¢, —zF sinfsing, J — 23 cosb)

. 2
= F(l -2, —xsinfcos¢, —zsinfsin ¢, 1—mcos€)'+0(%) ,

(A.28)
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to the accuracy of order O(mZ/E?).
Since the problem lies in the collinear limit cos§ — 1, it is mstructwe to give
the expression in the limit,

J4 = V=(2E)(1, 0, 0, 1),
P = E(1-2,0,0,1~z). (A.29)

Here the truncated current is completely proportional to its four-momentum, or
in other words, it is pure gauge! In analytic evaluation of the amplitudes, the
appearance of the pure gauge current does not cause any harm, however it requires
cancellation among the diagrams. For the numerical evaluation of the amplitudes,
we wish to avoid possible cancellations as much as we can. Since we can change
the gauge of the photon freely as discussed in Chapter 2, we subtract a four-vector
proportional to the four-momentum p4 to make its largest component (zeroth
component) vanish. Thus, the modified truncated current reads

i it ”OP{ZI ¢ —icg 2z 2 0
Jh—Ja=5 = (—e)v/z(2E) sm— 0, e + T %% 508 o,
Pa r
; 2 ] 2 g . 6
oe P 4 ~1_—mx cos® 3 sin ¢, —1—_:85 cos 5 sin «5) ,

(A.30)

which has the safe vanishing limit in the cos§ — 1 with the expected behaviour
~ sin{8/2). Note that the expression is safe if we knew the sin(6/2) to high
accuracy, and cos# is not a suitable input here. Recall that we have to know
1 — cos # up to the accuracy of 107171 Thus, we always take the set

sin -g, cos -g- (A.31)
as the inputs of the current. This completes the treatment of the matrix element,
which is now completely safe numerically.

Now comes the treatment of the photon propagator. If one may naively take
the square from the expression of p; Eq. (A.28), we obtain a vanishing result.
This is due the fact that we have neglected the terms of order O(m?2/E) in the
expression. We have to go back to the original definition p¥ = k* — p* to compute

Dsp) ™ = (k-p)?
= 2mZ—2k-p

—2(2E?)B6'(1 — cos§) — tmin(), (A.32)
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with the notation

tmin (@) = mgu—Tm)? +0 (ﬁ) (A.33)

defined in App. B. Note that the relevant combination is again 1 — cos 8, which
can be rewritten as

g
1 —cosf = 2sin? 2’ (A.34)

which will be numerically safe once we adopt sin{6/2) as the input.

Combining the truncated current and the propagator factor, we have now a
special current J¥% for the t-channel photon exchange. The case for the positron
current goes just analogously; using

k= E(1, 0, 0, —f)
p* = zF(1, sinfcos ¢, sinfsind, cosh), (A.35)

the helicity non-flip current reads

jﬁ = —(—e}/z(2F) (sin ge*i‘"ﬁ, cos g, —ig cosg-, miae_im) . (A.36)

We obtain similar expressions for the modified current by subtracting a four-vector
proportional to the photon four-momentum to make the zero-th component vanish.
It can be worked out easily from the above expression.

We have discussed the helicity-conserving case so far. The helicity-flip currents
are much more straightforward to obtain, since there is no large pure gauge part.
We give the expressions for the truncated currents below:

Me

R g, o
Jh = (—e)ﬁ (—0(1 + z)sin 56“";5, (1l — z) cos 5

9 .
i(1—z)cos 3, —o(l - z)sin ge“"#) (A.37)

for the electron, and

Me g _; 8
e iogd _ Y —iod _ g
=e ( o(l+z) cos 5e~7%, o(l a:)sm2,

J# = (—e)
_ .0 b _ive
—i{1 — z) sin 2 o(l —z)cos 3¢ w ) (A.38)

for the positron current. Though they are proportional to the electron mass due to
the helicity flip, they survive in the total cross section since the small denominator
of the t-channel photon propagator will become as small as m2(1 — z)%/z.
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It is worth noting here that, even though the shift of the electromagnetic
current as in eq.(A.30) is known not to affect the matrix elements in QED, it does
not immediately follow that the same applies in the electroweak theory. Here we
give a simple proof (3] based on the BRS invariance [4] of the electroweak theory.
The BRS identity relevant to our problem is

(phys; out} 8*A,, |phys; in) = 0, (A.39)

where A, is the photon field. The identity follows from the anti-commutation
relation

{QBrs, Ea} = 0FA,, (A.40)
where @ grg is the BRS charge and €4 is the anti-ghost operator associated with
the photon, since (Jp annihilates the physical states v

{phys; out|Q@p = Qpg|phys; in) = 0. (A.41)

When just one off-shell photon current is replaced by the shifted current (A.30),
the matrix element is shifted by a term proportional to

{phys; out|A,|phys; in}q", (A.42)

which vanishes by the BRS identity as long as both the other initial state and the
final states are all on-shell physical states. Hence, the shifted current gives the
correct helicity amplitudes in the electroweak theory.

For the processes where a nearly on-shell t-channel photon is exchanged twice
(the "two-photon’ processes), we may want to use the shifted current twice in the
same amplitude. The above proof no longer applies, because the shifted current
is not the physical state that appears in eq.(A.42). We need only a little more
algebra [3]

OFA,(z) 0"AL(y)
{Q@Brs, ca(®){@srs, caly)}

= QBrsta(2)QBrRsCA(Y) + Ca(2)QBrsTA(¥)QBRs + QBrsCa(2)T4(¥)QBRS,
(A.43)

where we made use of the nilpotency of the BRS charge QzB rs = 0. This identity
ensures that the double gauge transformation does not cause any harm as long
as the remaining external lines are all on-shell, since the BRS charges at the left-
most or right-most annihilate the out- or in-state respectively. Thus, the use of
the shifted current eq. (A.30) for the off-shell photon wavefunction is completely
justified.
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‘The treatment of the t-channel photon in the JEEXXX subroutine is completed
so far. The treatment of the collinear emission of the photon is much simpler. The
subroutines EATXXX and EAO0XXX will do the job for the emission of the photon from
the electron and positron line, respectively.

For the emission from the electron in EAIXXX, we need the off-shell wavefunction
of the electron after the emission of the photon:

7. 1) Aulp, o) (A49)

according to the HELAS Feynman rules. This spinor is the output EAI(6) of the
EATXXX. Again we separate the propagator factor and the matrix element into

le', A,e) =U =

1
U= Em
U = (4+me)ley)enlp, Nulp, o). (A.45)

Here we adopt the notation similar to the photon case

k= E(1, 0, 0, 8),
p* = «E(1, sinfcos¢, sinfdsing, cosh),
¢ =kt (A.46)

We give the relevant formulae for ¢ = + separately. For ¢ = +,

- ( 1~sig€(l+ Te(l+N) )
. “\ sze®(l+cosf)(1+ A)
U =ex/E g snf(-2-+a(l-N) ’ (A47)
ze*®(1 — X)(1 — cos 8)
and for ¢ = —,
B ze (1 + A)(1 — cos 8) )
- smé(2 —z(14+ X))
U=-evB Tze (1= A)(I+cosf) | | (4.48)
e sin §(1 + 22(1 — })

The same is done for the positron spinor EAD(8) in the subroutine EADXXX. We
will fix the kinematics to the frame

k“ = E(11 03 O) _ﬂ)a
p* = gE(1, sinfcos ¢, sinfsin g, cosh),
¢ = pF— kR (A.49)
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We compute the truncated spinors
V =3k, 0)(ev*)€.(p, M (4 + me), (A.50)

in terms of which the off-shell positron wave function is expressed as

(e, A,e'| =V = 1 V. (A.51)

q? —m?

The formulae read for ¢ = +,
V= —eAvVE [E (sin (-2 + z(1 — A))., —ze (1 4 cos ) (1 — A)) ,

e (sin 6(1 + %z:(l +A)), %e“w(l —cos8)(1+ /\))] .
{A.52)

and for o = —, |
V= esE [me (——mz—ei‘b(l —cos#)(1 — A), sin (1 + g(l - )\)) ,
E (2(1+ cos0)(1 + M), sinf(—2+2(1 + M. (As3)

The propagators should be treated separately just as in the case of the currents,
and we use

2 2 2 1 m}
g“-—m; = —22E“{1—cosf + 352 cosd |, (A.54)
for the emission from the electron, and
2 2 2 1m?
g —m; = —2zF 1+c038—~§}3—2 cosf |, (A.55)

for the emission from the positron. Both have again safe expressions if we adopt
cos(f/2) and sin{#/2) as the inputs.
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Sample Programs

In this chapter, we show several sample programs to clarify the use of HELAS.

The first example, WTW~ — i, is the one discussed in Chap. 2 to
introduce the use of HELAS subroutines. The whole program, including the
setting of the kinematics, is presented in Appendix B.1. The readers are
recommended to run this program first for amusement.

The second example of vector boson scattering illustrates the use of
VVVV vertices, which might appear complicated to beginners. This also
shows that vector boson scattering can be treated in a very simple way using
HELAS system. The process WHW~ — W*W also includes Higgs boson
exchange, which can demonstrate the gauge theory cancellation between the
vector boson scattering amplitude and the Higgs boson exchange amplitude.

The third example, e e™ — vZ shows the use of the EAIXXX and EAOXXX
subroutines. Since their use requires special kinematical variables to make
the collinear region numerically safe, you should get accustomed to the inputs
of these subroutines. Here again the whole program is presented, and it can
be run immediately.

The fourth example, e”e* — e 7, W7 is presented to show how to use
JEEXXX, which also requires special kinematical inputs. Also a discussion on
the test of BRS invariance is shown, which is extremely useful in checking
the HELAS programs if there are vector bosons in external lines.

The fifth example, e”e¢™ — W~W™ shows you how the ROTXXX and
BOOSTX can. be used to translate between the W rest frame and the labo-
ratory frame. This example has rich physical significance, since the helicity
measurement of the W boson is done exactly in the way presented in this
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program. This example also proves how easy it is to incorporate decay of the
final state particles.

The last example shows the power of the HELAS system which makes such
a complicated higher order process into a very compact program. Also a
discussion on crossing is presented.

We believe that these examples are enough to show the use of the HELAS
system, and convince you how useful it is.

B.1 W W+t

This is the example discussed in Chap. 2. The virtue of this example is
that one can explicitly see the gauge theory cancellation between various
diagrams. The case with longitudinal W’s is interesting. The J = 1 partial
wave cancels between the s-channel and ¢-channel diagrams, and the J =0
amplitude cancels between the s-channel and Higgs diagrams. If ¢ and 7 have
opposite helicities, then the J = 0 wave will be absent. The gauge theory
cancellation is a non-trivial check of the HELAS amplitudes and its numerical
accuracy.

This program produces a data file for TOPDRAWER. The first half of the
program does only the initializations, including setup of the momenta and
couplings. The subroutine WWTT computes the amplitudes.

o o ke e ok 2k o b ok 3 ok o i e e e ok 3k ok e ok ok e Akl ok o ok 3 b ok o ak ok ok e e ok i o a8 2 e o a4 o 3 o o A ol e 8 o A6 o ok A afe e ofe ok o o ko ok
ek ek + - e e o e ok

ek koK TEST PROGRAM : W W o=t t okokokok
sk * ok deok
Fdokkx by H. Murayama : Feb. 1Bth 1992  sokkkek

e e she ke dhe e e s e e she ke ok e e ab e s sk e sl ale sk she s sk ok ol o o e koo b sk s e Sk dbe e 3k ok kel e sk ke ol s b sk kol dhe e e b sk e sk e ok ok

INPUTS:
helicities of W- and W+
helicities of top and tbar

QUTPUT :

UNIT=1 :

absolute value of the total amplitude
UNIT=2 :

absolute value of the s-channel amplitude
UNIT=3 : '

leN+NeNesNsNs e Ne e Ne e Ne NN T RS
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absolute value of the t-channel amplitude
UNIT=4 :
absolute value of the Higgs amplitude

Akokodok MATN PROGRAM : two body to twe body ok kok

Qo O

IMPLICIT REAL (B~H,M,0-Z)
IMPLICIT COMPLEX (A4)

REAL PWP(0:3),PWM(0:3),PT(0:3),PTE(0:3)
REAL GAL(2),GAU(2),GAD(2) ,GHF{2),GZN(2),GZL(2),GZU{2),GZD{2),
& G1{2)

COMPLEX GCHT(2)
COMMON / MASS /WMASS,TMASS,ZMASS,HMASS,ZWIDTH,HWIDTH
COMMON / COUP /GAU,GZU,GWF,GCHET,GW,GWWH

WRITE(*,*) ’>Input sqrt{s) in GeV’

READ (=%,%) ROOTS

WRITE(*,*) ’Input mt in GeV’

READ (*%,%) TMASS

WRITE(*,*} ’Input helicities of W~ and W+?
READ (,*} NHWM,NHWP

WRITE(*,*> ’Input helicities of ¢ and tbar’
READ (*,*) NHT,NETB

WRITE(1,1000)
WRITE(Z,1000)
WRITE(3,1000)
WRITE(4,1000)
1000 FORMAT(® SET LIMITS X FROM -1 TQ 17)

c
c
PI = REAL(3.141592653589793D0)
PBGEV2 = 0.389E+09
c
WMASS = 80.0
ZWIDTH = 2.5
sW2 = 0.23
ZMASS = WMASS/SQRT(1.0-SW2)
HMASS = 100.0
C

¢ We determine the coupling constants which will be contained in the arrays.
c

CALL COUPiXK(SW2 , GW,GWWA,GWWZ)

CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)
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CALL COUP3X(SW2,ZMASS,HMASS , GWWH,GZZR,GHHH,GWWHH,GZZHH,GHHHH)
CALL COUP4X(SW2,ZMASS,TMASS , GCHT)

C
S=RO0TS**2
EBEAM=RO0OTS#*.5
c
C The four-momenta of the initial W- and W+
c
COSTH = 1.
PHI = 0. ' :
CALL MOM2CX(RDOTS,WMASS,WMASS,COSTH,PHI , PWM,PWP)
c :
C The phase space factor:
c
BETAF=SQRT(1.-4.*TMASS**2/3)
SBETA=S#SQRT(1.-4. *WMASS**2/8)
FACTOR=PBGEV2/2.0/(2.%SBETA)*(BETAF/8./PI)/2.
C
WRITE(*,%) ’Input PHI of W-°
READ (*,*) PHI
C
DD 999 IHCOST=-100,100
C
COSTH=REAL (IHCOST) *.01
¢
C The four-momenta of the final t and tbar
c
CALL MOM2CX(ROOTS,TMASS,TMASS,COSTH,PHI , PT,PTB)
C
C We call the subroutine which computes the amplitudes.
C
CALL WWTT(PWM,PWP,PT,PTB,NHWM,NHWP ,NHT ,NHTB , AMPT,AMPS,AMPH)
c .
WRITE(1,*) COSTH, ABS{AMPT+AMPS+AMPH)
WRITE(2,*) COSTH, ABS(AMPT)
WRITE(3,*) COSTH, ABS(AMPS)
WRITE(4,*) COSTH, ABS(AMPH)
C .
999  CONTINUE
C

WRITE(1,1010)
WRITE(2,1010)
WRITE(3,1010)
WRITE(4,1010)
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1010 FORMAT(’ JOIN?)

C
1 CONTINUE
STOP
END
C
$234567890== 2 3 =4 == 6 ==
SUBROUTINE WWTT(PWM,PWP,PT,PTB,NEWM,NHWP,NHT ,NHTB, AMPT,AMPS,AMPH)
IMPLICIT REAL (B-H,M,0-2)
IMPLICIT COMPLEX (A)
COMPLEX FI(6),F0(6),FVI(8),WP(6),WM(6),J3(6),HTT(3)
REAL PWP(0:3),PWM(0:3),PT(0:3),PTB(0:3)
REAL GAU(2) ,GWF{(2),GZU(2)
COMPLEX GCHT(2)
COMMON / MASS /WMASS,TMASS,ZMASS,HMASS,ZWIDTH,HWIDTH
COMMON / COUP /GAU,GZU,GWF,GCHT,GW,GWWH
c
PI =REAL{3.141592653589793D0)
HWIDTH = 0.
c
C The initial state wavefunction of the W’s:
c
CALL VXXXXX(PWM,WMASS NHWH,-1 , WM)
CALL VXXXXX(PWP,WMASS ,NHWP,-1 , WP)
c
C The final state wavefunction of top and tbar.
c
CALL OXXXXX(PT ,TMASS,NHT ,+1 , FQ)
CALL IXXXXX(PTE,TMASS,NETB,-1 , FI)
c

C First, we compute the s-channel Z, photon exchange diagram.

CALL J3XXXX(FI,F0,GAU,GZU,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WP,WM,J3,GW , AMPS)

C Next we compute the t-channel bottom exchange diagram.

CALL FVIXXX(FI,WM,GWF,0.,0. , FVI)
CALL IOVXXX(FVI,FD,WP,GWF , AMPT)

(]

Finally we compute the s-channel Higgs exchange diagram.

CALL HIDXXX(FI,FO,GCHT,HMASS,HWIDTH , HTT)
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CALL VVSXXX{WM,WP,HTT,GWWH , AMPH)

RETURN
END

B.2 Vector Boson Scattering

We present sample programs with the vector boson four-point couplings. The
subroutines WWWWXX and W3W3XX compute the amplitudes including the four-
point contact vertex and two of s-, t- or u-channel vector boson exchanges.
The cancellation between the vector boson four-point coupling and the Higgs
exchange amplitude in W W~ — W*W " is also non-trivial.

The examples do not have the parts which set up momenta and couplings.
One can easily modify the first example in B.1 appropriately for the examples
in this section.

B.2.1 W Wt—-W-Ww+

c
C Polarization vectors of initial W*-, W™+
C
CALL VXXXXX(PWMI,WMASS,NHWMI,-1 , WMI)
CALL VXXXXX(PWPI,WMASS,NHWPI,-1 , WPI)
C
C Polarization vectors of final W"-, W™+
c
CALL VXXXXX(PWMF,WMASS,NHWMF,+1 , WMF)
CALL VXXXXX(PWPF,WMASS,NHWPF,+1 , WPF)
C
C Vector boson scattering amplitude
c
CALL WWWWXX(WPI,WMI,WMF,WPF,GWWA,GWWZ,ZMASS,ZWIDTH , AMPWW)
c
C Higgs boson exchange amplitude (s-channel)
C
CALL HVVXXX(WMI,WPI,GWWH,HMASS ,HWIDTH , HWWS)
CALL VVSXXX(WMF,WPF,BWWS,GWWH , AMPHS)
C
C Higgs boson exchange amplitude (t-channel)
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CALL HVVAXX(WMI,WMF,GWWH,HMASS,HWIDTH. , HWWT)
CALL VVSXXX(WPI,WPF HWWS,GWWH , AMPHT)

B.2.2 yy—-W"W*

C
¢ Polarization vectors of initial pheton 1 and 2
o .
CALL VXXXXX(PA1,0.,NHAL,-1 , A1)
CALL VXXXXX(PAZ2,0.,NHAZ,-1 , A2)
C '
¢ Polarization vectors of final W™-, W™+
¢ :
CALL VXXXXX(PWM,WMASS,NHWM,+1 , WMD)
CALL VXXXXX(PWP,WMASS,NHWP,+1 , WP)
c
C Vector boson scattering amplitude
C

CALL W3W3XX(WM,A1l,WP,6A2,GWWA,GWWA WMASS ,WWIDTH , AMP)

B23 W~v-W 24

c
C Polarization vectors of initial W- and photon
C
CALL VAXXXX(PWI,WMASS,NHWMI,-1 , WMID
CALL VXXXXX(PA ,0. NHA -1, 4 D
c
C Polarization vectors of final W- and Z
c
CALL VXXXXX(PWF,WMASS ,NHWMF,+1 , WHF)
CALL VXXXXX(PZ ,ZMASS,NHZ ,+1 , Z )
C
C Vector boson scattering amplitude
c

CALL W3W3XX(WMF,Z,WMI,A GWWZ,GWWA, WMASS WWIDTH , AMP)

B.3 ee" —~4Z

This example is presented to illustrate the use of the subroutines EAIXXX
and EAOXXX. These subroutines are designed to deal with the emission of
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collinear photons from the beam electron or positron; note, however, they
are also valid for large angle photons. In these subroutines, it is always
assumed that the beam electron is running along the positive z-axis, and the
beam positron is running along the negative z-axis.

The initialization of the kinematics is also presented to show the use of
CHLF, SHLF. In this example, we compute these variables from the pseudo-

rapidity variable Y. '

QOO aaaaaaQaaaa

aQQ

Aok ok sk o o AR o o sk o oo 3 o s oo A o o o oo o b ok e ok ok o ke e e ok e et e s ok o Aok o o o o 6 A6 8 ook ok o ok ok ok ok ok o

kK + - 0 Aok ok ok
Ll TEST PROGRAM : e e =>7  GAMHA Rk
*Aorok ok _ T
dekkokk by H. Murayama & I. Watanabe : 14th June 19950  *#**x*

e o e o e e o e ok ok ok o o o ko B ok e e sk e sk Db e ok sk S ke 3 Sl e e ofe e e ke e s ae e dk e ol ok ot of S st s e o ke e ol ok ol ok e ok o e ok e o ok

INPUTS: .

two integers (1,0 or -1),(1,0 or -1) : helicities of Z and gamma

one real value (-1.0 TO +1.0) : polarization of e— beam

one positive real value : beam energy (GeV)

one real value : azimuthal angle of Z
OUTPUT:

file=’EEZG.DAT’> : differential cross-sections (pb) vs. cos(theta)

in all channels with all chiralities. -

Hook ok MAIN PROGRAM : two body to two body * o kA
This program is a test program computing the e+e- --> ZG amplitude.

IMPLICIT REAL (B-H,M,0-2)

IMPLICIT COMPLEX (&)

REAL PEM(0:3),PEP(0:3),PG(0:3),PZ(0:3)

OPEN (UNIT=1, STATUS=’NEW’, FILE='EEZG.DAT’)

PI=REAL(3.14159265)

The followings are the initial data for electrom and Z.
EMASS = 0.511E-03
ZMASS = 91.1

WRITE(*,*) ’ Which helicities do you like for Z and gamma?’
READ(*,*} NHZ, NHG

5}

139
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c .
C The phase space factor is
C

SQRTE = 1000.

5 = SQRTS**2

"BETAF = 1.-ZMASS**2/S

SBETA = S*SQRT(1.-4.*EMASS**2/5)

PBGEV2= 0.389E+09

FLUX = 2.#3BETA

SPNAVG= 1./4.

STAT =1.

FACTOR= PBGEV2*SPNAVG/FLUX*(BETAF/8./PI)
C
C The initial electron is runming along the positive z-axis.
c

CTHETA = 1.

PHI = 0.

CALL MOM2CX (SQRTS,EMASS,EMASS,CTHETA,PHI , PEM,PEP)
c
C The momentum of Z boson described by pseudo-rapidity Y
c

PHI=1.

DD 10 I=-100,100

Y=REAL(I)/2.5E0

COSTH = TANH(Y/2.0)

CALL MOM2CX (SQRTS,ZMASS,0.,COSTH,PHI , PZ,PQR)
c
C We call the subroutine of the invariant amplitude.
c

CALL EEZG (EMASS,ZMASS,Y,PHI,PEM,PEP,PG,PZ,NHEM,NHEP ,NEG,NHZ ,

& PROB)
c

RIAC = 1.D0/(2.0+COSH(Y/2.0)%%2)

WRITE(1,*) Y, PROB*FACTCR*RJAC
c
10 CONTINUE

END
C .
C234567890===msmana)=msx 3 =Rwg s=h===== 6= ==
C doksteateoteafaioak koo ok ok deaieof ok sk s sk ook o ook ok ok s s ool ook ok oo ool sk e ok oo skl o oo s o ok o ok ok o o o o
C ek Aok ok ok
C okdoksdok SUBROUTINE: e+ e~ --> Z gamma ok kK
O deokookok e ok ok ke ok
G wwaak ' ' A
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C koA A Aol A oo Aol AR Ao oo Ao oo o o o A A oK oK A A A K AR A AR AR A A R iR S e o o o
c
c
C This is the subroutine which computes the invariant amplitude of the
C process e+e- —--> IG.
c
SUBROUTINE EEZG (EMASS,ZMASS,Y,PHI,PEM,PEP,PG,PZ,
& NHEM,NHEP,NHG ,NHZ , PROB)
IMPLICIT REAL (B-H,M,0-Z)
IMPLICIT COMPLEX (A)
COMPLEX EM(6), EP(6), Z(6), G(6), EAI(6), EAD(6)
REAL PEM(0:3),PEP(0:3),PG(0:3),PZ(0:3),GZ(2)
REAL GAL(2),GAU(2),GAD(2),GW(2),GZN(2),GZL(2),GZU(2),GZD(2),
& GS(2},61(2) ‘
DIMENSION §(0:3)
c
PI=REAL(3.14159265)
C
5W2=0.23
CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)
c
C
C The wave functions of the final Z boson and photon.
C
CALL VXXXXX (PZ,ZMASS,NHZ,+1 , Z)
CALL VXXXXX (PG,0. ,NHG,+1 , G)
c
C We can check the gauge-invariance from the following substitution; the
C t-channel diagram and u-channel diagram cancel with each other.
C
¢ Z(1) = CMPLX(PZ(0))/MZ
C Z(2) = CMPLX(PZ(1))/MZ
C Z(3) = CMPLX(PZ(2))/MZ
c Z(4) = CMPLX(PZ(3))/MZ
C
C some kinematics
¢
CHLF = 1./SQRT(1.+EXP(-Y))
SHLF = 1./SQRT(1.+EXP( Y))
C
PROB = 0.
c
C We sum over possible helicities of electron and positron.
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DO 10 KHEM = -4, 1, 2
DO 20 NHEP = -1, 1, 2
c
C The wave functions of the initial electron and peositron.
c
CALL IXXXXX (PEM,EMASS,NHEM,+1 , EM)
CALL OXXXXX (PEP,EMASS,NHEP,-1 , EP)
c
C We compute two diagrams.
C
C Qne diagram where photon is attached to the initial
C electron and Z to the positron (t-channel).
c
CALL EAIXXX (PEM(0),PG(0),SHLF,CBLF,PHI,NHEM,NHG , EAI)
CALL TOVXXX (EAI,EP,Z,GZIL , AMPT)
C
C The other diagram where Z is attached to the initial
C positron and photon to the electrom (u-channel).
C
CALL EAOXXX (PEP(0),PG(0),SHLF,CHLF,PHI,NHEP,NHG , EAO0)
CALL IOVXXX (EM,EAD,Z,GZL , AMPU)
C
PROB = PROB + ABS(AMPT + AMPU)x**2
C

20  CONTINUE
10  CONTINUE

RETURN
END

B4 eet —epWT

This example is given to present the use of the subroutine JEEXXX and also
to demonstrate the BRS invariance test of the amplitude. This code was
actually used in [7]. ‘The code is designed to be called from the Monte
Carlo integration package BASES [2]. To clarify the meaning of the inputs in
JEEXXX, the part of the program to set up the kinematics is also included.
The four-momenta of the final state e™, ¥, and W are computed in terms
of the integration variables X(1) to X(5). The last integration variable X(6)
is devoted to the summation over the helicities.
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Figure 13: Feynman diagrams for the process e" et — e"#,W*. The dia-
grams (a—d) are t-channel diagrams, and (e-h) s-channel diagrams.
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Since the HELAS codes get bigger as you go to the higher order processes
(though in a much more mild way compared to other means), it will be useful
to have a method which enables you to check the correctness of your HELAS
codes. The best method for this purpose is to check the BRS invariance of
the amplitude explicitly in the numerical program. Indeed we have done the
check on this process in the paper [7].

The method works by making use of the physical state conditions:

Q@Brs |phys; in) = (phys; out| Qprs = 0. (B.1)

These conditions mean that, for any fermionic operator O, the expectation
value '

{phys; out| {Qprs, O} |phys; in) =0, | (B.2)

where the anti-commutator {Qprs, O} should be replaced by a commutator
if the operator O is bosonic. On the other hand, one has the gauge fixing
terms in the Lagrangian

1
Loy g(a’twﬁr ~ Ewmw Xy JO*W, — Ewmw Xy )
1
+ é‘g(a‘uzp — €zmzxz) (B.3)

which cancel the mixing terms between gauge boson and Goldstone boson
fields, and give mass terms to the Goldstone boson fields. Here we adopt the
following parameterization of the Higgs doublet,

o = (L% ) B9

The gauge-fixing terms are introduced to the Lagrangian so that the BRS
invariance of the theory is maintained; it requires that the gauge fixing terms
can be re-written as an anti-commutator of a certain operator with the BRS
charge. Actually, the gauge fixing conditions are BRS transforms of the
anti-ghost operators,

(8“W: — twmwxiy) = {@srs, &) (B.5)
(02, ~ tzmzx3) = {Qsrs, Cz}- (B.6)
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Thus, we obtain the useful identity

{phys; out]| (BFW: — &wmw Xy ) |phys; in) = 0. (B.7)

As far as the tree-amplitudes are concerned, the above relation can be re-
written in terms of the W production amplitude MY{;, and the i, emission
amplitude M,,

L =i pppu) —t Pubvl
= | o — + M
Lﬂ—m%v (g“ P I ey )
i
—twm M, =0, B.8

where p” is the common outgoing four-momentum of W+ and y*. On the
other hand, the amplitude for the emission of the scalar component of W is

Muys = €5 (p)Miy, (B.9)

where the scalar component of the W boson is defined by the polarization
vector

i(p) = L. (B.10)

Then, one obtains the exact relation between the Goldstone boson and scalar
component amplitudes,

Mg — My, = 0. (B.11)

Exactly the same relation holds for Zg and xz. Note that the final relation
does not depend on the gauge parameter &y or £z. Thus, we can take the
formal limit &y, £z — oo in the above relation, which leads to the unitary
gauge employed in the HELAS system. Then, the W amplitude is simply the
amplitude computed in the unitary gauge with the external wavefunction
being €5 in Eq. (B.10).

The amplitudes with a Goldstone boson emission are often very simple
and can easily be evaluated numerically in the HELAS system [6], or in some
cases even analytically. The test of the identity (B.11) turns out to be very
useful in checking the numerical accuracy of the program for those ampli-
tudes with longitudinally polarized vector boson emission, which contains at
very high energies (/s > my) a numerical cancellation associated with the
identity.
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Figure 14: The Feynman diagrams for the process e”e™ — e 7, xf; in the
unitary gauge.

In the example we discuss here, the process

e"et = e Xy (B.12)
should be compared with the amplitude e"e™ — e 7, W™ for the scalar
polarization € in Eq. (B.10). The xi{, amplitude has actually only two
diagrams in Fig. 14, in the vanishing electron mass limit. The VVS coupling
of the xw is

. 2
2 € . —x% * *TRT— ¥
= sty singy (s oo O — Zusin b ) O W — x5 W, ). (B13)

Since HELAS VVS vertices do not accept complex coupling constants, we com-
pute i times the T-matrix element here, which should give the same answer
as the W emission T-matrix element. Then, the following HELAS amplitude

CALL SXXXXX(PW,MW,+1 , SCHI)

GWCA = ABS(GWWA)=*MW

GWCZ = - ABS(GWWA)*MZ*SQRT(SW2)

CALL VVSXXX(CEEAT,CENUWT,SCHI,GWCA , AMPCA)
CALL VVSXXX(CEEZT,CENUWT,SCHI,GWCZ , AMPCZ)
AMPCHI = AMPCA + AMPCZ

should give the same answer as the AMPT in the following program when the
polarization vector W is replaced by the scalar polarization which is comiputed
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by setting NHW=4 in VXXXXX of HELAS.CHECK (not HELAS ). Furthermore, the
xw amplitude is completely safe numerically even for very high energies,
since there is not cancellation among the diagrams. This check will be a
good exercise for beginners. |

The following program contains only the i-channel amplitude. The in-
clusion of the s-channel amplitude can be done in a very simple way (by
crossing). This topic will be explained in the last example in Appendix B.6.
The inclusion of the decay W+t — ud etc. is also straightforward. An exam-
ple is presented in Appendix B.7.

C234567890-—==ww——n e LT e Bomm B-——————— 7--
C
C FUNCTION CROSS (e~ e+ —--> e- nubar W+)
c
(234567890~---—--—~ Qe mm e R g L 6-———————- 7--
C

REAL FUNCTION CROSS(X)
C

IMPLICIT REAL (B-H,M,0-2)

IMPLICIT COMPLEX (4)

REAL X{25)

REAL PEMI(0:3),PEP(0:3),PEMF(0:3),PNU(0:3),PW(0:3)

COMPLEX SEMI(6),SEP(6),S5EMF(6),SNU(6),W(6),

1 CEEAT(6),CEEZT(8) ,CENUWT(5),

2 SINIT(8),SFEL{6),SFNU(8)

REAL LEEL

REAL GAL(2),GWF(2),GZN(2),GZL(2)

COMMON /INPUT/ MEL,MZ,ZWIDTH,MW,WWIDTH,EBEAM,FACTOR,DELTA,RMW4

COMMON /COUPL/ GAL,GZN,GZL,GWF,GW,GWWA,GWWZ

PI = 3.14159265

CRDSS =

The input phase space variables are:
X(1) = log(l - cos theta(e~) + DELTA)
X(2) = log(l + cos theta(nu) + RMW4)
X(3) = log(1l - 2 E(e- )/sqrt(s))
X(4) = phi(e-)
X(8) = phi(nu) - phi(e-)
X(6) = helicity summation
with parameters
EELMAX= (S+MEL**2-MwWx*2)/4./EBEAM
IELMAX~= EELMAX/EBEAM
DELXEL= (MEL**2-My*%2)/S

[ | SO I I 1 I |

aaaaaoaaaaoaaaaaa
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C DELTA = MEL**2%DELXEL*%2/XELMAX/ (2. *EBEAM**2)
c AMW4 = MWkx2/S
¢
ZEL = X(1)
U = X(2)
LEEL = X(3)
PHTEL= X(4)
PHINU= PHIEL+X(5)
NH = INT(X(8))
C
C We fix the kinematics of the particles
C
ROOTS = 2.*EBEAM
CALL MOM2CX(RODTS,MEL,MEL,1.,0. , PEMI,PEP)
C
S = (2, *EBEAM)*%2
CEL = 1.-(EXP(ZEL)-DELTA)
CNU =—1.+(EXP(ZKU)-RHW4)
SHLF = SQRT( (EXP(ZEL)-DELTA)/2. )
CHLFNU = SGQRT( (EXP(ZNU)-RMW4)/2. )
CHLF = SGRT( (1.+SHLF)*(1.-SHLF) )
SHLFNU = SQRT( (1.+CHLFNU)*{1.-CHLFNU) )
SEL = 2 . *CHLF*SHLF
SINNU = 2.*CHLFNU*SHLFNU
C12 = SEL*SINNU*COS (PHIEL-PHINU)+CEL*CNU
EEL = EBEAM*(1.~EXP(LEEL))
PEL = EEL*SQRT(1.-MEL#*2/EEL*%2)
ENU = (S+MEL*#%2-2.%*SQRT (S)*EEL-MW**32)
& /(2. *%(SQRT(S}-EEL)+2.*PEL*C12)
EW = 2,%xEBEAM-EEL-ENU .
IF (EW.LT.MW) EW=MW
¢
CALL MOMNTX(EEL,MEL,CEL,PHIEL , PEMF)
CALL MOMNTX(ENU,0. ,CNU,PHINU , PNU )
PW(0) = EW
PW(1) = -PEMF(1}-PNU(1)
PW(2) = -PEMF(2)-PNU(2)
PW(3) = -PEMF(3)-PNU(3)
c
PTW = SQRT( PW{L)**x2+PW(2)**2 )
¢
C We fix the helicities.

NHEMI = MOD(NH,2)#2-1
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NHEP = MOD(NH/2,2)*2-1

NHEMF = MOD(WH/4,2)*2-1

: NHW = MOD(NH/8,3)-1

c

234567890 -———~--~ 2—————— 3= 4 mm e B - 7--

c

C We compute the amplitude here

c : _
CALL IXXXXX(PEMI,MEL,NHEMI,+1 , SEMI)
CALL OXXXXX{(PEP ,MEL,NHEP ,-1 , SEP )
CALL OXXXXX(PEMF ,MEL,NHEMF,+1 , SEMF)
CALL IXXXXX(PNU ,0. ,+1 ,-1 , SKU )
CALL VXXXXX(PW ,MW ,NHW ,+1 , W )

C

€ t-channel currents

C
CALL JEEXXX(EBEAM,EEL,SHLF,CHLF,PHIEL,NHEMI ,NHEMF,+1 , CEEAT)
CALL JIOXXX(SEMI,SEMF,GZL,MZ,ZWIDTH , CEEZT )
CALL JIOXXX(SNU ,SEP ,GWF,MW,WWIDTH , CENUWT)

C

C spinors

C
CALL FVOXXX(SEP ,W,GWF,0. ,0. , SINIT)
CALL FVIXXX(SNU ,W,GWF,MEL,0. , SFEL )
CALL FVOXXX(SEMF,W,GWF,0. ,0. , SFNU )

C

C diagram (a)

c
CALL IOVXXX(SFEL,SEP,CEEAT,GAL , AMPTAA)
CALL IOVAXX(SFEL,SEP,CEEZT,GZL , AMPTAZ)

C

C diagram (b)

C
CALL VVVIXX(CENUWT,W,CEEAT,GWWA , AMPTBA)
CALL VVVXXX(CENUWT,W,CEEZT,GWWZ , AMPTBZ)

C

C diagram (c)

C
CALL IOVXXX(SNU,SINIT,CEEZT,GZN , AMPTC)

C

C diagram (d)

c

CALL IOVXXX(SEMI,SFNU,CENUWT,GWF , AMPTD)
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C total t-channel amplitude

c
AMPT = AMPTAA+AMPTAZ+AMPTBA+AMPTRZ+AMPTC+AKPTD
(234567890~ —~=m=m== Qrm—— - R dommmmm e N R ettt 7--
C
DSIGMA = REAL(AMPT*CONJG(AMPT))
¢
BETAEL = SQRT(1.-MEL#*2/EEL#*%2)
RJACEL = EXP{ZEL)
RJACNU = EXP{ZNU)
RJAC = BETAEL*EEL*ENU/(SQRT(S)-EEL+EEL*BETAEL*C12)/8./(2.%PI)**5
RJACL = EBEAM#EXP(LEEL)
CORR = REAL(128.D0/137.0359895D9)
CROSS = DSICGMA%FACTOR*RJAC*RJACEL*RJACNUxRJACL*CORR
C
C This is our integrand.
el
RETURR
END

B.5 Decay Angle Distributionine et - W-W

The following example illustrates the use of ROTXXX and BOOSTX. To measure
the helicity of the final W’s, we study the decay angle distributions of the
final state fermions. The example computes the decay angle distribution of
the final state e™ from W™, where the angle is defined in the W™ rest frame,
with the polar angle measured from the W~ momentum direction. To use
HELAS to compute the distribution, we define the angle in the W™ rest frame
first, then rotate it such that the positive z-axis will be rotated to the W~
momentum direction, and then boost it to the laboratory frame along the
W~ momentum. These steps are done by ROTXXX and BOOSTX.

The program basically computes the angular distribution of the W~ for
each helicity combination. The lines in small letters are the modifications
to compute the decay angle distributions for fixed W~ angle. As one can
clearly see, HELAS can easily incorporate the decay of final state particles just
by replacing the on-shell wavefunctions by outputs of suitable subroutines.
In this sample, the on-shell wavefunction computed by VEXXXX is replaced
by the output of JIOXXX, which computes the off-shell W~ current from the
final state e~ and v, spinors.
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C stk st el st oo ok e sk sk ok e o ok sk sk o o s sk sl s s ek e ksl o ok o oK ol s R o8 SHOR K Ko o
C wkkaek + - + - LEEE L2
C ®kkkk SAMPLE PROGRAM @ e e =¥ W Aok ko
C +++++ +++++
C +++t+ studies the decay angle distribution of W- +++i+
C +i+++ with fixed W+ helicity FH++t
C Fkdokk *okokokok
C ok ok s o ook o sk o s o 3ok S sk 3k 2k o K ek o o o8 o 2k o 3 K K K o o e ok ok i o ok o K ok e ok o ok o ke ko ok o ke o o o 3 e o ok o 3k K Kok
C
COMPLEX I(6),0(6),WM(8),WP(6),FVI(6),J3(6),AMP,AMPT,6AKPS
REAL PI(0:3),P0{0:3),PWM(0:3),PWP(0:3),
& COSTHE,PHIE,COSTHW,PHIVW,
& EMASS ,WMASS ,ZMASS , ZWIDTH ,NUMASS ,NWIDTH,
& SW2,GW,GWWA ,GWWZ,
& GAL(2),GAU(2),GAD(2) ,GWF(2),GZN(2),GZL(2),GZU(2),GZD(2),
& ai(2) '
INTEGER HELI,HELO,HELWM,HELWP
complex emf(8),nuf(6)
real pemhat(0:3),pnuhat(0:3) ,pemf(0:3) ,pnuf(0:3)
c
ROOTS = 50O.0
COSTHE = 1.
PEIE = 0.
c
swa = 0.23
EMASS = 0.0
WMASS = 80.0
WWIDTH = 2.0
ZMASS = WMASS/SQRT(1.0-5W2)
ZWIDTH = 2.5
NUMASS = 0.0
NWIDTH = 0.0
c

write(*,*) ’input cos theta(w-), phi(w-)’
read (*,%*) costhw,phiw
WRITE(*,*} ’Input helicities of initial e-, e+’
READ {(*,*) HELI,HELO
WRITE(*,%*} ’Input helicity of W-’
c READ (*,*) HELWM
WRITE(*,*) *Input helicity of W+’
READ (*,x) HELWP

CALL COUP1X(SW2 , GW,GWWA,GWWZ)
CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZIL,GZU,GZD,G1)
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C
CALL MOM2CX(RDOTS,EMASS,EMASS,COSTHE,PHIE , PI,PO)
call mom2cx(roots,wmass,wnass,costhw,phiv , pwm,pwp)
C
C DD 10 3 = 100, -100
¢ COSTHW = REAL(I)/100.
C PHIW = 2.
c CALL MOM2CX(ROOTS,WMASS,WMASS,COSTHW,PHIW , PWM,PWP)
c
do 10 j = -100, 100
coshat = real({j)/i00.
phihat = 1.
call mom2cx(wmass,emass,nunass,coshat,phihat , pemhat,pnubat)
¢all rotxxxz(pemhat,pwm , pemhat)
call rotxxx(pnuhat,pwm , pnuhat)
call boostx(pemhat,pun , pemf)
call boostx(pnuhat,pwm , pnuf)
c
C The initial state spinors
c
CALL IXXXXX(PI,EMASS,HELI,+1 , I)
CALL OXXXXX(PO,EMASS,HELO,-1 , O)
C
C The W-, W+ polarization vectors
C
c CALL VXXXXX(PWM,WMASS,HELWM,+1 , WM)

call oxxxxx(penf,emass,-1,+1 , emf)
call ixxxxx{pnuf,0. ,+1,-1 , nuf)
call jioxxx(nuf,emf,gwf,wnass,wwidth , wm)
CALL VXXIXXX(PWP,WMASS,HELWP,+1 , ¥WP)

c
C t-channel neutrine exchange
c
IF (HELI.EQ.1) THEN
AMPT = 0.
ELSE
CALL FVIXIX(I,WM,GWF,RUMASS,NWIDTH , FVI)
CALL IOVXXX(FVI,0,WP,GWF , AMPT)
END IF
C
¢ s—channel photon/Z exchange

CALL J3XXXX(I,0,GAL,GZL,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WM,WP,J3,GW , AMPS)
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AMP = AMPT + AMPS
~ PROB = ABS(AMP)**2
write(10,%) coshat,prob

10 continue

END

B6 cet—e v, WtZ

This sample is given to demonstrate the compactness of the HELAS codes for
higher order processes. The program has been adapted from the one made
by J. Kanzaki for the paper [8].

There are 80 Feynman diagrams contributing to the process. Exactly half
of them, in which the initial e~ and et do not annihilate (non-annihilation
diagrams), are shown in Fig. 15. The remaining 40 diagrams are obtained
from them simply by exchanging the final e~ line and the initial et line.

One of the advantages of the HELAS system is that this simple crossing
property of the Feynman diagram is made manifest in the computer program.
In the following program, the non-annihilation diagrams as listed in Fig. 15
are computed first, and then the annihilation diagrams are evaluated by
repeating exactly the same sequence of the computation after exchanging
the two initial wavefunctions. At the end of the computation, the sum of
the non-annihilation amplitudes and that of the annihilation amplitudes are
added with a relative minus sign which reflects the exchange of the fermionic
operator.

It may be a good exercise to read the program. In step I, 6 external wave-
functions are calculated by 6 CALL lines. In step II_1, 4 off-shell vector lines
and 7 off-shell fermion lines are evaluated from 6 external wavefunctions. In
step I1.2, 7 off-shell vector, 4 off-shell fermion, and 1 off-shell scalar lines
are evaluated from one external line and one off-shell line, which were pre-
pared in the previous steps. In step III, each diagram of Fig. 15 is calculated
by calling just one HELAS subroutine. The contribution of each diagram is
named after the diagram number in Fig. 15. It should be noted here that
because the HELAS subroutine W3W3XX computes the sum of the diagrams
t24, t25 and t26, the amplitudes AMP26A and AMP26Z stand for the sum of
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the three amplitudes. Finally, the sum of all the non-annihilation diagrams
is called AMPT. This same procedure is repeated to calculate the sum of all
the annihilation diagrams AMPS, simply by exchanging the initial e* wave-
function SEPI and the final e~ wavefunction SEMF. The total amplitude AMP
1s obtained by adding the two contributions with a relative minus sign.

This program calculates accurately the matrix elements when the final
e~ is not too collinear to the initial e~ beam. When one wishes to compute
accurately the amplitudes in the collinear configuration, then the special
subroutine JEEXXX should be used in place of the standard subroutine JIOXXX
in the line which calculates the off-shell photon line JAEM from the initial
and final e’s in the non-annihilation diagram. Details about the use of the
special subroutine JEEXXX are found in Appendix B.4.

As demonstrated in Appendix B.4 for the process e et — e 5, W, the
BRS invariance [4] of the helicity amplitudes provides us with an excellent
test of the program. In the present case, we may compute the helicity ampli-
tude for the process e"et — e B, x*Z, whose Feynman diagrams are listed
in Fig. 16 for the non-annihilation channel. As in the example of Appendix
B.4, the helicity amplitude for the ‘scalar’ W production should agree ex-
actly with that for the production of the associated Goldstone boson y.
The following program was checked by this method in the paper [8]. We
leave this test to the readers as the last exercise of this manual.

Clae ek s stk ook st ok sk ok o o o K o o oo ook ek o Aok oK Ao o o ook ook o o Ao o ok ok o

C Subroutine to calculate the helicity amplitude for the process

c

e-(pemi,nemi) + e+(pepi,nepi) -> e-(penf,nemf) + nubar(pneb,nneb)
+ W-(pwp,nwp) + Z(pz,nz)

Inputs: external particle momenta peni,pepi,pent,pneb,pwp,pz .
external particle helicities nemi,nepi,nemf ,nneb,nwp,nz
coupling constants and masses sw2,hm,em,wm,zm,wwid,zwid

QQQaQaa

c
C Dutput: helicity amplitude AMP
ook ek e ke e sk ok skl s ool o ok ks ko o K ok ok o 4R R o o o S sk oo ook ok ook ok ok ook ok
C Coded by: J. Kanzaki *
Cooteskosoh sk ok ok skt o sk ke stoleokofe ksl seol e ke s e ke s kst ket ok sk ok ok skl o ks o ok ke o s kel ok
SUBROUTINE EEENWZ(PEMI,PEPI,PEMF,PNEB,PWP,PZ,

% NEMI ,NEPI ,NEMF,NNEB,NWP,NZ,

& SW2,HM,EM,WM,ZM,WWID,ZWID,

& AMP)

* % ¥ ¥ ¥ X K ¥ X *
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Figure 16: Feynman diagrams for the process e"et — e p.x+Z. Only the
t-channel digrams are shown.
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IMPLICIT COMPLEX (A)

REAL PEMI(0:3),PEPI(0:3),PEMF(0:3),PNEB(0:3},PWP(0:3),PZ(0:3)
INTEGER NEMI,NEPI,NEMF,NNEB,NWP,NZ

REAL SW2,HM,EM,WM,ZM,WWID, ZWID

COMPLEX ANMP

COMPLEX SETMP
REAL GW,GWWA,GWWZ
REAL GAL(2),GAU(2) ,GAD(2) ,GWF(2},
& GZN(2),GZL{2),GZU(2),GZD(2),G1(2)
REAL GWWH,GZZH , GHHH , GWWHH , GZZHH , GHHHE
COMPLEX SEMI(6),SEPI(6)
COMPLEX SEMF(6),5NEB(6),CZ(6),CWP(6)
COMPLEX JAEM(6),JZEM(6),JWEP(6),IWZW(6),JZZH(6)
COMPLEX SEZEMF(8),SNZNEB(6),SEZEMI(6),SEZEPI(6)
COMPLEX SNWEMF(6),SEWNEB(6),SNWEPI(6)
COMPLEX JZZEMF(8),JAZEMF(8),JWWEMF(6), IWZNEB(6)
COMPLEX JZZEMI(6),JAZEMI(6),JIWZEPI(6)
COMPLEX S3WEMF(6),S3ZNEB(6),S3ANEB(6),S3ZEPI(6)
c
C Prepare coupling constants
C
CALL COUP1X(SW2 , GW,GWWA,GWNWZ)
CALL COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)
CALL COUP3XK(SW2,ZM,HM , '
k GWWH,GZZH,GHHH , GWWHH , GZZHH , GHHHH)
C
C Prepare external particle wave functions (step I)
c :
CALL IXXXXX(PEMI,EM,NEMI, +1 , SEMI)
CALL OXXXXX(PEPI,EM,NEPI, -1 , SEPI)
CALL OXXXXX(PEMF,EM,NEMF, +1 , SEMF)
CALL IXXXXX(PNEB,0.,NNEB, -i , SNEB)
CALL VIXXXX(PWP, WM, KWP, +1 , CWP )
CALL VEXXXX(PZ, ZM,NZ, +1 , CZ )
C
C Sum over non-annihilation diagrams AMPT and annihilation diagrams AMPS
c

DO 1 I=1,2
IF(I.EQ.2) THEN
DO 2 J=1,6

SETMP = SEPI(J)
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SEPI(J) = SEMF(I)
SEMF(J) = SETMP
2 CONTINUE
END IF

C
C Prepare off-shell vector lines from external particles (step II_1)
C

CALL JIQXXX(SEMI,SEMF,GAL,0.,0., JAEM)

CALL JIDXXX(SEMI,SEMF,GZL,ZM,ZWID, JZEM)

CALL JIOXXX(SNEB,SEPI,GWF,WM,WWID, JWEP)

CALL JVVXXX(CWP,CZ,GWWZ,WM,WHWID, JWZW)
c
C Prepare off-shell fermion lines from external particles (step II_1)
c )

CALL ¥FVOXXX(SEMF,CZ,GZL,E¥,0., SEZENF)

CALL FVOXXX(SEMF,CWP,GWF,0.,0., SNWENF)

CALL FVIXXX(SNEB,CZ,GZN,0.,0., SHZNER)

CALL FVIXXX(SKREB,CWP,GWF,EM,0., SEWKEB)

CALL FVIXXX(SEMI,CZ,GZL,EM,0., SEZEMI)

CALL FVOXXX(SEPI,CZ,GZL,.EM,0., SEZEPI)

CALL FVOXXX({SEPI,CWP,GWF,0.,0., SNWEPI)
C
C Prepare off-shell vector lines from off-shell lines (step II_2)
¢

CALL JIOX¥X(SEMI,SEZEMF,GZL,ZM,ZWID, JZZEMF)

CALL JIDIXX(SEMI,SEZEMF,GAL,0.,0., JAZEMF}

CALL JIOXXX{SEMI,SNWEMF,GWF,WM,WWID, JWWEMF)

CALL JIDXXX(SNZNEB,SEPI,GWF,WM,WWID, JWINEB)

CALL JIOXXX(SEZEMI,SEMF,GZL,ZM,ZWID, JZZEMI)

CALL JIOXXX(SEZEMI,SEMF,GAL,0.,0., JAZEMI)

CALL JIOXXX(SNER,SEZEPI,GWF,WM,WWID, JWZEPI)
c
C Prepare off-shell fermion lines from off-shell lines (step II_2)
C

CALL FVIXXX(SEMI,JWEP,GWF,0.,0., S3WEMF)

CALL FVOXXX(SEPI,JZEM,GZL,EM,0., S3ZNEB)

CALL FVOXXX(SEPI,JAEM,GAL,EM,C., S3ANEB)

CALL FVIXXX(SNER,JZEM,GZN,0.,0., S3ZEPI)
¢
C Prepare off-shell scalar lines from off-shell lines (step II_2)
C

CALL HVVXXX(CZ,JZEM,GZZH,HM,0., JZZH)
C

C Calculates amplitudes (step IIL)
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C

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

TOVXXX(SEWNEB,SEZEPI, JAEM,GAL,
IOVXXX (SEWNEB,SEZEPT, JZEM,GZL, -
I0VXXX (SEWNEB,S3ANEB,CZ,GZL,
I0VXXX (SEWNEB, S3ZNEB,CZ,GZL,
IOVXXX(SNZNEB,S3ANEE,CWP,GWF,
IOVXXX (SNZNEB,S3ZNEB, CHP,GWF,
IOVXXX(SNEB,S3ANEB, JWZW,GWF,
IOVXXX(SNEB,S3ZNEB, JWZW,GWF,
VVVIXX(JWZNEB,CWP, JAEM, GWWA,
VVVXXX(IJWZNER,CHP, JZEM, GWWZ,
VVVXXX(JWZEPI,CWP, JAEM, GWWA,
VVVXXX(IWZEPI,CWP, JZEM, GWWZ,
IOVXXX (SNZNEB,SNWEPI, JZEM,GZN,
I0VEXX(S3ZEPI,SNWEPI,CZ,GZN,
I0VAXA(S32EPI,SEZEPI,CWP,GWF,
I0VXXX(S3ZEPI,SEPI,JWZW,GHWF,
IGVXXX (SNEB,SNWEPI,JZZEMF,GZN,
IOVXXX(SNEB,SNWEPI,JZZEMI,GZN,
IOVXXX(SEZEMI , SNWEMF, JWEP,GWF,
IOVXXX(S3WEMF,SNWEMF,CZ,GZN,
I0VXXX (S3WEMF,SEZEMF,CWP,GWF,

CALL IOQVXXX(S3WENF,SEMF,JWZIW,GWF,
CALL VVVXXX(JWEP,CWP, JAZEMF,GWWA,
CALL VVVXXX(JWEP,CWP,JZZEMNF,GWWZ,
CALL VVVXXX(JWEP,CWP,JAZEMI,GWWA,
CALL VVVXIX(JWEP,CWP,JZZEMI,GWWZ,
CALL IOVXXX(SEWNEB,SEPI,JAZEMF,GAL,
CALL IOVXXX{SEWNEB,SEPI,JZZEMF,GZL,
CALL IOVXXX(SEWNEB,SEPI,JAZEMI,GAL,
CALL IOVXXX(SEWNEB,SEPI,JZZEMI,GZL,
CALL TOVXXX(SNZNEB,SEPI, JWWEMF,GWF,
CALL IOVXXX(SNEB,SEZEPI, JWWEMF,GWF,

CALL VVVIXX(JWEP,JWWEMF,CZ,GWWZ,
CALL W3W3XX(JWEP,CZ,CWP,JAEM,GWWZ,GWWA, WM, WWID,
CALL W3W3XX(JWEP,CZ,CWP,JZEM,GWWZ,GWWZ, WM ,WWID,
CALL VVSXXX(CWP,IWEP,JZZH,GWWH,

C Sum over all the diagrams

c

&
&
&

AMPSUM = AMPiA +AMP1Z
+AMP3A +AMP3Z
+AMPEA  +AMPLZ
+AMP7  +AMPS

+AMP2A
+AMP4A
+AMPEA
+AMP9

+AMP2Z
+AMP4Z
+AMPEZ
+AMP10

AMP14)
AMP1Z)
AMP2A)
AMP2Z)
AMP3A)
AMP3Z)
AMP44A)
AMP4Z)
AMPBA)
AMP5Z)
AMP6A)

AMPEZ)

AMP7)
AMPE)
AMPY)
AMP10)
AMPi1)
AMP12)
AMP13)
AMP14)
AMP15)
AMP16)
AMP17A)
AMP172)
AMP184)
AMP18Z)
AMP1OA)
AMP197)
AMP204)
AMP20Z)
AMP21)
AMP22)
AMP23)
AMP264)
AMP262)
AMP2T)

159
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+AMP11 +AMPi2 +AMP13 +AMP14
+4MP15 +AMP16 +AMPi7A +AMPITZ
+AMP18A +AMP18Z +AMP19A +AMP19Z
+AMP204 +AMP20Z +AMP21 +AMP22
+AMP23 +AMP264 +AMP26Z +AMP2Y

e 82 G 87 B

c
C Non-annihilation diagrams AMPT and annihilation diagrams AMPS
c
IF(I.EQ.1) THEN
AMPT = AMPSUM

ELSE
AMPS = AMPSUM
ENDIF
1 CONTINUE
c
C Sum of non-annihilation and annihilation diagrame
C
AMP = AMPT -~ AMPS

c

RETURN
END
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HELAS.LIST

C.1 HELAS.LIST1

~ The subroutine list HELAS.LIST1 contains the full list of the subroutines as
well as their brief descriptions. The same comments are also included in the
HELAS .FOR itself. HELAS.LIST1 is just the extraction of all comment lines
form HELAS.FOR. However, once you understood the basic strategy of HELAS,
it will be sufficient to have a copy of HELAS.LIST1 when you do the actual
programming. If you further get accustomed to it, then HELAS.LIST2 will be
sufficient. We hope you a good luck.

0 3 o o o sk e s o ol o b o b3 e ok o 3k e o e o ok ok o 6k ok o ot e 8 ek SRl ok o K e ok o o ok e sk ko 3ok e ok ok o 3 ok ok

Kk SUBROUTINE LIST 1 for HELAS.FOR and HELAS_CHECK.FOR ok
Kok coded by H. Murayama & I. Watanabe *kok
ok ver. 2.3 3rd Apr. 1992 Aekok

ek ke 3 ke o o o o ke o o o s b o e 3k ook o e s ol e ok ok ok s e sk ke ko 3k sk ol sk ok o ke ok ko ke ok o sk o ok o ok e i 3 3 o o s ok o o e ok

The subroutines are named as follows.

External Lines:

I : fermion (flow-IN) ==> IXXXXX

< f | : fermion (flow-0UT) ==> QOXXXXX

epsilon”mu , epsilon*"mu : vector boson (initial,final) ==> VYXXXX

S : scalar boson (initial,final) ==> SXXXXX
Vertices:

< £V f> : amplitude of FFV vertex ==> IOVXXX

| £2 VvV £ > : flow~-in fermion from FFV vertex ==> FVIXXX

161
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<f V£ : flow-out fermion from FFV vertex ==> FVOXXX
Jrmu(< £ | ¥V | £ >) : wvector current from FFV vertex ==> JIDXXX
W3 current from FFV vertex ==> "J3XXXX
<f*s5f> : amplitude of FFS vertex ==> I0SKXX
| £2 8 £ > : flow-in fermion from FFS vertex ==> FSIXXX
<f 8 f | : flow-out fermion Ffrom FFS vertex ==> FSOXXX
J(<£2 1581 £ » : scalar current from FFS vertex ==> HIOXXX
Gamma(V1,V2,V3) : amplitude of VVV vertex ==> VVVXXX
Jrmu(V?:Vi,v2) . vector current from VVV vertex ==> JVVIXX
Gamma(V1,V2,S) : amplitude of VVS wertex ==> VVSXXIX
J*ma(V?:V,S) : vector current from VVS vertex ==> JVSXIX
J(8:v1,V2) : scalar current from VVS vertex ==> HVVEXX
Gamma(V,51,52) : amplitude of V85 vertex ==> VSSXXX
J mu(V:581,82) : vector current from VSS vertex ==> JSSXEX
J(87:v,8) : scalar current from VSS vertex ==> HVSIXX
Gamma(S1,52,83) ; amplitude of 5855 vertex ==> SSSKIX
J(8?:81,82) 1 scalar current from SS8SS vertex ==> HSSIIX

Gamma(W¥,WP,WM,WP) : amplitude of 4-point W+/W- vertex ==> WWWWXX
Jomu(W? :W1,¥2,W3) : W current from 4-point W+/W- vertex ==> JWWWIX
Gamma (WM,W3,WP,W3) : amplitude of 4-point W/W3 vertex ==> W3W3XX
J madW?:W1i,W2,W3) : W current from 4-point W/W3 vertex ==> JW3WIX

Gamma{Vi,V2,51,82) : amplitude of VVSS wvertex ==> VVSS5XX
J mu(V?:V,81,82) : vector current from VVSS vertex ==> JVSSXX
J(8*:v1,v2,8) : acalar current from VVSS vertex ==> HVVSXX
Gamma(S1,52,53,54) : amplitude of 3558 vertex ==> 5555XX
J(5°:81,82,83) : scalar current  from SS5S8S vertex ==> HSSSXX

Special Vertices:

| e A e > : initial electron with photon ==> EAIXXX
< e+t Ae’ | : initial positron with photon ==> EADXXX
Jrmu(< e+ | A | e->) : t—channel photon from e-/e+ ==> JEEXXKX

Utilities for Momentum Manipulations:

P mu(energy,mass,costh,phi) : set up 4-momentum ==> HKIMNTX
Pi'mu & P2"mu  : set up two 4-momenta in 1 2 rest frame ==> MOM2CX
P_boosted : Lorentz boost of 4-momentum ==> BOOSTX
P_rotated : rotation of 4-momentum ==> ROTXXX

Standard Model Coupling Constants:

for VVV,VVVV vertices ==> (COUP1X
for FFV vertices ==> (CQUP2X
for VVS,8588,VVSS,5538 vertices ==> CBUPBK

for FFS vertices ==> (COUP4X
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SUBROUTINE IXXXXX(P,FMASS,NHEL,NSF , FI)

This subroutine computes a fermion wavefunction

fermion number.

INPUT:
real P(0:3)
real FMASS
integer NHEL =
integer NSF

QUTPUT:
complex FI(6)

: four-momentum of

: mass
: helicity
-1 or 1 :

-1 o0or 1

: fermion wavefunction

of
of
+1 for particle,

with the flowing-IR

fermion
fermion
fermion
-1 for anti-particle

SUBROUTINE OXXXXX(P,FMASS,NHEL,NSF , FQ)

This subroutine computes a fermion wavefunction

fermion number.

INPUT:
: real P(0:3)
real FMASS
integer NHEL =
integer NSF

1t

OUTPUT:
complex FO(6)

: four-momentum of

! mass
: helicity
: +1 for particle,

-1 or1
-1 or i

: fermion wavefunction

of
of

with the flowing-0UT

fermion
fermion
fermion
-1 for anti-particle

SUBRODUTINE VIXXXX(P,VMASS,NHEL,NSV , VC)

This subroutine computes a VECTOR wavefunction.

INPUT:
real P(0:3)
real VMASS
integer NHEL

integer NSV

: four-momentum of

-1, 0, 1:

-1 o0r 1l

T Magss

of

helicity of

vector boson
vector boson
vector boson

(0 is forbidden if VMASS=0.0)

: +1 for final, -1

for initial
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QUTPUT:
complex VC(8) : vector wavefunctiom epsilon mu(V)

SUBROUTINE SXXXXX(P,NSS , 38C)

This subroutine computes a complex SCALAR wavefunction.

INPUT:
real P(0:3) : four-momentum of scalar boson
integer NS§ = -1 or 1 : +1 for final, -1 for initial
OUTPUT :
complex SC(3) : scalar wavefunction s

SUBRQUTINE IOVXXX(FI,FD,VC,G , VERTEX)

This subroutine computes an amplitude of the fermion-fermion-vector
coupling.

INPUT:
complex FI(8) : flow-in fermion IFI>
complex FO(6) i flow-out fermion <FO|
complex VC(6) : inmput vector v
real G(2) : coupling constants GVF
QUTPUT:
complex VERTEX : amplitude <FOiV|FI>

SUBROUTINE FVIXXX(FI,VC,G,FMASS,FWIDTH , FVI)

This subroutine computes an off-shell fermion wavefunction from a
flowing-IN external fermion and a vector beoson.

IRPUT:
complex FI(6) : flow-in fermiom |FI>
complex VC(6) ¢ input vector v
real G(2) : coupling constants GVF
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real FMASS : mags of QUTPUT fermion F’
real FWIDTH i+ width of QUTPUT fermion F’
OUTPUT: : _
complex FVI(6) 1 off-shell fermion |F?,V,FI>
SUBROUTINE FVOXXX(FO,VC,G,FMASS,FWIDTH , FVD)
This subroutine computes an off-shell fermion wavefunction from a
flowing-0UT external fermion and a vector boson.
INPUT:
complex FO(6) : flow-out fermion <FO|
complex VC(E) : input vector v
real G(2) : coupling constants GVF
real FMASS : mass of OQUTPUT fermion F’
real FWIDTH : width of QUTPUT fermion F’
OUTPUT : :
complex FVO(8) : off-shell fermion <F0,V,F’|
SUBROUTINE JIOXXX(FI,FO0,G,VMASS,VWIDTH , JIO)
This subroutine computes an off-shell vector current from an external
fermion pair. The vector boson propagator is given in Feynman gauge
for a massless vector and in unitary gauge for a massive vector.
INPUT:
complex FI(6) : flow-in fermion IFI>
complex FO(6) : flow-out fermion <F0|
real G(2) : coupling constants GVF
real VMASS : mass of QUTPUT vector V
real VWIDTH : width of OUTPUT wvector V
OUTPUT:
complex JI0(6) ¢ vector current I "mu(<FO{V|FI>)
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SUBROUTINE J3XXXX(FI,FO,GAF,GZF,ZMASS,ZWIDTH , J3)
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This subroutine computes the sum of photon and Z currents with the
suitable weights ( J(W3) = cos(theta W) J(Z) + sin(theta W) J(A) ).
The output J3 is useful as an input of VUVXEX, JVVIXX or W3W3XX.

The photon propagator is given in Feynman gauge, and the Z propagator
is given in unitary gauge.

INPUT: .
complex FI(6) : flow-in fermion |FI>
complex FO(6) : flow-out fermion <FO|
real GAF (2} : FI couplings with 4 GAF
real GZF(2) : FI couplings with Z GZF
real ZMASS : mass of Z
real ZWIDTH : width of Z

OUTPUT:
complex J3(6) : W3 current I mu(<FOIW3|FI>)

SUBROUTINE IDSXXX(FI,F0,SC,GC , VERTEX)

This subroutine computes an amplitude of the fermion-fermion-scalar
coupling.

INPUT:
complex FI(8) : flow-in fermion FFI>
complex FO(8) : flow-out fermion <F0|
complex SC(3) ; input scalar s
complex GC(2) : coupling constants GCHF
QUTPUT:
complex VERTEX : amplitude <FO|S|FI>

SUBROUTINE FSIXXX(FI,SC,GC,FMASS,FWIDTH , FSI)

This gubroutine computes an off-shell fermion wavefunction from a
flowing-IN external fermion and a scalar boson.

IRPUT:
complex FI(&) : flow-in fermion {FI>

complex SC(3) T input scalar 5
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complex GC(2)
real FMASS
real FWIDTH

OUTPUT:
complex FSI(6)

SUBROUTINE FSOXXX(FD,SC,GC,FMASS,FWIDTH , FSO)

This subroutine computes an off-shell fermion wavefunction from a
flowing~0UT external fermion and a scalar boson.

INPUT:
complex FO(6)
complex SC(6)
complex GC(2)
real FMASS
real  FWIDTH

OUTPUT:
complex FSO(6)

! coupling constants GCHF
: mass of OUTPUT fermion F*

: width of OUTPUT fermion F'

: off-shell fermion {F*,S,FI>
: flow-out fermion <F0}
¢ input scalar 3
: coupling comstants GCHF

: mass of OUTPUT fermion F’
: width of OUTPUT fermion F?

: off-shell fermion <F0,8,F’|

SUBROUTINE HIOXXX(FI,FO,GC,SMASS,SWIDTH , HIO)

This subroutine computes an off-shell scalar current from an external

fermion pair.

INFUT:
complex FI(6)
complex FO(6)
complex GC(2)
real SMASS
real SWIDTH

OQUTPUT:
. complex HIQ(3)

: flow~in fermion [FI>
: flow-out fermion <Fo|
: coupling constants GCHF

: mass of QUTPUT scalar S
: width of QUTPUT scalar S

: scalar current J(<FIiS|FO0>)

SUBROUTINE VVVXXX(WM,WP,W3,G , VERTED)
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This subroutine computes an amplitude of the three-point coupling of
the gauge bosons.

INPUT:

complex WM(8)
complex WP(6)
complex W3(&)
real G

OUTPUT :

complex VERTEX

: vector flow—-0UT W-
. vector flow-0UT W+
! vector J3 or A or Z

: coupling comnstant GW or GWWA or GWHWZ

i amplitude Gampa(WM,WP,W3)

SUBROUTINE JVVIXX(V1,V2,G,VMASS,VWIDTH , JVV)

This subroutine computes an off-shell vector current from the three-
point gauge boson coupling. The vector propagator is given in Feynman
gauge for a massless vector and in unitary gauge for a massive vector.

INPUT:

complex Vi(8)
complex V2(6)
real G

real VMASS
real VWIDTH

The possible sets of

[ v1 ] 2
| W- i W+
| W3/A/2 1 W-
| W+ | W3/A/Z

: first vector Vi
: second vector V2
: coupling constant (see the table below)
: mass of OUTPUT wector V
: width of OUTPUT vector V

the inputs are as follows:

| oJvw | G [ VMASS | VWIDTH |
[~ A/Z | GWWA/GWWZ | 0./ZMASS | O./ZWIDTH |
[ W+ | GW/GWWA/GWWZ | WMASS | WWIDTH |
[ W- | GW/GWWA/GWWZ | WMASS | WWIDTH |

where

all the bosons

OUTPUT:

complex JVV(6)

are defined by the flowing-0UT quantum number.

: yector current J mu(V:V1,v2)

SUBROUTINE VVSXXX(V1,V2,SC,G , VERTEX)
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coupling.

IRPUT:
complex V1(6)
complex V2(§)
complex SC(3)
real G

AUTPUT:
complex VERTEX -

SUBROUTINE JVSXXX(VC,SC,G,VMASS,VWIDTH , JVS)

vector-scalar coupling.

INPUT:
complex VC(6)
complex SC(3)
real G
real VMASS
real VWIDTH

QUTPUT :
complex JVS(§)

SUBROUTINE HVVIXX(V1,V2,G,SMASS,SWIDTH , HVV)

vector-scalar coupling.

INPUT:
complex V1i(6)
complex V2(6)
real G

This subroutine computes an amplitude of the vector-vector-scalar
: first vector Vi
: second vector V2
: input scalar 5
: coupling constant GVVH
: amplitude Gamma(V1,V2,S)
This subroutine computes an off-shell vector current from the vector-
The vector propagator is given in Feynman
gauge for a massless vector and in unitary gauge for a massive vector.
: input vector v
: input scalar s
: coupling constant GVVH
: mass of OUTPUT vector V°
: width of OUTPUT vector V’
. vector current J mu(Vv?:V,8)
This subroutine computes an off-shell scalay current from the vector-
: first vector Vi
: second vector v2
: coupling constant GVVH

real SMASS
real SWIDTH

: mass of OUTPUT scalar S
! width of OUTPUT scalar S
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QUTPUT:
complex HVV(3) : off-shell scalar current J{5:V1,V2)

SUBROUTINE VSSXXX(VC,S1,S2,G , VERTEX)

This subroutine computes an amplitude from the vector-scalar-scalar
coupling. The coupling is absent in the minimal SM in unitary gauge.

complex VC(86) : input vector v
complex S1(3> : first scalar St
complex $2(3) : second scalar sz
real G : coupling comstant (51 charge)

Examples of the coupling constant G for SUSY particles are as follows:

| St { (Q,I3) of 81 || = | V=2 | =W |
i nu"_L 1 ¢ o , +1/2) || -— | GZN(1) | GWF(1) ]
| e”_L | ¢ -1 , -1/2) || GAL(1) | GZL(1) | GWF(1) |
| u~_L I (+2/3 , +1/2) || GAUCL) | GZU(L) | GWF(L)

| d*_L | (-1/3 , -1/2> || GAD(1) | @zZD(1) | GWF{1) |
| e"_BR-bar | ( +1 , 0 ) |1 =GAL(2) | -GZL{(2) | -GWF(2) |
| a”_B-bar | (-2/3, 0 ) || -GAU(2) | -GZU(2) | -GWF(2) |
{ &"_R-bar | ¢(+1/3 , 0 ) || -GAD(2) | -GZD(2) | -GWF(2} |

where the S1 charge is defined by the flowing-0UT quantum number.

OUTPUT :
complex VERTEX : amplitude Gamma(V,S51,523

SUBROUTINE JSSXXX(S1,852,G,VMASS,VWIDTH , JSS)

This subroutine computes an off-shell vector current from the vector-
scalar-scalar coupling. The coupling is absent in the minimal SM in
unitary gauge. The propagator is given in Feynman gauge for a
massless vector and in unitary gauge for a massive vector.

INFUT:
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complex S1(3)
complex 52(3)
real G

real VMASS
Teal VWIDTH

: first scalar
: second scalar

: coupling
: mass of
: width of

Examples of the coupling constant G for

constant (S1 charge)

51
52

OUTPUT vector V
OUTPUT vector V

SUSY particles are as follows:

; 51 | (Q,I3) of 51

| nu”_L | ¢ 0 , +1/2)
| e”_L | ¢ -t , -1/2)
| w*_L | (+2/3 , +1/2)
| 4“_L | (-1/3 , -1/2)

GAL(L)
GAU(L)
GAD(1)

GZE(1)
GZL(1)
GZU(1)
GZDh(1)

GWF(1) |
GWE(L1) |
GWF(1) |
GWF(L) |

Il -GAL(2)
Pl -GAU(2)
[l -GAD(2)

~GZL(2)
-GZU(2)
-GZD(2)

[ -GWF(2) |
| ~GWF(2) |
| -GWF(2) |

where the 51 charge is defimed by the flowing-OUT

OUTPUT:
complex JSS(6)

. vector current

quantum number.

J mu(V:51,382)

SUBROUTINE HVSXXX(VC,SC,&,SMASS,SWIDTH , HVS)

This subroutine computes an off-shell scalar current from the vector-
scalar-scalar coupling. The coupling is absent in the minimal SM in

unitary gauge.

INPUT:
complex VC(6)
complex SC(3)
real G
real SMASS
real SWIDTH

: input vector
: input scalar
: coupling constant (5 charge)
: mass of OQUTPUT scalar S’
: width of OUTPUT scalar S?

Examples of the Eoupling constant G for SUSY particles are as follows:

GZN(1)

| GWF(1) |
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| e”_L il GAL(1) | GzZL(1) | GWF(1) |
| u”_L | (+2/3 , +1/2) 1| GAU(1) | GZU(1) | GWF(1) |
| L [l GAD(1) | GZD{1) | GWF(1) |
0 ) Il -GAL(2) | -GZL(2) | -GWF(2) |
{ u*_B-bar | (~2/3 , 0 ) || -GAU(2) | -GZU(2) | -GWF(2) |
0 ) || -GAD(2) | -GZD(2) | -GWF(2) |

where the SC charge is defined by the flowing-0UT quantum number.

OUTPUT:
complex HVS(3) : scalar current J(8’:V,8)

SUBROUTINE SSSXXX(S1,82,53,G , VERTEX)

This subroutine computes an amplitude of the three-scalar coupling.

INPUT:
complex S1(3) : first scalar S1
complex S2(3) : second scalar 82
complex $3(3) : third scalar S3
real G : coupling constant GHHH
OUTPUT:
complex VERTEX : amplitude Gamma(S1,52,83)

SUBROUTINE HSSXXX(S1,$2,G,SMASS,SWIDTH , HSS)

This subroutine computes an off-shell scalar current from the three-
scalar coupling.

IKFUT:
complex 81(3) : first scalar S1
complex 52(3) :- second scalar §2
real G : coupling constant GHHH
real SMASS : mass of OUTPUT scalar S°
Teal SWIDTH : width of OUTPUT scalar S°

OGTPUT:

complex HSS(3) : scalar current J(8?:51,82)
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SUBROUTINE WWWWXX(WM1,WP1,WM2,WP2,GWWA,GWWZ,ZMASS,ZWIDTH , VERTEX)

This subroutine computes an amplitude of the four-point W-/W+
coupling, including the contributions of photon and Z exchanges. The
photon propagator is given in Feynman gauge and the Z propagator is
given in unitary gauge.

INPUT:
complex WM1(0:3) : first f£low-OUT W- ' WH1
complex WP1(0:3) : first flow-0UT W+ WP1
complex WM2(0:3) : second flow-0UT W- WM2
complex WP2(0:3) : second flow-0UT W+ WP2
real GWWA : coupling constant of W and A GWWA
real GHWWZ : coupling constant of W and Z GWWZ
real ZMASS : mass of Z
real ZWIDTH : width of Z

QUTPUT:
complex VERTEX : amplitude Ganma (WM1,WP1,WH2,WP2)

SUBROUTINE JWUWXX(Wi,H2,W3,GWWA,GHWZ,ZMASS,ZWIDTH,WHASS,WWIDTH ,
& JWWH)

This subroutine computes an off-shell W+/W- current from the four-
point gauge boson coupling, including the contributions of photon and
Z exchanges. The vector propagators for the output W and the internal
Z bosons are given in unitary gauge, and that of the internal photon
is given in Feynman gauge.

INPUT:

complex W1(6) : first wvector Wi
complex W2(6) :- second vector ' W2
complex W3(6) : third vector W3
real GWWA : coupling constant of W and A GWWA
real GWWZ : coupling constant of W and Z GWWZ
real ZMASS : mass of internal Z

real ZWIDTH : width of internal Z

real WMASS : mass of OUTPUT W

real WWIDTH : width of OUTPUT W
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The possible sets of the inputs are as follows:

I Wi | W2 | W3 |GWWA|GWWZ|ZMASS|ZWIDTH|WMASSIWWIDTH || JWWW |
| W- | W+ | W- |GWWA|GWWZ|ZMASS|ZWIDTH|WMASS|WWIDTH |} W+ |
| W+ | W- | W+ |GWWA|GWWZ|ZMASS|ZWIDTH|WMASS|WWIDTH || W- |

where all the bosons are defined by the flowing-OUT guantum number.

QUTPUT:
complex JWWW(6) : W current J mu(W?:W1,W2,W3)

SUBRQUTIFE W3W3XX(WM,W31,WP,W32,G31,G32,WMASS,WWIDTH , VERTEX)

This subroutine computes an amplitude of the four-point coupling of
the W-, W+ and two W3/Z/A. The amplitude includes the contributions
of W exchange diagrams. The internal W propagator is given in unitary
gauge. If one sets WMASS=0.0, then the gggg vertex is given (see sect
2.9.1 of the manual).

IRPUT:

complex WM{0:3) : £flow-0UT W- W
complex W31(0:3) : first W3/Z/A w31
complex WP(0:3) ; flow-0UT W+ WP
complex W32(0:3) : second W3/Z/A W32
real G31 : coupling of W31 with W-/W+
real G32 : coupling of W32 with W-/W+

{see the table below)
real WMASS : mass of W
real WWIDTH : width of W

The possible sets of the inputs are as follows:

| wM | W31 | WP | W32 | G311 G32 |
| W- | w3 | W+ | W3 | GW | GW |
| W- | W3 | W+ | Z ] GW | GWWZ |
| Ww- | W3 | W+ | A | GW | GWWa |
| W- | Z | W+ | Z | GWWZ | GWWZ |
| W= | Z | W+ | A | GWWZ | GWWA |
| W~ | A 1 W+ | A | GWWA | GWWA |
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where all the bosons are defined by the flowing-OUT gquantum number.

QUTPUT:
complex VERTEX

This subroutine computes an off-shell W+; W-, W3, Z or photon current
from the four-point gauge boson coupling, including the contributions
The vector propagater is given in Feynman
If one

of W exchange diagrams.

: amplitude

gauge for a photon and in unitary gauge for W and Z bosecns.

sets WMASS=0.0, then the ggg-->g current is given (see sect 2.9.1 of
the manual).

INPUT:

complex W1(&)
complex W2(6)
complex W3(8)

real
real

real
real
real
real

G1
G2

WMASS
WWIDTH
VMASS
YWIDTH

¢ first vector
: second vector
: third vector
: first coupling constant
: second coupling constant

(see the table below)

: mass of internal W
: width of internal W
: mass of DUTPUT W’
: width of OUTPUT W’

The possible sets of the inputs are as follows:

Gamma (WM, W31,WP,W32)

‘SUBROUTINE JW3WXX(Wi,¥W2,W3,G1,G2,WMASS,WWIDTH,VMASS,VWIDTHE , JW3W)

Wi
w2
W3

{ GW |GWWZ|WMASS|WWIDTH|ZMASS|ZWIDTH
[ GW |GWWA|WMASSIWWIDTH| ©. | O.
| GWWZ | GWWZ | WMASS [WWIDTH | ZMASS | ZWIDTH
| GWWZ | GWWA | WMASS |WWIDTH| ©O. | O.
| GWWA | GWWZ | WMASS | WWIDTH| ZMASS | ZWIDTH
| GWWA |GWWA |WMASS |[WWIDTH| 0. | O.

| .GW | GW |WMASSI|WWIDTH|WMASS|WWIDTH
| GW | GW |WMASS|WWIDTH|WMASS|WWIDTH
| GW |GWWZ|WMASS|WWIDTH|WMASS|WWIDTH
| GW |GWWZ|WMASS |WWIDTH|WMASS |[WWIDTH
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| w3 | w- | & | GW |GWWA|WMASS|WWIDTH|WMASS|WWIDTH |{ W+
| w3 | W+ | A | GW |GWWA|WMASS|WWIDTH|WMASS|WWIDTH || W-
I Z | W- | Z | GWWZ | GWWZ | WMASS | WWIDTH | WMASS |WWIDTH || W+
A | W+ | 2 [GWWZ | GWWZ | WMASS |WWIDTH|WMASS |[WWIDTH 1| W-
{ Z | & | & | GWWZ | GWWA [WMASS |WWIDTH|WHASS|WWIDTH || W+
| 2 | W+ | A |CWNZ| GWWAIWMASS |WWIDTH| WHMASS |WWIDTH || W-
| 4 | Ww- | A | GWWA | GWWA I WMASS | WWIDTH|WMASS |WWIDTH || W+
| 4 [ W+ 1 A | GWWA | GWWA | WMASS |WWIDTH| WMASS |[WWIDTH || W~

where all the bosons are defined by the flowing-0UT quantum number.

OUTPUT:
complex JW3W(6) : W current JrmadW? 1 W1,W2,W3)
SUBROUTINE VVSSXX(V1,v2,51,52,G , VERTEX)
This subroutine computes an amplitude of the vector-vector-scalar-
scalar coupling.
INPUT:
complex V1(6) : first vector Vi
complex V2(6) : second vector V2
complex 51(3) : first scalar S1
complex 52(3) : second scalar 92
real G : coupling comstant GVVHE
QUTPUT:
complex VERTEX ¢ amplitude Gamna(V1i,V2,51,52)

SUBROUTINE JVSSXX(VC,S$1,S82,G,VMASS,VWIDTH , JVSS)

This subroutine computes an off-shell vector current from the vector-

vector-scalar-scalar coupling. The vector propagator is given in

Feynman gauge for a massless vector and in unitary gauge for a massive

vector.

INPUT:
complex VC(6) : input vector
complex 51(3) - ¢ first scalar
complex 52(3) : second scalar

31
52
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real G
Teal VMASS

real VWIDTH

OUTPUT:

complex JVSS(6)

: coupling constant
. mass of OUTPYUT vector V?
: width of OUTPUT vector V°

: vector current

GVVHH

J mu(V’:v,51,52)

SUBROUTINE HVVSXX(V1,V2,5C,G,SMASS,SWIDTH , HVVS)

This subroutine computes an off-shell scalar current of the vector—

vector-scalar-scalar coupling.

INPUT:

complex V1i(6)
complex V2(6)
complex SC(3)
real G

real SMASS
real SWIDTH

OUTPUT:

complex HVVS(3)

: first vector
: second vector
: input scalar
: coupling constant

: mass of QUTPUT scalar S°
: width of OUTPUT scalar S?

: scalar current

vi
vz

GVVHH

J(8°:V1,v2,8)

SUBROUTINE SSSSXX(S1,52,83,54,6 , VERTEX)

This subroutine computes an amplitude

INPUT:

complex 51(3)
complex 52(3)
complex S3(3)
complex 54(3)
real G

OUTPUT:

complex VERTEX

: first scalar
: second scalar
: third scalar
: fourth scalar
: coupling constant

: amplitude

of the four-scalar coupling.

s1
82
83
s4
GHHHH

Gamma(S$1,52,53,54)

T . L L L8 . kT B L o o T T " " " T s L 4 74 7. 7Y o T T . P 84 o o

SUBROUTIRE HSSSXX(S1,S2,83,G,SMASS,SWIDTH , HSSS)
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This subroutine computes an off-shell scalar current from the four-
scalar coupling.

INPUT:
complex 51(3) : first scalar 51
complex 52(3) : second scalar 82
complex S3(3) ¢ third scalar 83
real G : coupling constant GHHHH
real SMASS : mass of OUTPUT scalar S’
real SWIDTH : width of OUTPUT scalar S’

OUTPUT:
complex HSSS(3) : scalar current J(8%:581,82,83)

SUBROUTINE EAIXXX(EE,EA,SHLF,CHLF,PHI ,NHE ,NHA , EAD)

This subroutine computes an off-shell electron wavefunction after

emitting a photon from the electron beam, with a special care for the
small angle region. The momenta are measured in the laboratory frame,
where the e- beam is along the positive z axis.

INPUT:
real EB : energy (GeV) of beam e-
real E4 : energy (GeV) of final photon
real SHLF : sin(theta/2) of final photon
real CHLF : cos{theta/2) of final photon
real PHI : azimuthal angle of final photon
integer NHE = -1 or 1 : helicity of beam e-
integer NHA = -1 or 1 : helicity of final photon
OUTPUT:
complex EAI(6) : off-shell electron le? ,A,e>

SUBROUTINE EADXXX(EB,EA,SHLF,CHLF,PHI,NHE,¥HA , EAQ)

This subroutine computes an off-shell positron wavefunction after
emitting a photon from the positron beam, with a special care for the
small angle region. The momenta are measured in the laboratory frame,
where the e+ beam is along the negative z axis. -
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INPUT: : _ .
real EB : energy (GeV) of beam e+
real EA 1 energy (GeV) of final photon
real SHLF 1 sin(theta/2) of final photon
real CHLF : cos(theta/2) of final photon
real PEI : azimuthal angle of final photon
integer NHE = -1 or 1 : helicity of beam e+
integer NHA = -1 or 1 : helicity - - of final photon
OUTPUT: . - , : o
complex EAG(6) : off-shell positron <e,h,e’|

i b et e T T ] il s o e o o o o o A S A A e il . i e e o o o o o e o

SUBROUTINE JEEXXX(EB,EF,SHLF,CHLF,PHI,NHB,NHF,NSF N JEE)

This subroutine computes an off-ghell photon wavefunctlon emitted from
the electron or peositron beam, with a special care for the small angle
region. The momenta are measured in the laboratory frame, where the
e- (e+) beam is along the positive (negative) z axis.

INPUT: : :
real EB : energy (GeV) of beam e-/e+
real EF : energy (GeV) of final e-/e+
real SHLF ¢ sin(theta/2) of final e-/e+
real CHLF : cos(theta/2) of final e-/e+
real PHI : azimuthal angle of final e-/e+
integer NHE = -1 or 1 : helicity of beam eo-/e+
integer NHF = -1 or 1 : helicity of final e-/e+

integer NSF -1 or 1 : +1 for electron, -1 for positron

OUTPUT:
complex JEE(6) : off-shell photon J mu(<e|ale>)

********y********************w************************;********Q******
SUBROUTINE MOMNTX(ENERGY,MASS,COSTH,PHI , P)

Tﬁis éﬁbrouﬁine sets up‘a four—moﬁentum from the four inpﬁts.

INPUT:

real ENERGY :oenergy
real MASS ! mass
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real
real
QUTPUT
real

COSTH
PHI
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: cos(theta)
: azimuthal angle

: four-momentum

SUBROUTINE MOM2CX{ESUM,MASS1,MASS2,CO8TH:,PHI1 , P1,P2)

This subroutine sets up two four-momenta in the two particle rest

frame.

INPUT:
real
real
real
real
real

QUTPUT:
real
real

ESUM
MASS1
MASS2
COSTH1
PHT1

P1{0:3)
P2(0:3)

: energy sum of particle 1 and 2

! mass of particle 1
: mass of particle 2
: cos(theta) of particle 1
; azimuthal angle of particle 1

: four-momentum of particle 1
: four-momentum of particle 2

SUBROUTINE BOOSTX(P,Q , PBOOST)

This subroutine performs the Lorentz boost of a four-momentum. The
momentum P is assumed to be given in the rest frame of §. PBOOST is
the momentum P boosted to the frame in which Q is given. @ must be a
timelike momentum.

INPUT:
real
real

OUTPUT:
real

P(0:3)
Q{0:3)

PBOOST(0:3)

: four-momentum P in the Q rest Iframe
: fourmomentum { in the boosted frame

: four-momentum P in the boosted frame

SUBROUTINE ROTXZX(P,Q , PROT)
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This subroutine performs the spacial rotation of a four-momentum.
The momentum P is assumed to be given in the frame where the spacial
component of { peints the positive z-axis. PROT is the momentum P
rotated to the frame where § is given.

INPUT:
real P(0:3) : four-momentum P in Q(1)=Q(2)=0 frame
real Q(0:3) : four-momentum § in the rotated frame
QUTPUT: .
real PROT(0:3) : four-momentum P in the rotated frame
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SUBROUTINE COUP1X{SW2 , GW,GWWA,GWWZ)

This subroutine sets up the coupling constants of the gauge bosons in
the STANDARD MODEL.

INPUT:
real sw2 : square of sine of the weak angle
OUTPUT: -
real GW : weak coupling constant
real GWWA : dimensionLESS coupling of W-,W+,A
real GWWZ ! dimensionLESS coupling of W-,W+,Z

SUBROUTINE COUP2X{SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)

This subroutine sets up the coupling constants for the fermion-
fermion-vector vertices in the STANDARD MODEL. The array of the
couplings specifies the chirality of the flowing-IN fermion. G?7(1)
denotes a left-handed coupling, and G?7(2) a right-handed coupling.

INPUT:
real SwW2 : square of sine of the weak angle
OUTPUT:
real GAL(2) : coupling with A of charged leptons
real GAU(2) : coupling with A of up-type quarks
real GAD(2) : coupling with A of down-type quarks

real GWF(2) : coupling with W-,W+ of fermions
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real GZIN(2) - - : coupling with Z of neutrinos

‘real GZL(2) : coupling with 7 of charged leptons
real . - GZU(2) - ~  : couplinmg with Z of up-type quarks
real GZD(2) : coupling with Z of down-type: quarks
real G1(2) : unit coupling of fermions

SUBROUTIXNE CCUP3X{SW2,ZMASS,HMASS ,
& GWWH,GZZH,GHEH ,GWWHH ,GZZHH , GHHHH)

This subroutine sets up the coupllng constants of the gauge bosons and
Higgs boson in the STANDARD MODEL. :

INPUT:
real SW2 : square of sine of the weak angle
real = ZMASS ' : mass of Z :
real HMASS : mass of Higgs

OUTPUT :
real ‘GWWH : dimensionFUL coupling of W-,W+,H
real GZZH : dimensionFUL coupling of Z, Z, H
real GHHH : dimensionFUL coupling of H, H, H
real GWWHH ! dimensionFUL coupling of W-,W+,H, H
real GZZHH v dimensionFUL coupling of ‘2, Z, H, H
real GHHHH : dimensionLESS coupling of H, H, H, H

SUBROUTINE COUP4X(SW2,ZMASS,FMASS , GCHF)

This subroutine sets up the coupling constant for the fermion-fermion-
Higgs vertex in the STANDARD MODEL. The coupling is COMPLEX and the
array of the coupling specifies the chirality of the flowing-IN '
fermion. GCHF(1) denotes a left-handed coupling, and GCHF(2) a right-
handed coupling.

INPUT:
real SW2 : square of sine of the weak angle
real ZMASS : 2 mass
real - FMASS. : fermion mass

OQUTPUT:

complex GCHF(2) : coupling of fermion and Higgs
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C.2 HELAS.LIST2

HELAS.LIST2 is just the list of the SUBROUTINE sentences in HELAS .FOR.
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hokok SUBROUTINE LIST 2 for HELAS.FOR and HELAS_CHECK.FOR *okok
Aokok coded by H. Murayama & I. Watanabe *Hk
ok ver. 2.3 3rd Apr. 1992 ok
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SUBROUTINE IXXXXX(P,FMASS,NHEL,NSF , FI)
SUBROUTINE OXXXXX(P,FMASS,NHEL ,NSF , FO)

......................................................................

SUBROUTINE SXXXXX{P,NSS , 8C)

SUBROUTINE IQVXXX(FI,FO,VC,G , VERTEX)

SUBROUTINE FVIXXX(FI,VC,G,FMASS,FWIDTH , FVI)
SUBROUTINE FVOXXX(FD,VC,G,FMASS,FWIDTH , FVO)
SUBROUTINE JIOXXX(FI,FO,G,VMASS,VWIDTH , JIO0)
SUBROUTINE J3XXXX(FI,FO,GAF,GZF,ZMASS,ZWIDTH , J3)
SUBROUTINE I0SXXX(FI,F0,SC,GC , VERTEX)

SUBROUTINE FSIXXX(FI,SC,GC,FMASS,FWIDTH , FSI)
SUBROUTINE FSOXXX(F0,SC,GC,FMASS,FWIDTH , FSO)
SUBROUTINE HIOXXX(FI,F0Q,GC,SMASS,SWIDTH , HIO)
SUBROUTINE VVVXXX(WM,WP,W3,G¢ , VERTEX)

SUBROUTINE JVVIXX(VL,V2,G,VMASS,VWIDTH , IVV)
SUBROUTINE VVSXXX(Vi,V2,5C,G , VERTEX)

SUBROUTINE JVSXXX(VC,SC,G,VMASS,VWIDTH , JVS)
SUBROUTINE HVVXXX{(V1,V2,G,SMASS,SWIDTH , HVV)
SUBROUTINE VSSXXX(VC,$1,52,G , VERTEX)

SUBROUTINE JSSXXX(S1,82,G,VMASS,VWIDTH , JS8)
SUBROUTINE HVSXXX(VC,SC,G,SMASS,SWIDTH , HVS)
SUBROUTINE SSSXXX(S51,52,83,G , VERTEX)

SUBROUTINE HSSXXX(S1,S2,G,SMASS,SWIDTH , HSS)
SUBROUTINE WWWWXX(WM1,WP1,WM2,WP2,GWWA,GWWZ,ZMASS,ZWIDTH , VERTEX)
SUBROUTINE JWWWXX(W1,W2,W3,GWWA,GWWZ,ZMASS,ZWIDTH,WMASS ,WWIDTH ,
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& JWWW)
SUBROUTINE W3W3XX(WM,W31,WP,W32,G31,G32,WMASS,WWIDTH , VERTEX)
SUBROUTINE JW3WXX{W1,W2,%3,G1,G2,WMASS WWIDTH,VMASS,VWIDTE , JW3W)
SUBROUTIKE VVSSXX(V1,v2,%1,82,G , VERTEX)
SUBRQUTINE JVSSXX(VC,S1,82,G,VMASS ,VWIDTH , JVSS)
SUBROQUTINE HVVSXX(V1,V2,8C,G,SMASS,SWIDTH , HVVS)
SUBROUTINE SSSSXX(S1,82,83,54,G , VERTEX)
SUBROUTIXE HS5SXX(51,52,53,G,SMASS,SWIDTH , HSSS)

SUBROUTIXE EAIXXX(EB,EA,SHLF,CHLF,PHI ,NHE,NHA , EAI)
SUBROUTINE EAOXXX(EB,EA,SHLF,CHLF,PHI,NHE,NHA , EAQ)
SUBROUTIKE JEEXXX(EB,EF,SHLF,CHLF,PHI,NHB,NHF NSF , JEE)

SUBROUTINE MCMNTX(ENERGY,MASS,COSTH,PHI , P)
SUBROUTINE MOM2CX(ESUK,MASS1,MASS2,COSTH1,PHIL , P1,P2)
SUBROUTINE BCOSTX(P,Q , PBOOST) '

SUBROUTINE ROTXXX(P,Q , PROT)

SUBROUTIKE COUP1X(SW2 , GW,GWWA,GWWZ)

SUBROUTINE COUP2X(SW2 , GAL,GAU,GAD,GWF,GZN,GZL,GZU,GZD,G1)
SUBROUTINE COUP3X(SW2,ZMASS,HMASS ,
& GWWH,GZZH,GHEH ,GWWHH , GZZHH , GHHHH)
SUBROUTINE COUP4X(SW2,ZMASS,FMASS , GCHF)




