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Abstract

The NLO calculation for pp → Higgs and the corresponding results for the LHC
are illustrated.



1 Leading order with a finite top mass

p

q

a, µ

b, ν

ℓ + p

ℓ − q

ℓ

Figure 1: Representative Feynman diagram for the process gg → H . Another diagram, the
one with the gluons exchanged, contributes to the total amplitude.

The primary production mechanism for a Higgs boson in hadronic collisions is through
gluon fusion, gg → H , which is shown in Fig. 1. The loop contains all massive colored
particles in the model. Consider only the top quark. To evaluate the diagram of Fig. 1 (there
are actually two diagrams, the one shown and another one with the gluons exchanged. They
give the same contribution so we’ll just multiply our final result by two), use use dimensional
regularization in D = 4 − 2ǫ dimensions.

(a) Using the QCD Feynman rules write the expression for the amplitude corresponding
to the diagram of Fig. 1:

iA = −(−igs)
2Tr(tatb)

(−imt

v

)

∫

ddℓ

(2π)n

T µν

Den
(i)3ǫµ(p)ǫν(q) (1)

where the overall minus sign is due to the closed fermion loop.1 The denominator is
Den = (ℓ2 − m2

t )[(ℓ + p)2 − m2
t ][(ℓ − q)2 − m2

t ].

(b) Use the usual Feynman parametrization method to combine the denominators of the
loop integral into one, using the following:

1

ABC
= 2

∫ 1

0

dx

∫ 1−x

0

dy

[Ax + By + C(1 − x − y)]3
(2)

and so the denominator becomes,

1

Den
= 2

∫

dx dy
1

[ℓ2 − m2
t + 2ℓ · (px − qy)]3

. (3)

1ǫµ(p) are the transverse gluon polarizations.
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(c) Shift the integration momenta to ℓ′ = ℓ + px − qy so the denominator takes the form

1

Den
→ 2

∫

dx dy
1

[ℓ′ 2 − m2
t + M2

Hxy]3
. (4)

(d) Evaluate the numerator of the loop integral in the shifted loop momentum:

T µν = Tr
[

(ℓ + mt)γ
µ(ℓ + p + mt)(ℓ − q + mt)γ

ν)
]

= 4mt

[

gµν(m2
t − ℓ2 − M2

H

2
) + 4ℓµℓν + pνqµ

]

(5)

Use the fact that that for transverse gluons, ǫ(p) · p = 0 and so terms proportional to
the external momenta, pµ or qν , can be dropped. You should find that the trace is
proportional to the quark mass. This can be easily understood as an effect of the spin-
flip coupling of the Higgs. Gluons or photons do not change the spin of the fermion,
while the Higgs does. If the quark circulating in the loop is massless then the trace
vanishes due to helicity conservation. This is the reason why even when the Yukawa
coupling of the light quark and the Higgs is enhanced (such as in SUSY or 2HDM with
large tan(β)), the contribution is anyway suppressed by the kimatical mass.

(e) Shift momenta in the numerator, drop terms linear in ℓ′ and use the relation
∫

ddk
kµkν

(ℓ2 − C)m
=

1

d
gµν

∫

ddk
k2

(k2 − C)m
(6)

to write the amplitude in the form

iA = −2g2
sm

2
t

v
δab

∫

ddℓ′

(2π)d

∫

dxdy
{

gµν
[

m2 + ℓ′2
(4 − d

d

)

+ M2
H(xy − 1

2
)
]

+pνqµ(1 − 4xy)
} 2dxdy

(k′2 − m2
t + M2

Hxy)3
ǫµ(p)ǫν(q). (7)

(f) Compute the integral of Eq. 7 by using the well known formulas of dimensional regu-
larization

∫

ddk

(2π)d

k2

(k2 − C)3
=

i

32π2
(4π)ǫΓ(1 + ǫ)

ǫ
(2 − ǫ)C−ǫ

∫

ddk

(2π)d

1

(k2 − C)3
= − i

32π2
(4π)ǫΓ(1 + ǫ)C−1−ǫ. (8)

You should find that your result is finite.

(g) Compare your result with the known result:

A(gg → H) = −αSm2
t

πv
δab

(

gµν M2
H

2
− pνqµ

)

∫

dxdy
( 1 − 4xy

m2
t − m2

Hxy

)

ǫµ(p)ǫν(q). (9)

(Note that we have multiplied by 2 in Eq. (9) to include the diagram where the gluon
legs are crossed.) The Feynman integral of Eq. (9) can easily be performed to find an
analytic result if desired. Note that the tensor structure could have been predicted
from the start by using the fact that pµAµν = qνAµν = 0.
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(h) Define I(a) as

I(a) ≡
∫ 1

0

dx

∫ 1−x

0

dy
1 − 4xy

1 − axy
. (10)

and express the amplitude in terms of such an expression. Plot the function I(a) and
verify that it goes quickly to its limiting values when a → 0 and a → ∞. Numerically,
the heavy fermion mass limit is an extremely good approximation even for m ∼ MH .
From this plot we can also see that the contribution of light quarks to gluon fusion of
the Higgs boson is irrelevant. In fact we have,

I(a) −→a→∞∼ − 1

2a
log2(a). (11)

Therefore, for the Standard Model, only the top quark is numerically important when
computing Higgs boson production from gluon fusion.

(i) It is particularly interesting to consider the case when the fermion in the loop is much
more massive than the Higgs boson, MH ≪ mt. In this case we find,

A(gg → H) −→m>>MH
− αS

3πv
δab

(

gµν M2
H

2
− pνqµ

)

ǫµ(p)ǫν(q). (12)

We see that the production process gg → H is independent of the mass of the heavy
fermion in the loop in the limit MH ≪ mt. Hence it counts the number of heavy
generations and is a window into new physics at scales much above the energy being
probed. This is a contradiction of our intuition that heavy particles should decouple
and not affect the physics at lower energy. The reason the heavy fermions do not
decouple is, of course, because the Higgs boson couples to the fermion mass.

(l) Cross section at the LHC. Resonant production of a heavy Higgs can be found from
the standard formula:

σ̂ =
1

2s
|A|2 d3P

(2π)32EH

(2π)4δ4(p + q − P )

=
1

2s
|A|22πδ(s − m2

H), (13)

using

δabδab = N2
c − 1

(

gµν M2
H

2
− pνqµ

)2

=
m4

H

2
(14)

|A|2 =
1

4

1

(N2
c − 1)2

|A|2 . (15)

Verify that the result is

σ̂(gg → H) =
α2

S

64πv2
| I

(M2
H

m2

)

|2 τ0δ(τ − τ0)
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Figure 2: LO cross section for pp → H at LO at the LHC (pb) as a function of the Higgs
mass (GeV).The red (lower) curve is the large top-mass limit, while the blue (upper) curve
is the exact result.

where s = x1x2S ≡ τS is the parton-parton energy squared, we have defined

z ≡ M2
H

s
=

M2
H

τS
=

τ0

τ
(16)

with τ0 = M2
H/S and the integral I is defined by Eq. (10).

(m) To find the physical cross section we must integrate with the distribution of gluons in
a proton,

σ(pp → H) =

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2g(x1)g(x2)σ̂(gg → H), (17)

where g(x) is the distribution of gluons in the proton. Perform the change of variables
x1 ≡ √

τey, x2 ≡ √
τe−y, and τ = x1x2. Find the Jacobian and the change of the

integration limits and show that the result can be written as:

σ(pp → H) =
α2

S

64πv2
| I

(M2
H

m2

)

|2 τ0

∫ − log
√

τ0

log
√

τ0

dyg(
√

τ0e
y)g(

√
τ0e

−y) (18)

Often the above integral over the parton distribution is given the name of gluon-gluon
parton luminosity.

(n) Using the pdf’s from the CTEQ collaboration, CTEQ5L (Fortran,C or Mathemat-
ica) compute the gluon-gluon luminosity and the LO Higgs cross section at the LHC.
Compare with the results shown in Fig. 2.
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(a)

p1 µ a

p2 ν b

iAδabHµν(p1,p2)

(b)

p1 µ a

p2 ν b

p3 σ c

-AgfabcVµνσ(p1,p2,p3)

(c)

p1 µ a

p2 ν b

p3 σ c

p4 λ d
-iAg2Xabcd

µνσλ

Figure 3: Feynman rules in the EFT where the top is integrated out. Gluon momenta are
outgoing.

(n) Higgs Effective field theory.

A striking feature of our result for Higgs boson production from gluon fusion is that it
is independent of the heavy quark mass for a light Higgs boson. In fact Eq. (12) can
be derived from the effective vertex,

Leff =
αS

12π
GA

µνG
A µν

(H

v

)

=
βF

gs
GA

µνG
A µν

(H

2v

)

(1 − δ),

where

βF =
g3

sNH

24π2
(19)

is the contribution of heavy fermion loops to the SU(3) beta function and δ = 2αS/π.2

2The (1−δ) term arises from a subtlety in the use of the low energy theorem. Since the Higgs coupling to
the heavy fermions is Mf (1 + H

v
)ff , the counterterm for the Higgs Yukawa coupling is fixed in terms of the

renormalization of the fermion mass and wavefunction. The beta function, on the other hand, is evaluated
at q2 = 0. The 1 − δ term corrects for this mismatch.
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(NH is the number of heavy fermions with m >> MH .) The effective Lagrangian of
Eq. (19) gives ggH , gggH and ggggH vertices and can be used to compute the radiative
corrections of O(α3

S) to gluon production. The correction in principle involve 2-loop
diagrams. However, using the effective vertices from Eq. (19), the O(α3

S) corrections
can be found from a 1-loop calculation. To fix the notation we shall use

Leff = −1

4
AHGA

µνG
A µν , (20)

where GA
µν is the field strength of the SU(3) color gluon field and H is the Higgs-boson

field. The effective coupling A is given by

A =
αS

3πv

(

1 +
11

4

αS

π

)

, (21)

where v is the vacuum expectation value parameter, v2 = (GF

√
2)−1 = (246)2 GeV2

and the αS correction is included, as discussed above. The effective Lagrangian gener-
ates vertices involving the Higgs boson and two, three or four gluons. The associated
Feynman rules are displayed in Fig. 3 The two-gluon–Higgs-boson vertex is propor-
tional to the tensor

Hµν(p1, p2) = gµνp1 · p2 − pν
1p

µ
2 . (22)

The vertices involving three and four gluons and the Higgs boson are proportional to
their counterparts from pure QCD:

V µνρ(p1, p2, p3) = (p1 − p2)
ρgµν + (p2 − p3)

µgνρ + (p3 − p1)
νgρµ, (23)

and

Xµνρσ
abcd = fabefcde(g

µρgνσ − gµσgνρ) + facefbde(g
µνgρσ − gµσgνρ)

+ fadefbce(g
µνgρσ − gµρgνσ). (24)

2 gg → Higgs @ NLO

In this section we study the process gg → H at NLO, in the large top-quark mass limit.
All results given below are in Conventional Dimensional Regularization (CDR). Using the
effective Lagrangian for the gluon-gluon and gluon-Higgs interactions:

Leff = −1

4

(

1 − αS

3π

H

v

)

GµνGµν (25)

one finds

σBorn =
α2

S

π

m2
H

576v2s
(1 + ǫ + ǫ2)µ2ǫ δ(1 − z)

≡ σ0 δ(1 − z) , (26)

where z = m2
H/s as defined previously. Note that we defined σ0 as containing an explicit

factor z. At NLO, for gg → H , there are both virtual and real contributions. In the virtuals
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one should also take into account that the Leff gets corrected by the exchange of virtual
gluons inside the top-quark loop, so that the interaction becomes:

LNLO
eff =

(

1 +
11

4

αS

π

)

αS

3π

H

v
GµνGµν (27)

2.1 gg → H: virtual corrections

g
H

g

Figure 4: Feynman diagrams giving virtual contributions in the infinite top-quark mass limit

The non-zero virtual diagrams are two, the vertex correction and the bubble with the
four gluon vertex. Their sum (plus the αS corrections from Eq. (27) gives:

σvirt = σ0 δ(1 − z)

[

1 +
αS

2π
CA

(

µ2

m2
H

)ǫ

cΓ

(

− 2

ǫ2
+

11

3
+ π2

)]

, (28)

where cΓ where

cΓ = (4π)ǫΓ(1 + ǫ)Γ(1 − ǫ)2

Γ(1 − 2ǫ)
. (29)
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q

H
g

Figure 5: Feynman diagrams giving qq̄ real contributions in the infinite top-quark mass limit.
These contributions are finite.

2.2 Real Contribution: quark anti-quark initial state

This contribution, shown in Fig. 5 is finite and can be calculated directly in four dimensions.
The amplitude is

|M|2 =
4

81

α3
S

πv2

(u2 + t2) − ǫ(u + t)2

s
, (30)

to be integrated over the D-dimensional phase space

dΦ2 =
1

8π

(

4π

s

)ǫ
1

Γ(1 − ǫ)
zǫ(1 − z)1−2ǫ v−ǫ(1 − v)−ǫdv (31)

where v = 1/2(1 + cos θ) and z = M2
H/s as usual. Using

t = −s(1 − z)(1 − v) (32)

u = −s(1 − z)v (33)

and taking the limit ǫ → 0 gives:

σreal(qq̄) = σ0

αS

2π

64

27

(1 − z)3

z
(34)

2.3 Real Contribution: quark gluon initial stateH
qq

g

Figure 6: Feynman diagrams giving qg real contributions in the infinite top-quark mass limit.

Let us consider now the contribution from the diagrams with an initial quark, i.e., the
process gq → Hq. The amplitude is

|M|2 = − 1

54(1 − ǫ)

α3
S

πv2

(u2 + s2) − ǫ(u + s)2

t
(35)
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and integrating it over the D-dimensional phase space Eq. (31) we get

σreal = σ0

αS

2π
CF

(

µ2

m2
H

)ǫ

cΓ

[

−1

ǫ
pgq(z) + z − 3

2

(1 − z)2

z
+ pgq(z) log

(1 − z)2

z

]

, (36)

We perform the factorization of the collinear divergences adding the counterterm:

σcoll.
c.t. = σ0

αS

2π

[(

µ2

µ2
F

)ǫ
cΓ

ǫ
Pgq(z)

]

(37)

such that we get the result in the MS scheme (note that our definition of σ0, Eq. (26),
contains a factor z):

σMS(qg) = σreal + σcoll.
c.t.

= σ0

αS

2π
CF

[

pgq(z) log
m2

H

µ2
F

+ pgq(z) log
(1 − z)2

z
+ z − 3

2

(1 − z)2

z

]

. (38)

2.4 Real Contribution: gluon-gluon initial state

g
Hg

g

Figure 7: Feynman diagrams giving gg real contributions in the infinite top-quark mass limit.

For the real correction we have to integrate the gg → Hg amplitude

|M|2 =
1

24(1 − ǫ)2

α3
S

πv2

(m8
H + s4 + t4 + u4)(1 − 2ǫ) + 1

2
ǫ(m4

H + s2 + t2 + u2)2

stu
(39)

9



over the D-dimensional phase space Eq.(31). This gives

σreal = σ0

αS

2π
CA

(

µ2

m2
H

)ǫ

cΓ

[(

2

ǫ2
+

2

ǫ

b0

CA
− π2

3

)

δ(1 − z)

−2

ǫ
pgg(z) − 11

3

(1 − z)3

z
− 4

(1 − z)2(1 + z2) + z2

z(1 − z)
log z

+ 4
1 + z4 + (1 − z)4

z

(

log(1 − z)

1 − z

)

+

]

. (40)

Once again the above result is looks the same in both regularization schemes.
Adding it up, we get:

σreal + σvirt = σBorn + σ0

αS

2π
CA

(

µ2

m2
H

)ǫ

cΓ

[(

2

ǫ

b0

CA

+
2π2

3

)

δ(1 − z)

−2

ǫ
pgg(z) − 11

3

(1 − z)3

z
− 4

(1 − z + z2)2

z(1 − z)
log z

+ 8
(1 − z + z2)2

z

(

log(1 − z)

1 − z

)

+

]

. (41)

At variance with the Drell-Yan process, there is a left-over divergence proportional to δ(1−z).
This is associated to the renormalization of the strong coupling. Using Eq. (57) and Eq. (??)
we can write the following counterterm:

σUV
c.t. = 2 σBorn

αS

2π

[

−
(

µ2

µ2
UV

)ǫ

cΓ

b0

ǫ

]

(42)

The factorization of the collinear divergence is handled is the usual way adding the coun-
terterm:

σcoll.
c.t. = 2 σ0

αS

2π

[(

µ2

µ2
F

)ǫ
cΓ

ǫ
Pgg(z)

]

(43)

such that we get the usual result in the MS scheme (note that our definition of σ0, Eq. (26),
contains a factor z):

σMS(gg) = σ0

αS

2π
CA

[(

11

3
+

2

3
π2 − 2

b0

CA
log

m2
H

µ2
UV

)

δ(1 − z)

−11

3

(1 − z)3

z
+ 2pgg log

m2
H

µ2
F

− 4
(1 − z + z2)2

z(1 − z)
log z

+ 8
(1 − z + z2)2

z

(

log(1 − z)

1 − z

)

+

]

. (44)

3 Results

4 Conclusions

We have shown in detail how to calculate the QCD inclusive cross section for Higgs produc-
tion at hadron colliders. We have used dimensional regularization and the MS subtraction
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Figure 8: Cross section for Higgs procduction from gluon fusion at the LHC.

scheme for UV and collinear divergences.

5 Appendix

We define the 4-dimensional splitting functions as in (4.94) of the ESW book:

Pqq(z) = CF pqq(z) = CF

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

(45)

Pqg(z) = TR pqg(z) = TR

[

z2 + (1 − z)2
]

(46)

Pgq(z) = CF pgq(z) = CF

[

1 + (1 − z)2

z

]

(47)

Pgg(z) = CA pgg(z) = 2CA

[

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

]

+ b0 δ(1 − z) , (48)

where b0 = 11/6 CA − 2nfTF /3. We also define the following quantities as the extension of
the splitting functions in Conventional Dimensional Regularization :

PCDR
ij (z) = Pij(z) + ǫP ǫ

ij(z) (49)

where

P ǫ
qq(z) = CF pǫ

qq(z) = −CF (1 − z) (50)
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Figure 9: K-factors for Higgs production from gluon fusion at the LHC.

P ǫ
qg(z) = TR pǫ

qg(z) = −TR2z(1 − z) (51)

P ǫ
gq(z) = CF pǫ

gq(z) = −CF z (52)

P ǫ
gg(z) = 0 (53)

Factorization of the collinear divergences is performed through the addition of the following
counterterm for each parton in the initial state:

CTCDR = σCDR
0

αS

2π

[(

µ2

µ2
F

)ǫ
cΓ

ǫ
Pij(z)

]

(54)

where σSCHEME
0 is the LO cross section and its value depends on the scheme (see the example

for Drell-Yan)]. In CDR, when there is a collinear divergence, the cross section behaves as

σcoll
real ∼ −1

ǫ
PCDR

ij (z)σCDR
0 + other terms . (55)

Adding the counterterm (??), leaves a finite part

σMS
real ∼ −P ǫ

ij(z) (σCDR
0 |ǫ→0) + other terms . (56)

6 Strong coupling renormalization

In this section we just state the rule. The MS ultraviolet counterterm for the scattering
amplitude at 1-loop is:

n

ǫ

[

−b0

αS

4π
cΓAtree

]

, (57)
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where b0 = 11/6 CA − 2nfTF /3 and n is the order of the tree-level amplitude in gs. The
above counterterm is defined in CDR.
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