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VWe need to be able to describe an arbrtrarily number of
parton branchings, 1.e. we need to ‘dress’ partons with radiation

This effect should be unitary: the inclusive cross section
shouldn't change when extra radiation I1s added

Remember that parton-level cross sections for a hard process
are inclusive In anything else.

E.g. for LO Drell-Yan production all radiation is included via PDFs (apart
from non-perturbative power corrections)
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VWe need to be able to describe an arbrtrarily number of
parton branchings, 1.e. we need to ‘dress’ partons with radiation

This effect should be unitary: the inclusive cross section
shouldn't change when extra radiation I1s added

Remember that parton-level cross sections for a hard process
are inclusive In anything else.

E.g. for LO Drell-Yan production all radiation is included via PDFs (apart
from non-perturbative power corrections)

And finally we want to turn partons into hadrons (hadronization)....
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4 x1:2k1-q/q2:2Eq/\/§\
do C O g :U% + m% vy = 2ky - q/q* = 2Eg/V'S
=0
dxi1dzs o (1 —21)(1 —x2) 3 = 2ks - q/q* = 2E,/VS
r1+ To + x3 = 2
/0 Change the variable to x3 and COS 013 A
do' Qg 2 1 — (1 — 333)2
— on('v—= €T
dxsd cos 03 TOME 2T (sim2 013 X3 3>
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® Change the variable to x3 and cos 013

do
d.ilfgd COS (913

\_

2

Sin2 (913

1 — (1 —513’3)2

X3

>

4 x1:2k1-q/q2:2Eq/\/§\
do o G T3 + 25 ro = 2ky - q/q® = 2E;/VS
=0
dx1dxo o (1 —21)(1 — 29) z3=2ks q/¢* =2E,/VS
T1 + Xo + x5 = 2
L 1 2 3 )
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/




First Example

A
\ [ 4 Purham
Jnversity

4 x1:2k1-q/q2:2Eq/\/§\
do o G T3 + 25 ro = 2ky - q/q® = 2E;/VS
=0
dx1dxo o (1 —21)(1 — 29) z3=2ks q/¢* =2E,/VS
T1 + Xo + x5 = 2
L 1 2 3 )
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® Change the variable to x3 and cos 013

\_

do o, O 21— (1—x3)* >
— 0 —— X
diEgdCOS (913 ) F27T ;

/
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4 x1:2k1-q/q2:2Eq/\/§\
do O T4 + T3 ro = 2ky - q/q® = 2E;/VS
dr1dxze 27T (1 —5171)(1 —LEQ) r3 = 2k3 - q/q —2Eg/ S
T1 + Lo + T3 = 2
\_ /
, )
/0 Change the variable to 3 and cos 013
do Qg
— O'()CF— L3
dil?gd COS (913 27
- /
(e Collinear limit 2dcosbhs  dcosbs dcosfiz )
| | | sin2013 1 —cosfiz 1+ cosbis
® 5plit our integral in two dcos b1 d ¢os 0o
~ (1 —cosbi3) (1 —cosbhs)
\_ 0l 03 /
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/0 Change the variable to x5 and cos 613 A
do Qg
= 09gCp— x3
d.fL‘gd COS (913 27T
- /
(" e Collinear limit 2dcosbths  dcosbrs dcosfrz )
| | | sin2013 1 —coshi3 1+ cosOis
® 5plit our integral in two d cos 015 d cos fo
~ (1 —cosfi3) (1 — cosbas)
\_ 03 034 /
4 asdf? 14 (1—2)? A
do = o Z CF2 02 dz
jets i <
= 7 fraction of energy
\_ == Generic Formula )
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® (onsider a process for which two particles are separated by a small
angle 0.

® |nthe limit of @ = 0 the contribution is coming from a single parent
particle going on shell: therefore i1ts branching is related to time
scales which are very long with respect to the hard subprocess.
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® (onsider a process for which two particles are separated by a small
angle 0.
® |nthe limit of @ = 0 the contribution is coming from a single parent
particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess.
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® (onsider a process for which two particles are separated by a small
angle 0.

® |nthe limit of @ = 0 the contribution is coming from a single parent
particle going on shell: therefore i1ts branching is related to time
scales which are very long with respect to the hard subprocess.

® [he inclusion of such a branching cannot change the picture set up
by the hard process: the whole emission process must be writable
in this limit as the simpler one times a branching probability.

- /
 Mattelaeroliviee  Mowte-carlo Lecture: Beifing 2005 9
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Collinear factorization:

dt = do o
|Mn_|_1‘2dq)n_|_1 ~ |Mn‘2dq)n ¢ >

—d Pa C
7 P9 oy Parbel?)

when 0 is small.




dt . do «
( |/\/ln+1\2d<1>n+1 ~ \/\/ln\zd(IDanzzi Q;Pa_)bc(z))

%€ t can be called the ‘evolution variable’ (will become clearer later): it
can be the virtuality m? of particle a or its pr? or E?02 ...

40°/6° = dm?/m?® = dp/p?

m? ~ 2(1 — 2)0°E?

P2, ~ zm?

s |t represents the hardness of the branching and tends to O in the
collinear limrt.

s¢ Different choice of ‘evolution parameter’ in different Parton-
shower code




dt - do «
( |/\/ln+1\2d<1>n+1 ~ \/\/ln\zd(bn?dZQW Q;Pa_)bc(z))

s¢ z 15 the “energy variable™ it is defined to be the energy fraction taken by parton

b from parton a. It represents the energy sharing between b and ¢ and tends to
| In the soft limit (parton c going soft)

% @ is the azimuthal angle. It can be chosen to be the angle between the
polarization of a and the plane of the branching.
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Ao Qg
PCL C
o 2. 4P (2)

The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

at
C |Mn_|_1‘2d(1)n_|_1 ~ |./\/ln\2d<1>n7dz

1 4 22
C
s _(1—3)}’

-4
balz) = cp [ LU= ..

=

-4

ﬁgq(ﬁ)

Pag(z) = Tr |22+ (1-2)%],
P(z) = (:'A[(liz)+1;z+g(1_z)}- -~
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Ao Qg
PCL C
o 2. 4P (2)

The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

C Mo Pd e~ M, de, -

) = On[75] %{E
pale) = op [FEEZ2T) +{
09(z) = Tr [jz%(l—z)ﬁ?, m<
Pu) = Oa|qim+it+z01-2). =9

Cp=20Ca=3Tg=1.

Comments:
* Gluons radiate the most

*There are soft divergences in z=1 and z=0.
* Pqg has no soft divergences.
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® [ach choice of argument for Os Is equally acceptable at the leading-logarithmic accuracy.
However, there Is a choice that allows one to resum certain classes of subleading
logarithmes.

® [he higher order corrections to the partons splittings imply that the splitting kernels
ShOUld be mOd|ﬂed Pa — bc(Z) e Pa — bc(Z) + (Xs P’a — bc(Z)

For g — gg branchings P’a — bc(z) diverges as -bo log[z(1-z)] Pa— bc(2)
(just z or |-z If quark is present)

® Recall the one-loop running of the strong coupling:

2 _ Oés(,u2) -~ 2 < . 2 bo 1 Q_2>
Ozs(Q ) 1 —I—OAS(,LLQ)[)O logg—s Oés(:u ) 1 Cks(lu ) 0 108 MZ

® \We can therefore include the P’(z) terms by choosing pt?~z(1-z)Q? as argument of Xs:

as(Q%) (Pa—ve(2) + as(Q*)Pi_ye) = as(Q”) (1 — as(Q*)blog 2(1 — 2)) Paspe(2)

~  as(2(1 = 2)Q*) Py_pe(2)
 Mattelaeroliviee  Mowte-carlo Lecture: Beifing 2005 14
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2 2 do Qs
Myiq|*dP, 1 ~ (M, ]7dP, —d22 ; P, pe(2)

\_ nen Y,
a2 )
\_ /
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/Collinear Limit ; N
MoirPdBgy =~ [Mo2a2, Tz S0 0P, ()

\_ nen Y,

4 N

- Y,
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(Collinear Limit ” N
Q
My 17dPy 1 ~ | My|2d, —dz . 2; Pospe(2)
\_ /
® t s the evolution parameter (control the collinear behaviour)
o /
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(Collinear Limit i do A
t o
t 2w 2w
\_ /
® t s the evolution parameter (control the collinear behaviour)
® 7 s the energy sharing variable
o /




(Collinear Limit i do A
t Q
M1 |PdPrq ~ M, 2d®, —dz " Py pe(2)
t 2w 2w
\_ /
® t s the evolution parameter (control the collinear behaviour)
® 7 s the energy sharing variable
® alpha_s need to be evaluated at the scale t
o /
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(Collinear Limit N
M1 |fdP g o~ \/\/ln\Qd(I)n@dz d¢ as P, pe(2)
9 t 2w 2w Y
g ® t s the evolution parameter (control the collinear behaviour)
® 7 s the energy sharing variable
® alpha_s need to be evaluated at the scale t
S ® P s the splitting Kernel (control the soft behaviour) y




Multiple emission  ¥outar

, 2
e 0,0 >0 xL<be<d
C c

® Now consider Mn+| as the new core process and use the recipe we
used for the first emission in order to get the dominant contribution
to the (n+2)-body cross section: add a new branching at angle much
smaller than the previous one:

do o

Mo |?d® 0 ~ | M, [2dP, —d e " P, pe(2)
21 27
dt’ de o

. P . /

X d' 5 -5 Poode(?)

® This can be done for an arbitrary number of emissions. The recipe to
oet the leading collinear singularity is thus cast in the form of an
terative sequence of emissions whose probability does not depend on
the past history of the system: a ‘Markov chain’. No interferencelll
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Multiple emission  ¥eute

2 i d
e 0,00 >0 xL< xL<
0’<x< 6 C e

® [he dominant contribution comes from the region where the
subsequently emitted partons satisfy the strong ordering requirement:

0>0>0".

For the rate for multiple emission we get
Car tar T @ty o\ ¥
k
Tk 2 s / ./ / 1) X On (ﬁ) log™(@*/@0)

where Q Is a typical hard scale and Qo Is a small infrared cutoff that
separates perturbative from non perturbative regimes.

® [ach power of & comes with a logarithm. The logarithm can be easily
large, and therefore It can lead to a breakdown of perturbation theory.
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g *What is the probability of no emission?

tz' 27T

Ot v .
7Dnon—branching (tz) =1- 7Dbranching (tz) =1 / dZP(Z)




Sudakov Form Factor = weun

2 . N L
*What is the probability of no emission?
ot .
7Dnon—braunching (tz) =1 7Dbramching (tz) =1 . gﬂ' / dZP(Z)
*So the probability of no emission between
two scales:
\_ Y,
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*\What is the probability of no emission?
0t g A
7Jnon—branching (tz) =1- 7Dbramching (tz) =1 t gﬂ' / dZP(Z)

*So the probability of no emission between
two scales: N
0t g ~
Pno—branching(Q27t) = lim (1 /dZP(Z))

N —00 - t; 2T
1=0
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 5{; g d p
Pno— ranchin , = 1 1
branching(Q78) = Jim | L 277/ “F(2)
o Tim et (— 9SS [ dzP(2)
N — o0
\_ /
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
9 . 0t g q p
Pno—branchzng(@ ,t) — ]\;gnoo _—: (1 t° 9 / < (Z)>
~ Jim X (~# 3F [ 4P ()
- N — o0
o S Wiz G5 P(z) — o~ [ dp(t))
\_ Y,
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*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t ag 7 P
Pno— ranchin ] = 1
sranching (€, 1) Ngnooz‘—o t. o / 2P(z)
~ lim 627]:\7:0 (_f__ fdzP(z))
N — 00

Sudakov form factor 2
A(Q27 t) ft fdz P(z) — o ftQ dp(t')
> /
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*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 5{; g d p
Pro—branchin ,t) = i 1
branching(Q7, 1) = lim L\ 4or / “F(2)
~ Tm ezéio(—f—:‘;‘—i [ dzP(=))
N — o0

Sudakov form factor

/
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4 . - N )
*\What is the probability of no emission?
0t g A
731r101r1—bran(:hing (tz) =1- 7Dbra,nching (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t ag 7 P
Pno— ranchin ] = 1
sranching (€, 1) Ngnooz‘—o t. o / 2P(z)
~ lim 627]:\7:0 (_f__ fdzP(z))
N — 00

Sudakov form factor 2
A(Q27 t) ft fdz P(z) — o ftQ dp(t')
> /
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4 . - N )
*\What is the probability of no emission?
0t g A
7Jlrlon—bran(:hing (tz) =1- 7Dbra,n(:hing (tz) =1 t ;7'(' / dZP(Z)

*So the probability of no emission between

two scales: N
2 0t s ] p
Pro—branchin ) = i 1
b h g(@ ) Ngnoo 11 - > / - (Z)
~ lim 62520(—5—;3—5 fdzﬁ(z))
Sudakov form factor N—00
2
A(Q27t) ft fdz P(z) — o ftQ dp(t')

o /
GProperty: A(A,B) = A(A,C) A(C,B) )




Parton shower W Durham

% The Sudakov form factor i1s the heart of the parton shower. It gives the
probability that a parton does not branch between two scales

2 Using this no-emission probability the branching tree of a parton is generated.

¢ Define dPy as the probabllity for k ordered splittings from leg a at given scales

dPi(t1) = A(Q% t1) dp(t)A(t1,QF),
dPy(t1,t2) = A(Q% t1) dp(ty) A(t1,t2) dp(te) A(te, Q5)O(t1 — ta),
e = L
APt nte) = AQ% QD) H Oti—1 — 1)

% Qo? is the hadronization scale (~1 GeV). Below this scale we do not trust the
perturbative description for parton splitting anymore.




Unitarity Wouhar

4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
=1
® [he parton shower has to be unitary (the sum over all

branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
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integrating the probability for k splittings:

1| @
Py, = /dpk(tla oy ty) = A(Q27Q3)E /
/@3

dp(t)

k
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by

.y
C Vk=0,1,...

~
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integrating the probability for k splittings:

1| @
Py, = /de(th oy ty) = A(Q27Q3)E /
/@3

® Summing over all number of emissions

dp(t)

k
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by

.y
C Vk=0,1,...

~




Unitarity W

4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
- 1k

1| @
Pk — /dpk(tl, ...,tk) — A(Q%Qg)y / dp(t) ] Vk = O, 1,
- |/ Q2 ]

® Summing over all number of emissions

00 o0 1k
S P=AQLADY.
k=0 k=0

Q> Q7 |
[ ao| =a@t e | [ ap)| ~1

2 2
QO | B 0

o /




Unitarity W

4 . )
dPy(t1, . tr) = AQ%,Q5) ][ dp(t)O(ti—1 — 1)
I—1

® [he parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by
integrating the probability for k splittings:
- 1k

1| @
Pk — /dpk(tl, ...,tk) — A(Q%Qg)y / dp(t) ] Vk = O, 1,
- |/ Q2 ]

® Summing over all number of emissions

00 o0 1k
S P=AQLADY.
k=0 k=0

Q> Q7 |
[ ao| =a@t e | [ ap)| ~1

2 2
QO | B 0

® Hence, the total probabillity i1s conserved

\




singularities W Durham

® \WVe have shown that the showers Is unitary. However, how are
the IR divergences cancelled explicitly! Let's show this for the
first emission:
Consider the contributions from (exactly) O and | emissions

from leg a:
do dt do aq
— =A A P, pe
= AQ Q)+ AQ Q) YT 5 5 P ()

® [xpanding to first order in &s gwes

do Q° dt’ _do s dt do o
— = 1 o a,—> c a—> C
Z / 7P on o Z e

® Same structure of the two latter terms, with opposite signs:
cancellation of divergences between the approximate virtual
and approximate real emission cross sections.

® [he probabllistic interpretation of the shower ensures that
infrared divergences will cancel for each emission.
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Final-state parton showers ~ Wputham

With the Sudakov form factor, we can now implement a final-state
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With the Sudakov form factor, we can now implement a final-state
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21T)P(z), where P(z) is the appropriate splitting function.




~d>~  Final-state parton showers ~ Wpuham

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!

|. Start the evolution at the virtual mass scale to (e.g. the mass of the
decaying particle) and momentum fraction zo = |

2. Given a virtual mass scale ttand  momentum fraction x; at some stage
in the evolution, generate the scale of the next emission ti+| according to
the Sudakov probability A(t;t+1) by solving
A(ti+|,ti) =R

where R is a random number (uniform on [0, 1]).
3. If ti+1 < teue it means that the shower has finished.

4. Otherwise, generate z = z;/zj+| with a distribution proportional to (Xs/
21T)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.



Soft Limit W Durham

Q° /
A(Q?,t) = exp —Z/ ij

do as
27T 27

Pa—>bc(z)

There is a lot of freedom In the choice of evolution parameter

t. It can be the virtuality m? of particle a or its pt? or E2072 ... For
the collinear limit they are all equivalent

However, in the soft Iimit (z — O, 1) they behave differently

Can we chose 1t such that we get the correct soft limit?

Soft gluon comes from the full event!

® (Quantum Interference




Radiation inside cones around the original partons is allowed
(and described by the eikonal approximation), outside the cones

Angular ordering

(S ]

(N

O(p-,)

9, -+
O(gp-¢,)

it Is zero (after averaging over the azimuthal angle)

-

photon

ot

photon

]
¥ Durham

University




To Remember W Durham

4 )
* Sudakov Form-Factor: Probablility of No-

emission between two scale.

AQ% 1) ~ o= IO Wdz35P() — o= [ dp(t)

*Probalitity of K-emission

1k

-
sz/de(tl,... W) = A(Q, QO) / ip®)| . VE=0.1,..

2
0

*Ensure that the parton shower is unitary
*Ensure cancelation of IR divergency

(Interference effect via Angular ordering )




. Initalstate  ¥ee

® 50 far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there Is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probability to find a
given parton in a hadron at a given momentum fraction x = p,/
P, and scale t.
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® 50 far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there Is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probability to find a

given parton in a hadron at a given momentum fraction x = p,/
P, and scale t.

® How do the PDFs evolve with increasing t!

0, L dz a, T
tafi(w,t) — ) —PZJ(Z)f] (;,t) DGLAP

2 o
 Mattelaeroliviee  Mowte-carlo Lecture: Beifing 2005 26
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® Start with a quark PDF fo(x) at scale to. After a single
parton emission, the probability to find the quark at
virtuality t > to IS

f(x,t) = folx) +/t C?f/ ;‘W /: @P(z)fo (g)

to <

® After a second emission, we have

f(w,t)zfo(:v)+/t if = /: %P(z){fo (%)ﬁ f(x/z, t)

to

t/ dt”& 1 dZ/ -
| P ()
v [ e [ Sren (5

0




~@-  The DGLAP equation ot

g
xo to 220000,

p “'Nonn.,,””” Q000 "09,'. 'M,.

® 50 for multiple parton splittings, we arrive at an integral-
differential equation:

0 Y dz ag
tafi(ﬂ%t) = Za_Pij(Z)fj (%,t)

. 227

® T[hisis the famous DGLAP equation (where we have taken into
account the multiple parton species |, |). The boundary

condition for the equation Is the Initial PDFs fio(x) at a starting
scale to (around 2 GeV).

® T[hese starting PDFs are fitted to experimental data.



® J[o simulate parton radiation from the initial state, we start with
the hard scattering, and then “deconstruct” the DGLAP
evolution to get back to the original hadron: backwards
evolution!

® |c.we undo the analytic resummation and replace it with
explicit partons (e.g. in Drell-Yan this gives non-zero pr to
the vector boson)

® |n backwards evolution, the Sudakovs include also the PDFs --
this follows from the DGLAP equation and ensures
conservation of probabllity:

2 dx’ as(t) x\ filz', )
Agi(x,t1,ts) = — dt’ 1( ) |
(@t t2) = exp /tl Zg:/x ' 2m Y \a ) fi(x, )

This represents the probabllity that parton i will stay at the
same X (no splittings) when evolving from t| to ta.

® [he shower simulation is now done as in a final state shower!



Hadronization W Durham

The shower stops If all partons are characterized by a scale at
the IR cut-off: Qo ~ | GeV.

Physically, we observe hadrons, not (colored) partons.

VWe need a non-perturbative model in passing from partons to
colorless hadrons.

There are two models (string and cluster), based on physical
and phenomenological considerations.
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histories In case of pp) of an hard event in an explicit and fully detailed way,
such that the sum of the probabillities of all possible histories is unity.
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A
~{pd~  Parton Shower MC event generators WDurham

A parton shower program assoclates one of the possible histories (and pre-
histories In case of pp) of an hard event in an explicit and fully detailed way,
such that the sum of the probabilities of all possible histories Is unity.

® (eneral-purpose tools

® Complete exclusive description of the events: hard scattering,
showering & hadronization (and underlying event)

® Reliable and well-tuned tools

® Significant and intense progress in the development of new
showering algorithms with the final aim to go at NLO in QCD

Shower MC Generators: PYTHIA, HERWIG, SHERPA

‘Note that a banching tree is not a Feynman diagram: it
represents the coherent sum of many real and virtual diagrams
which are summed by the branching algorithm" (HERWIG
manual)



4 )

® [he parton shower dresses partons with radiation. This makes
the Inclusive parton-level predictions (1.e. Inclusive over extra
radiation) completely exclusive

® |n the soft and collinear limits the partons showers are
exact, but in practice they are used outside this imit as well.

® Partons showers are universal (1.e. independent from the
DroCess)

® Building block of the parton shower Is the Sudakov

® T[here s a cut-off in the shower (below which we don't trust
perturbative QCD) at which a hadronization model takes over

- /
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PS alone vs matched samples  #putham

In the soft-collinear approximation of Parton Shower MCs, parameters are used to
tune the result = Large variation in results (small prediction power)

c
s L :
2 10— tt  (Pythia only)
- —
% —
3 - P, of the 2-nd extra jet
© -
1=
1 B N = IXZX—A A
107" o Q* (wimpy) PRy g XK W
[ Yy R @
-~ O Q7 (power) v °°°
©
102~ 4 Pr(wimpy)
i LA
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|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet descripti%
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4

|. Fixed order calculation
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3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct
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No limit on particle multiplicity
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~@>~Matrix Elements vs. Parton Showerswputan

Shower MC

4

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

5. Partial interference through
angular ordering

6. Needed for hadronization

¥

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description

Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions
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Goal for ME-PS merging/matching wousham

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

N Event/bin (1 fb™)

. 2nd QCD radiation jet in
top pair production at
10* 1§ I the LHC, using
' | loa(DJR) MadGraph + Pythia
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[Mangano]
[Catani, Krauss, Kuhn,Webber]
[Lonnblad]

PS —»

kT < Q° kTt < Q°
kr < Q¢

kr < Q¢

ME Vi > QS

S
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Merging ME with PS W Durham

[Mangano]
[Catani, Krauss, Kuhn,Webber]
[Lonnblad]

S —
kT < Q° kTt < Q°
kT < Q€
kr < Q°
ME kt > Q¢ kt > Q¢

kt > Q°

kt > Q°

NORY

Double counting between ME and PS easily avoided using phase space cut
between the two: PS below cutoff, ME above cutoff.




Merging ME with PS W Durham

University

® So double counting problem easily solved, but
what about getting smooth distributions that are
independent of the precise value of Q<!

® Below cutoff, distribution is given by PS
- need to make ME look like PS near cutoff

® | et’s take another look at the PS!




ging ME with PS
Mer

t
toJ

L)
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teut
Teut

ti
to

! tcut

Teut

® How does the PS generate the configuration above?
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teut
Teut

L

to | iy}
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® How does the PS generate the configuration above?

Teut

® Probability for the splitting at t| is given by
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teut
Teut

to v t

! tcut

Teut

® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by

(B, 1) )
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teut
Teut

to | iy}

! tcut

AN

® How does the PS generate the configuration above?

Teut

® Probability for the splitting at t| is given by

(B, 1) )

and for the whole tree

2 Qg (t1) as(t2)

(Aq(tcutatO))QAg(t%tl)(Aq(fcutat2)) o7 Pyq(2) o qu(zl)
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 Teut

Teut
t
to ,sﬁruwfj;;w<i::j

! tcut

Teut

® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by
(Agltr10)? 2 B )

and for the whole tree

(Ag(teut, to))zAg(t% t1)(Aqut, 752))2 a;(;l) Pyq(2) 0432(;2) qu(zl)
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 Teut

Teut
t‘l :
to ‘ th

! tcut

Teut

® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by
(Agltr10)? 2 B )

and for the whole tree

(gl 1) 12, 12) Byl 1) S

0432(;2) qu(zl)
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 Teut

- Leut
t »
to . l t) i

' Teut
* teut
® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by
(Agltr10)? 2 B )

and for the whole tree

0432(;2) qu(zl)

(Aq(teut; to))z-(Aq(fcut, 752))2-
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_ Teut

Teut

to

Teut

 Teut

® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by
(Agltr10)? 2 B )

and for the whole tree
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_ Teut

t y 4 7
to -

% Teut

t,
Cteut

 Teut

® How does the PS generate the configuration above?

® Probability for the splitting at t| is given by
(Agltr10)? 2 B )

and for the whole tree
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rging ME with PS
Me

Leut
tl-
tOJ Z Teut
eut
s (12) qu(z’)
)28t p ) 2
2 2T
Aq(cuta
A, (ta, t1)(
tO)) g
(Aq(tcuta
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teut
Teut

ti
to

! tcut

Teut

(Aq(tcuta tO))QAg(th tl)(Aq(cuta t2))2EXS(t1) qu(z) 9 qu(z’j

Corresponds to the matrix element
BUT with s evaluated at the scale of each splitting
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teut
Teut

ti
to

(Bt 1) 0. 1) g o) {220y () 2202) )

Corresponds to the matrix element
BUT with s evaluated at the scale of each splitting

Sudakov suppression due to not allowing additional radiation
above the scale tcu:
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‘M‘2(§7p37p47 )

® TJo get an equivalent treatment of the corresponding
matrix element, do as follows:
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‘M‘2(§7p37p47 )

® TJo get an equivalent treatment of the corresponding
matrix element, do as follows:

|. Cluster the event using some clustering algorithm
- this gives us a corresponding “parton shower history”

2. Reweight (s in each clustering vertex with the clustering

scale |M‘2 N ‘M|2a8(t1) aS(tQ)
as(to) as(to)
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‘M‘2(§,p37p47 )

® TJo get an equivalent treatment of the corresponding
matrix element, do as follows:

|. Cluster the event using some clustering algorithm
- this gives us a corresponding “parton shower history”

2. Reweight (s in each clustering vertex with the clustering

scale |M‘2 N ‘M|2O‘S(t1) aS(tQ)

as(to) as(to)
3. Use some algorithm to apply the equivalent Sudakov

suppression (A, (teus, t0))*Ag(t2, t1)(Ay (cut, t2))?
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® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® |et’s do the same exercise as before:

2a8(t1) ng(z) fq(xhtl) O‘S(tZ) (Z/)
27 2 folal,ty) 2m Y

X(quq_>e,/(§, )fq(aj/lv tO)fCY(w% tO)

Teut

P = (Alq(tcuta tO))2Ag(t27 tl)(AQ(tCUt7 tg))
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® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® |et’s do the same exercise as before:

2a8(t1) ng(z) fq(xhtl) O‘S(tZ) (Z/)
27 2 folal,ty) 2m Y

X(quq_>e,/(§, )fq(aj/lv tO)fCY(w% tO)

Teut

P = (Alq(tcuta tO))2Ag(t27 tl)(AQ(tCUt7 tg))

tcut i
X
ti

X\’

t -
W~ tc ut

y
X2 Ve

tcuti/ ‘
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® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® | et’s do the same exercise as before:
Oés(tg)

7) — (Alq(tcut,tO))QAg(t%tl)(Aq(tcut,t2))2_7qu(Zl)

X(quq_>€,/(§, )fQ(aj/b tO)fCY(x% tO)

Teut

tcut i
X
ti

X\’

t‘2 e =
W— Leut

to
Xz/ Ve
Teut;




Matching for initial state radiation ¥ouhan

® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® |et’s do the same exercise as before:

g (tz)
2T

7) — (Alq (tcuta tO))Q- (Aq(tcum 752))2_

X(quq_>e,/(§, )fQ(aj/D tO)fq(x% tO)

Teut
Xl
T ) _
e
X\’

W— tc ut

to
Xz/ Ve
Teut;

qu(z’)

tcut i
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® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® |et’s do the same exercise as before:

P = (Alq (tcuta tO))Q- (Aq(tcum t2)>2_

X&qq—ml/(ga )fQ(aj/b tO)fCY(ZC% tO)

Teut
Xl
t )
e
x|

W— Leut

to
Teut;

tcut i
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® We are of course not interested in e*e” but p-p(bar)
- what happens for initial state radiation?

® |et’s do the same exercise as before:

P = (Alq (tcuta tO))Q- (Aq(twt) 752))2_

X&qq—ml/(ga )fQ(aj/b tO)fCY(ZC% tO)

' tC ut
F 3




Matching for initial state radiation ¥ouhan

Qas(tl) qu(Z) fq(xlatl) as(tZ)
27 2 folal,t1) 2w

Xa-q(?—wv(év )fCI(xllv tO)fQ(ajZ? tO)

qu(zl)

Teut




Matching for initial state radiation ¥ouhan

(A rqteuts 10))* Dg(t2, 1) (Dg(feu 12))? fulah 1)

KOG /o (71, to) falEaTo)

ME with s evaluated at the scale of each splitting

Leut i teut

Teut i
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XGqgrev(8, ) fo(21, to) fa(@2, to)

ME with s evaluated at the scale of each splitting

PDF reweighting
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ME with s evaluated at the scale of each splitting
PDF reweighting

Sudakov suppression due to non-branching above scale tcu

Leut i teut
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® Again, use a clustering scheme to get a parton shower history
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Matching for initial state radiation ¥ouhan

® Again, use a clustering scheme to get a parton shower history
® Now, reweight both due to &s and PDF

(t1) as(t2) fq(x7,t0)

M = M2

as(to) as(to) fq(:z:’l, ty)
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® Again, use a clustering scheme to get a parton shower history
® Now, reweight both due to &s and PDF

‘M’2 _ ‘M’2as(t1) Oés(tg) fQ(xllatO)

as(to) ous(to) fo(7, 1)
® Remember to use first clustering scale on each side for PDF scale:

7Devent — 5-(5817 L2, P3,P4, ... )fq(ml@)f(j(xQ




Matching schemes W Durham

® We still haven’t specified how to apply the Sudakov
reweighting to the matrix element

® Three general schemes available in the literature:

= CKKW scheme [Catani,Krauss,Kuhn,Webber 2001; Krauss 2002]
= | onnblad scheme (or CKKW-L) [Lénnblad 2002]
= MLM scheme [Mangano unpublished 2002; Mangano et al. 2007]
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[Krauss 2002]
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CKKW matching W Durham

[Catani, Krauss, Kuhn,Webber 2001 ]
[Krauss 2002]

® Apply the required Sudakov suppression

(Alq (tcuta tO))QAg (t27 tl)(Aq (tcuta t2))2
analytically, using the best available (NLL) Sudakovs.

® Perform “truncated showering”: Run the parton shower starting at
to, but forbid any showers above the cutoff scale tc..

v Best theoretical treatment of matrix element
- Requires dedicated PS implementation

- Mismatch between analytical Sudakov and (non-NLL) shower

® |mplemented in Sherpa (v. |.1)
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[Lonnblad 2002]
[Hoeche et al. 2009]
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CKKW-L matching W Durham

[Lonnblad 2002]
[Hoeche et al. 2009]

® C(Cluster back to “parton shower history”

® Perform showering step-by-step for each step in the parton shower
history, starting from the clustering scale for that step

® Veto the event if any shower is harder than the clustering scale for
the next step (or teu, if last step)

® Keep any shower emissions that are softer than the clustering scale
for the next step



CKKW-L matching W Durham

[Lonnblad 2002]
[Hoeche et al. 2009]

v Automatic agreement between Sudakov and shower
- Requires dedicated PS implementation
= Need multiple implementations to compare between showers

® |mplemented in Ariadne, Sherpa (v. 1.2), and Pythia 8
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[J.A. et al 2007, 2008]
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jets not matched to partons, reject the event




MLM matching W Durham

[M.L. Mangano, ~2002, 2007]
[J.A. et al 2007, 2008]

® The simplest way to do the Sudakov suppression is to run the

shower on the event, starting from to!
kT

i

kT2

® Perform jet clustering after PS - if hardest jet kT > tcuc Or there are
jets not matched to partons, reject the event

® The resulting Sudakov suppression from the procedure is

(AIC] (tcutv tO))z (Aq (tcutv tO))2

which turns out to be a good enough approximation of the correct
expression (Alq (tcuta tO))QAg (t27 tl)(Aq (tcuta t2))2
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MLM matching W Durham

[M.L. Mangano, ~2002, 2007]
[J.A. et al 2007, 2008]

® The simplest way to do the Sudakov suppression is to run the

shower on the event, starting from to!
kT

i

kT3

/. kn
1

v Simplest available scheme

v Allows matching with any shower, without modification

= Sudakov suppression not exact, minor mismatch with shower

® |[mplemented in AlpGen, HELAC, MadGraph+Pythia 6




Highest multiplicity sample %yt

® In the previous, assumed we can simulate all parton
multiplicities by the ME

® |n practice, we can only do limited number of final-state
partons with matrix element (up to 4-5 or so)

® For the highest jet multiplicity that we generate with the
matrix element, we need to allow additional jets above the
matching scale tcu, since we will otherwise not get a jet-
inclusive description — but still can’t allow PS radiation harder
than the ME partons

= Need to replace t..: by the clustering scale for the softest ME
parton for the highest multiplicity



4 N

® \Ne have a number of choices to make in the above
brocedure. [ he most important are:

. The clustering scheme used to determine the parton
shower history of the ME event

2. What to use for the scale Q* (factorization scale)

3. How to divide the phase space between parton showers
and matrix elements

N /




Back to the “matching goal”  ¥ouhan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions
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o
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Matrix element

N Eventbin (1 fb™)
o
~N

. ' 2nd QCD radiation jet in
' top pair production at
1o 11 the LHC, using
' | loa(DJR) MadGraph + Pythia



Back to the “matching goal”  ¥nuan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

3

-t
o

I"iatrix element

N Eventbin (1 fb™)
o
~N

i | 2nd QCD radiation jet in
5 ' top pair production at

108 : 11 the LHC, using

Matching scale  * logtBJR} MadGraph + Pythia



Back to the “matching goal”  ¥nuan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

3

-t
o

N Evient/bin (1 fb™)

Emissions from PS

2nd QCD radiation jet in
top pair production at
the LHC, using

Matchifg scale  *°  °  ioqoum MadGraph + Pythia




Back to the “matching goal”  ¥nuan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

3
, . Emissions from ME

-t
o

N Eventbin (1 fb™)
o
N

10

2nd QCD radiation jet in
top pair production at

W [P — the LHC, using
S MadGraph + Pythia




Back to the “matching goal”  ¥nuan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions
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Back to the “matching goal”  ¥nuan

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

3
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N Eventbin (1 fb™)
o
N

B : 2nd QCD radiation jet in
: ' top pair production at
Ak N, oo, the LHC, using

Matchifg scale  *°  °  ioqoum MadGraph + Pythia




University

Back to the “matching goal”  Wourhn

® Regularization of matrix element divergence

® Correction of the parton shower for large momenta
® Smooth jet distributions

3

-t
o

N Eventbin (1 fb™)
o
N

Desired curve

2nd QCD radiation jet in
top pair production at

N, the LHC, using
2.5 3 3.5

Matchih’sg scalze log(DJR) MadGraph + Pythia




Summary of Matching Procedure Wpuhan

|. Generate ME events (with different parton multiplicities) using
parton-level cuts (pt™E/AR or kt™E)

2. Cluster each event and reweight s and PDFs based on the
scales in the clustering vertices

3. Apply Sudakov factors to account for the required non-
radiation above clustering cutoff scale and generate parton
shower emissions below clustering cutoff:

a. (CKKW) Analytical Sudakovs + truncated showers
b. (CKKWe-L) Sudakovs from truncated showers

c. (MLM) Sudakovs from reclustered shower emissions

4. Apply separation cut



Comparing to experiment: W+jets Wpurham

CMS preliminary
E = ] I 1
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* Very good agreement at Tevatron (left)
and LHC (right)

inclusive jet multiplicity, n

* Matched samples obtained via different matching schemes (MLM and CKKW)
consistent within the expected uncertaintes.

* Pure parton shower (Pythia) doesn’t describe the data beyond Ist jet.



matching in MadGraph+Pythia  puhm

Example: Simulation of pp—=W with O, |, 2 jets
(comfortable on a laptop)

mg5> generate p p > w+, w+ > 1+ v1 @0
mg5> add process p p > w+ j, w+ > 1+ vl @1

mg5> add process p p > w+ j j, wt > 1+ vl @2

mg5> output

In run card.dat:

(  Matching on
No cone matching
0 = pt] *"’—*””'/—”’—*””’*d’——

xgcut «————””””~’-~””—”’

Matching automatically done when run through
MadEvent and Pythia!

1 = ickkw

kT matching scale

15




matching in MadGraph+Pythia  puhm

e By default, kt-MLM matching is run if xqcut > 0, with the
matching scale QCUT = max(xqcut*|.4, xqcut+10)

* For shower-kT, by default QCUT = xqcut

* |f you want to change the Pythia setting for matching scale
or switch to shower-kt matching:

In pythia card.dat:

! This sets the matching scale, needs to be > xqcut
QCUT = 30

! This switches from kT-MLM to shower-kT matching

! Note that MSTP(81)>=20 needed (pT-ordered shower)
SHOWERKT = T




How to do validate the matching Wnuham

 The matching scale (QCUT) should typically be chosen
around |/6-1/2 x hard scale (so xqcut correspondingly lower)

 The matched cross section (for X+0,1,... jets) should be close
to the unmatched cross section for the 0-jet sample
(found on the process HTML page)

e The differential jet rate plots should be smooth

* When QCUT is varied (within the region of validity), the
matched cross section or differential jet rates should not vary
significantly




~@- Differential Jet Rate Plot ~ ¥eun

(" «This are the clustering scales in the kt-jet A
clustering scheme

DJR1: pT of the last remaining jet

*DJR2: The minimum between the pT of the

second to last remaining jet and the kt between
the last two |et.

*Only radiative jet (not those from decay) should
\_ enter those plot. Y
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Matching Validation W Duham

W+jets production at the Tevatron for MadGraph+Pythia
(k1-jet MLM scheme, g%>-ordered Pythia showers)

Qmatch = |0 GeV Qmaceh = 30 GeV

= o I
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Matching Validation W Dutan

W+jets production at the Tevatron for MadGraph+Pythia
(k1-jet MLM scheme, g%>-ordered Pythia showers)
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Matching Validation W Durtam

W+jets production at the Tevatron for MadGraph+Pythia
(k1-jet MLM scheme, g%>-ordered Pythia showers)

Cross_section (normalized)
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Matching Validation W Durtam

W+jets production at the Tevatron for MadGraph+Pythia
(k1-jet MLM scheme, g%>-ordered Pythia showers)

Cross_section (normalized)
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Jet distributions smooth, and stable when we vary the matching scale!
 Mattelaeroliviee  Mowtecarlo Lectwre: Beifing 0.5 59



PS alone vs matched samples  #putham

In the soft-collinear approximation of Parton Shower MCs, parameters are used to
tune the result = Large variation in results (small prediction power)

c
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PS alone vs ME matching ~ #puham

In 2 matched sample these differences are irrelevant since the behavior at
high pt is dominated by the matrix element.

c E
S t _
= | tt+0,1,2,3 partons + Pythia (MMLM)
a 10§
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| ecture Summary W Durham

e Despite the apparent enormous complexity of
simulation of complete collider events, nature has kindly
allowed us to factorize the simulation into separate
steps

e The Monte Carlo method allows us to step-by-step
simulate hard scattering, parton shower, particle
decays, hadronization, and underlying event

e Jet matching between matrix elements and parton
showers gives crucial improvement of simulation of
background as well as signal processes

e Running matching with MadGraph + Pythia is very easy,
but the results should always be checked for
consistency

e Matching is mandatory at NLO (actually without
merging)



