MG5_aMC@NLO looping up to be mad!

Olivier Mattelaer IPPP/Durham

based on 1401.7340 and 1405.0301 Work in progress with V. Hirschi

Plan

- Loop-Induced processes
 - →LO re-weighting
 - PS integration

Plan

MadGraph StandAlone

MadLoop StandAlone

Process Synta		Syntax	Cross section (pb)			
Vector	-boson pair +jets		LO 13 T	°eV	NLO 13 7	ΓeV
b.1	$pp \rightarrow W^+W^-$ (4f)	p p > w+ w-	$7.355 \pm 0.005 \cdot 10^{1}$	+5.0% +2.0% -6.1% -1.5%	$1.028 \pm 0.003\cdot 10^2$	$^{+4.0\%}_{-4.5\%}$ $^{+1.9\%}_{-1.4\%}$
b.2	$pp \rightarrow ZZ$	p p > z z	$1.097 \pm 0.002 \cdot 10^{1}$	$^{+4.5\%}_{-5.6\%}$ $^{+1.9\%}_{-1.5\%}$	$1.415 \pm 0.005 \cdot 10^{1}$	$^{+3.1\%}_{-3.7\%}$ $^{+1.8\%}_{-1.4\%}$
b.3	$pp \rightarrow ZW^{\pm}$	p p > z wpm	$2.777 \pm 0.003 \cdot 10^{1}$	+3.6% +2.0% -4.7% -1.5%	$4.487 \pm 0.013 \cdot 10^{1}$	+4.4% +1.7% -4.4% -1.3%
b.4	$pp \rightarrow \gamma \gamma$	pp>aa	$2.510 \pm 0.002 \cdot 10^{1}$	+22.1% +2.4% -22.4% -2.1%	$6.593 \pm 0.021 \cdot 10^{1}$	+17.6% +2.0% -18.8% -1.9%
b.5	$pp \rightarrow \gamma Z$	p p > a z	$2.523 \pm 0.004 \cdot 10^{1}$	+9.9% +2.0% -11.2% -1.6%	$3.695 \pm 0.013 \cdot 10^{1}$	+5.4% +1.8% -7.1% -1.4%
b.6	$pp\!\rightarrow\!\gamma W^{\pm}$	pp>awpm	$2.954 \pm 0.005 \cdot 10^{1}$	$^{+9.5\%}_{-11.0\%}$ $^{+2.0\%}_{-1.7\%}$	$7.124 \pm 0.026 \cdot 10^{1}$	$^{+9.7\%}_{-9.9\%}$ $^{+1.5\%}_{-1.3\%}$
b.7	$pp \rightarrow W^+W^-j$ (4f)	p p > w+ w- j	$2.865 \pm 0.003 \cdot 10^{1}$	+11.6% +1.0%	$3.730 \pm 0.013 \cdot 10^{1}$	+4.9% +1.1% -4.9% -0.8%
b.8	$pp \rightarrow ZZj$	p p > z z j	$3.662 \pm 0.003 \cdot 10^{0}$	+10.9% +1.0% -9.3% -0.8%	$4.830 \pm 0.016 \cdot 10^{0}$	+5.0% +1.1% -4.8% -0.9%
b.9	$pp \! ightarrow \! ZW^{\pm}j$	p p > z wpm j	$1.605 \pm 0.005 \cdot 10^{1}$	+11.6% +0.9% -10.0% -0.7%	$2.086 \pm 0.007 \cdot 10^{1}$	+4.9% +0.9% -4.8% -0.7%
b.10	$pp \rightarrow \gamma \gamma j$	pp>aaj	$1.022 \pm 0.001 \cdot 10^{1}$	+20.3% +1.2% -17.7% -1.5%	$2.292 \pm 0.010 \cdot 10^{1}$	+17.2% +1.0% -15.1% -1.4%
b.11*	$pp \rightarrow \gamma Z j$	p p > a z j	$8.310 \pm 0.017 \cdot 10^{0}$	$^{+14.5\%}_{-12.8\%}$ $^{+1.0\%}_{-1.0\%}$	$1.220 \pm 0.005 \cdot 10^{1}$	+7.3% +0.9% -7.4% -0.9%
b.12*	$pp \! ightarrow \! \gamma W^{\pm} j$	p p > a wpm j	$2.546 \pm 0.010 \cdot 10^{1}$	$^{+13.7\%}_{-12.1\%}$ $^{+0.9\%}_{-1.0\%}$	$3.713 \pm 0.015 \cdot 10^{1}$	$^{+7.2\%}_{-7.1\%}$ $^{+0.9\%}_{-1.0\%}$
b.13	$pp \rightarrow W^+W^+jj$	p p > w+ w+ j j	$1.484 \pm 0.006 \cdot 10^{-1}$	$^{+25.4\%}_{-18.9\%}$ $^{+2.1\%}_{-1.5\%}$	$2.251 \pm 0.011 \cdot 10^{-1}$	$^{+10.5\%}_{-10.6\%}$ $^{+2.2\%}_{-1.6\%}$
b.14	$pp \rightarrow W^-W^-jj$	p p > w- w- j j	$6.752 \pm 0.007 \cdot 10^{-2}$	+25.4% +2.4% -18.9% -1.7%	$1.003 \pm 0.003 \cdot 10^{-1}$	$^{+10.1\%}_{-10.4\%}$ $^{+2.5\%}_{-1.8\%}$
b.15	$pp \rightarrow W^+W^-jj$ (4f)	p p > w+ w- j j	$1.144 \pm 0.002 \cdot 10^{1}$	+27.2% +0.7% -19.9% -0.5%	$1.396 \pm 0.005 \cdot 10^{1}$	+5.0% +0.7% -6.8% -0.6%
b.16	$pp \rightarrow ZZjj$	p p > z z j j	$1.344 \pm 0.002 \cdot 10^{0}$	+26.6% +0.7% -19.6% -0.6%	$1.706 \pm 0.011 \cdot 10^{0}$	+5.8% +0.8% -7.2% -0.6%
b.17	$pp \! ightarrow \! ZW^{\pm} jj$	p p > z wpm j j	$8.038 \pm 0.009 \cdot 10^{0}$	+26.7% +0.7% -19.7% -0.5%	$9.139 \pm 0.031 \cdot 10^{0}$	$^{+3.1\%}_{-5.1\%}$ $^{+0.7\%}_{-0.5\%}$
b.18	$pp \rightarrow \gamma \gamma j j$	pp>aajj	$5.377 \pm 0.029 \cdot 10^{0}$	$^{+26.2\%}_{-19.8\%}$ $^{+0.6\%}_{-1.0\%}$	$7.501 \pm 0.032 \cdot 10^{0}$	$^{+8.8\%}_{-10.1\%}$ $^{+0.6\%}_{-1.0\%}$
b.19*	$pp \rightarrow \gamma Z j j$	pp>azjj	$3.260 \pm 0.009 \cdot 10^{0}$	$^{+24.3\%}_{-18.4\%}$ $^{+0.6\%}_{-0.6\%}$	$4.242 \pm 0.016 \cdot 10^{0}$	$^{+6.5\%}_{-7.3\%}$ $^{+0.6\%}_{-0.6\%}$
b.20*	$pp \! ightarrow \! \gamma W^{\pm} j j$	pp>awpmjj	$1.233 \pm 0.002 \cdot 10^{1}$	$^{+24.7\%}_{-18.6\%}$ $^{+0.6\%}_{-0.6\%}$	$1.448 \pm 0.005 \cdot 10^{1}$	$^{+3.6\%}_{-5.4\%}$ $^{+0.6\%}_{-0.7\%}$

1	Process Syntax		Cross section (pb)			
Th	ree vector bosons +jet		LO 13 Te	N.	NLO 13 T	eV
c.1	$pp \rightarrow W^+W^-W^{\pm}$ (4f)	p p > v+ v- vpa	$1.307 \pm 0.003 \cdot 10^{-1}$	+0.0% +9.0%	$2.109 \pm 0.006 \cdot 10^{-1}$	+5-15 +1-65
c.2	$pp \rightarrow ZW^+W^-$ (4f)	p p > z ** *-	$9.658 \pm 0.065 \cdot 10^{-2}$	+0.83 +0.13	$1.679 \pm 0.005 \cdot 10^{-1}$	+6.35 +1.65
c.3	$pp \rightarrow ZZW^{\pm}$	p p > z z vpa	$2.996 \pm 0.016 \cdot 10^{-2}$	+1.0% +5.0%	$5.550 \pm 0.020 \cdot 10^{-2}$	+6.8% +1.5%
c.4	$pp \rightarrow ZZZ$	pp>zzz	$1.085 \pm 0.002 \cdot 10^{-2}$	+0.03 +1.93	$1.417 \pm 0.005 \cdot 10^{-2}$	+5.7% +1.9%
e.5	$pp \rightarrow \gamma W^+W^-$ (4f)	p p > a u+ u-	$1.427 \pm 0.011 \cdot 10^{-1}$	+1.9% +5.0%	$2.581 \pm 0.008 \cdot 10^{-1}$	+5.4% +1.4%
c.6	$pp \rightarrow \gamma \gamma W^{\perp}$	p p ≻ a a vpn	$2.681 \pm 0.007 \cdot 10^{-2}$	14.4% 11.9%	$8.251 \pm 0.032 \cdot 10^{-2}$	+7.4% +1.6%
c.7	$pp \rightarrow \gamma ZW^{\pm}$	p p > a z vpn	$4.994 \pm 0.011 \cdot 10^{-2}$	+0.855 +1.955	$1.117 \pm 0.004 \cdot 10^{-1}$	+2.2% +1.2%
c.8	$pp \rightarrow \gamma ZZ$	pp>azz	$2.320 \pm 0.005 \cdot 10^{-2}$	+2.0% +1.9%	$3.118 \pm 0.012 \cdot 10^{-2}$	+2.8% +1.8%
c.9	$pp \rightarrow \gamma \gamma Z$	pp>aaz	$3.078\pm0.007\cdot10^{-2}$	10.00 +1.9%	$4.634\pm0.020\cdot10^{-2}$	+4.4% +1.2%
c.10	$pp \rightarrow \gamma \gamma \gamma$	pp>aaa	$1.269\pm0.003\cdot10^{-9}$	+9.8% +2.0% -11.0% -1.8%	$3.441 \pm 0.012 \cdot 10^{-9}$	+11.8% $+1.4%-11.6%$ $-1.5%$
c.11	$pp \rightarrow W^+W^-W^{\pm}j$ (4f)	pp>v+v-vpnj	$9.167 \pm 0.010 \cdot 10^{-2}$	+15.0% +1.0%	$1.197 \pm 0.004 \cdot 10^{-1}$	+5.2% +1.0%
c.12"	$pp \rightarrow ZW^+W^-j$ (4f)	p p > z ++ +- j	$8.340 \pm 0.010 \cdot 10^{-2}$	+15.8% +1.6%	$1.066 \pm 0.003 \cdot 10^{-1}$	+135 +185
c.13*	$pp \rightarrow ZZW^{\perp}j$	p p > z z vpn j	$2.810 \pm 0.004 \cdot 10^{-2}$	+16.1% +1.0%	$3.660 \pm 0.013\cdot 10^{-2}$	+1.8% +1.0%
c.14"	$pp \rightarrow ZZZj$	pp>zzzj	$4.823 \pm 0.011 \cdot 10^{-3}$	+14.8% +1.4%	$6.341 \pm 0.025 \cdot 10^{-3}$	+4.9% +1.4%
c.15*	$pp \rightarrow \gamma W^+W^-j$ (4f)	pp>au+u-j	$1.182 \pm 0.004 \cdot 10^{-1}$	+12.4% +0.8%	$1.233 \pm 0.004 \cdot 10^3$	+18.9% +1.0%
c.16	$PP \rightarrow \gamma \gamma W^{\pm} j$	p p > a a vpn j	$4.107\pm0.015\cdot10^{-2}$	+11.8% +0.6%	$5.807 \pm 0.023 \cdot 10^{-2}$	13.8% 10.2%
c.17*	$pp \rightarrow \gamma ZW^{\pm}j$	p p > a z vpn j	$5.833 \pm 0.023 \cdot 10^{-9}$	+14.4% +0.7%	$7.764 \pm 0.025 \cdot 10^{-9}$	+5.7K +0.8K
c.18*	$pp \rightarrow \gamma ZZj$	pp>azzj	$9.995 \pm 0.013 \cdot 10^{-3}$	+12.5% +1.2%	$1.371 \pm 0.005 \cdot 10^{-9}$	+5.8% +1.2%
c.19*	$pp \rightarrow \gamma \gamma Z j$	pp>aazj	$1.372\pm0.003\cdot10^{-2}$	+10.9% +1.0%	$2.051\pm0.011\cdot10^{-2}$	+7.0% +1.0%
c.20*	pp→111j	pp>aaaj	$1.031 \pm 0.006 \cdot 10^{-9}$	+54.3% +0.9%	$2.020 \pm 0.008 \cdot 10^{-5}$	+12.8% +0.8%

Process	Syntax	Cross se	ction (pb)
Four vector bosons		LO 13 TeV	NLO 13 TeV
c.21* $pp \rightarrow W^+W^-W^+W^-$ (4f)	p p > w+ w- w+ w-	$5.721 \pm 0.014 \cdot 10^{-4}$ $^{+3.7\%}_{-3.5\%}$ $^{+2.3\%}_{-1.7\%}$	$9.959 \pm 0.035 \cdot 10^{-4}$ $^{+7.4\%}_{-6.0\%}$ $^{+1.7\%}_{-1.2\%}$
c.22 [*] $pp \rightarrow W^+W^-W^{\pm}Z$ (4f)	p p > w+ w- wpm z	$6.391 \pm 0.076 \cdot 10^{-4}$ $^{+4.4\%}_{-4.1\%}$ $^{+2.4\%}_{-1.8\%}$	$1.188 \pm 0.004 \cdot 10^{-3}$ $^{+8.4\%}_{-6.8\%}$ $^{+1.7\%}_{-1.2\%}$
c.23 [*] $pp \rightarrow W^+W^-W^{\pm}\gamma$ (4f)	p p > w+ w- wpm a	$8.115 \pm 0.064 \cdot 10^{-4}$ $^{+2.5\%}_{-2.5\%}$ $^{+2.2\%}_{-1.7\%}$	$1.546 \pm 0.005 \cdot 10^{-3}$ $^{+7.9\%}_{-6.3\%}$ $^{+1.5\%}_{-1.1\%}$
c.24 [*] $pp \rightarrow W^+W^-ZZ$ (4f)	p p > w+ w- z z	$4.320 \pm 0.013 \cdot 10^{-4}$ $^{+4.4\%}_{-4.1\%}$ $^{+2.4\%}_{-1.7\%}$	$7.107 \pm 0.020 \cdot 10^{-4}$ $^{+7.0\%}_{-5.7\%}$ $^{+1.8\%}_{-1.3\%}$
c.25 [*] $pp \rightarrow W^+W^-Z\gamma$ (4f)	p p > w+ w- z a	$8.403 \pm 0.016 \cdot 10^{-4}$ $^{+3.0\%}_{-2.9\%}$ $^{+2.3\%}_{-1.7\%}$	$1.483 \pm 0.004 \cdot 10^{-3}$ $^{+7.2\%}_{-5.8\%}$ $^{+1.6\%}_{-1.2\%}$
c.26 [*] $pp \rightarrow W^+W^-\gamma\gamma$ (4f)	p p > w+ w- a a	$5.198 \pm 0.012 \cdot 10^{-4}$ $^{+0.6\%}_{-0.9\%}$ $^{+2.1\%}_{-1.6\%}$	$9.381 \pm 0.032 \cdot 10^{-4}$ $^{+6.7\%}_{-5.3\%}$ $^{+1.4\%}_{-1.1\%}$
c.27 [*] $pp \rightarrow W^{\pm}ZZZ$	p p > wpm z z z	$5.862 \pm 0.010 \cdot 10^{-5}$ $^{+5.1\%}_{-4.7\%}$ $^{+2.4\%}_{-1.8\%}$	$1.240 \pm 0.004 \cdot 10^{-4}$ $^{+9.9\%}_{-8.0\%}$ $^{+1.7\%}_{-1.2\%}$
c.28 [*] $pp \rightarrow W^{\pm}ZZ\gamma$	p p > wpm z z a	$1.148 \pm 0.003 \cdot 10^{-4}$ $^{+3.6\%}_{-3.5\%}$ $^{+2.2\%}_{-1.7\%}$	$2.945 \pm 0.008 \cdot 10^{-4}$ $^{+10.8\%}_{-8.7\%}$ $^{+1.3\%}_{-1.0\%}$
c.29 [*] $pp \rightarrow W^{\pm}Z\gamma\gamma$	pp>wpmzaa	$1.054 \pm 0.004 \cdot 10^{-4}$ $^{+1.7\%}_{-1.9\%}$ $^{+2.1\%}_{-1.7\%}$	$3.033 \pm 0.010 \cdot 10^{-4}$ $^{+10.6\%}_{-8.6\%}$ $^{+1.1\%}_{-0.8\%}$
c.30 [*] $pp \rightarrow W^{\pm} \gamma \gamma \gamma$	p p > wpm a a a	$3.600 \pm 0.013 \cdot 10^{-5}$ $^{+0.4\%}_{-1.0\%}$ $^{+2.0\%}_{-1.6\%}$	$1.246 \pm 0.005 \cdot 10^{-4}$ $^{+9.8\%}_{-8.1\%}$ $^{+0.9\%}_{-0.8\%}$
c.31 [*] $pp \rightarrow ZZZZ$	p p > z z z z	$1.989 \pm 0.002 \cdot 10^{-5}$ $^{+3.8\%}_{-3.6\%}$ $^{+2.2\%}_{-1.7\%}$	$2.629 \pm 0.008 \cdot 10^{-5}$ $^{+3.5\%}_{-3.0\%}$ $^{+2.2\%}_{-1.7\%}$
c.32 [*] $pp \rightarrow ZZZ\gamma$	p p > z z z a	$3.945 \pm 0.007 \cdot 10^{-5}$ $^{+1.9\%}_{-2.1\%}$ $^{+2.1\%}_{-1.6\%}$	$5.224 \pm 0.016 \cdot 10^{-5}$ $^{+3.3\%}_{-2.7\%}$ $^{+2.1\%}_{-1.6\%}$
c.33 [*] $pp \rightarrow ZZ\gamma\gamma$	p p > z z a a	$5.513 \pm 0.017 \cdot 10^{-5}$ $^{+0.0\%}_{-0.3\%}$ $^{+2.1\%}_{-1.6\%}$	$7.518 \pm 0.032 \cdot 10^{-5}$ $^{+3.4\%}_{-2.6\%}$ $^{+2.0\%}_{-1.5\%}$
c.34 [*] $pp \rightarrow Z\gamma\gamma\gamma$	pp>zaaa	$4.790 \pm 0.012 \cdot 10^{-5}$ $^{+2.3\%}_{-3.1\%}$ $^{+2.0\%}_{-1.6\%}$	$7.103 \pm 0.026 \cdot 10^{-5}$ $^{+3.4\%}_{-3.2\%}$ $^{+1.6\%}_{-1.8\%}$
c.35* $pp \rightarrow \gamma \gamma \gamma \gamma$	pp>aaaa	$1.594 \pm 0.004 \cdot 10^{-5}$ $^{+4.7\%}_{-5.7\%}$ $^{+1.9\%}_{-1.7\%}$	$3.389 \pm 0.012 \cdot 10^{-5}$ $^{+7.0\%}_{-6.7\%}$ $^{+1.3\%}_{-1.3\%}$

Process		Syntax	Cross section (pb)				
Heavy quarks and jets			LO 13 TeV	NLO 13 TeV			
d.1 d.2	$pp \rightarrow jj$ $pp \rightarrow jjj$	pp>jj pp>jjj	$\begin{array}{rrrr} 1.162 \pm 0.001 \cdot 10^{6} & {}^{+24.2\%}_{-18.4\%} {}^{+0.8\%}_{-0.0\%} \\ 8.940 \pm 0.021 \cdot 10^{4} & {}^{+43.8\%}_{-28.4\%} {}^{+1.2\%}_{-28.4\%} \end{array}$	$\begin{array}{rrrr} 1.580 \pm 0.007 \cdot 10^6 & {}^{+8.4\%}_{-0.0\%} {}^{+0.7\%}_{-0.0\%} \\ 7.791 \pm 0.037 \cdot 10^4 & {}^{+2.1\%}_{-23.2\%} {}^{+1.1\%}_{-1.3\%} \end{array}$			
d.3 d.4* d.5* d.6	$pp \rightarrow b\bar{b}$ (4f) $pp \rightarrow b\bar{b}j$ (4f) $pp \rightarrow b\bar{b}jj$ (4f) $pp \rightarrow b\bar{b}b\bar{b}$ (4f)	p p > b b~ p p > b b~ j p p > b b~ j j p p > b b~ b b~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
d.7 d.8 d.9 d.10	$pp \rightarrow t\bar{t}$ $pp \rightarrow t\bar{t}j$ $pp \rightarrow t\bar{t}jj$ $pp \rightarrow t\bar{t}t\bar{t}$	p p > t t~ j p p > t t~ j p p > t t~ j j p p > t t~ t t~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 6.741 \pm 0.023 \cdot 10^2 & +9.8\% & +1.8\% \\ -10.9\% & -2.1\% \\ 4.106 \pm 0.015 \cdot 10^2 & +8.1\% & +2.1\% \\ 1.795 \pm 0.006 \cdot 10^2 & +9.3\% & +2.4\% \\ 9.201 \pm 0.028 \cdot 10^{-3} & +30.8\% & +0.4\% \\ -28.6\% & -2.9\% \\ -28.6\% & -5.9\% \end{array}$			
d.11	$pp \rightarrow t\bar{t}b\bar{b}$ (4f)	p p > t t~ b b~	$6.119 \pm 0.004 \cdot 10^{0} {}^{+62.15}_{-85.7\%} {}^{+2.95}_{-85.7\%}$	$1.452 \pm 0.005 \cdot 10^{1} {}^{+ 37.63 }_{- 27.6 \% } {}^{+ 2.9 \% }_{- 8.6 \% }$			

	Process	Syntax	Cross section (pb)			
	Single-top		LO 13 TeV	NLO 13 TeV		
£.1	$pp \rightarrow tj$ (t-channel)	p p > tt j \$\$ w+ w-	$1.520 \pm 0.001 \cdot 10^2 \xrightarrow{+0.4\%}_{-11.9\%} \xrightarrow{+0.4\%}_{-0.6\%}$	$1.563 \pm 0.005 \cdot 10^2 {}^{+1.65}_{-1.85} {}^{+0.65}_{-0.85}$		
62	$pp \rightarrow t\gamma j$ (t-channel)	p p > tt a j \$\$ u+ u-	$9.956 \pm 0.014 \cdot 10^{-1}$ $^{+6.05}_{-8.05}$ $^{+0.05}_{-1.05}$	$1.017 \pm 0.003 \cdot 10^{2}$ $^{+1.58}_{-1.26}$ $^{+5.85}_{-0.96}$		
63	$pp \rightarrow tZj$ (t-channel)	p p > tt z j \$\$ w+ w-	$6.967 \pm 0.007 \cdot 10^{-1}$ $^{+8.08}_{-8.06} + 0.091$	$6.993 \pm 0.021 \cdot 10^{-1}$ $^{+1.0%}_{-1.1\%}$ $^{+0.99}_{-1.1\%}$		
£4	$pp \rightarrow tbj$ (t-channel, 4f)	p p > tt bb j \$\$ v+ v-	$1.003 \pm 0.000 \cdot 10^2 + 18.8\% + 0.4\% - 11.8\% - 0.8\%$	$1.319 \pm 0.003 \cdot 10^2 \xrightarrow{+0.8\%}_{-3.2\%} \xrightarrow{+0.4\%}_{-0.8\%}$		
£8*	$pp \rightarrow tbj\gamma$ (t-channel, 4f)	p p > tt bb j a \$\$ w+ w-	$6.293 \pm 0.006 \cdot 10^{-1}$ $^{+16.8\%}_{-13.7\%} \pm 0.9\%$	8.612 ± 0.025 · 10 ⁻¹ +6.28 +0.87		
£6*	$pp \rightarrow tbjZ$ (t-channel, 4f)	p p > tt bb j z \$\$ u+ u-	$3.934 \pm 0.002 \cdot 10^{-1}$ $^{+18.7\%}_{-14.7\%}$ $^{+1.0\%}_{-0.9\%}$	$5.657 \pm 0.014 \cdot 10^{-1}$ $^{+7.2\%}_{-7.9\%}$ $^{+0.09}_{-0.99}$		
£7	$pp \rightarrow tb$ (s-channel, 4f)	pp>u+>t b~, pp>u->t~b	$7.489 \pm 0.007 \cdot 10^{0}$ $^{+3.5\%}_{-4.4\%}$ $^{+1.6\%}_{-1.4\%}$	$1.001 \pm 0.004 \cdot 10^{1}$ $^{+3.75}_{-3.95}$ $^{+1.05}_{-1.05}$		
£8*	$pp \rightarrow tb\gamma$ (s-channel, 4f)	pp>u+>t b~ a, pp>u->t~ b a	$1.490 \pm 0.001 \cdot 10^{-2}$ $+1.95 + 1.95$ -1.85 - 1.85	1.952 ± 0.007 - 10 ⁻² + 0.05 + 1.27 -2.36 - 1.43		
£9*	$pp \rightarrow tbZ$ (s-channel, 4f)	p p > u* > 1 b~ x, p p > u- > 1~ b x	$1.072 \pm 0.001 - 10^{-2} + 1.98 + 6.08$ -1.5% - 1.6%	1.539±0.005-10-2 +588 +189		

Process	Syntax	Cross section (pb)			
Heavy quarks+vector bosons		LO 13 TeV	NLO 13 TeV		
e.1 $pp \rightarrow W^{\pm} b\bar{b}$ (4f) e.2 $pp \rightarrow Z b\bar{b}$ (4f)	pp>wpmbb~ pp>zbb~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
e.3 $pp \rightarrow \gamma b\bar{b}$ (4f)	p p > a b b~	$1.731 \pm 0.001 \cdot 10^{3} {}^{+ 51.9 \% }_{- 34.8 \% } {}^{+ 1.6 \% }_{- 2.1 \% }$	$4.171 \pm 0.015 \cdot 10^{3} {}^{+ 33.7 \% }_{- 27.1 \% } {}^{+ 1.4 \% }_{- 1.9 \% }$		
$\begin{array}{ll} \mathrm{e.4^*} & pp \rightarrow W^{\pm} b \bar{b} j (\mathrm{4f}) \\ \mathrm{e.5^*} & pp \rightarrow Z b \bar{b} j (\mathrm{4f}) \\ \mathrm{e.6^*} & pp \rightarrow \gamma b \bar{b} j (\mathrm{4f}) \end{array}$	pp>wpmbb~j pp>zbb~j pp>abb~j	$\begin{array}{rrrr} 1.861 \pm 0.003 \cdot 10^2 & +42.5\% & +0.7\% \\ & -27.7\% & -0.7\% \\ 1.604 \pm 0.001 \cdot 10^2 & +42.4\% & +0.9\% \\ & -27.6\% & -1.1\% \\ 7.812 \pm 0.017 \cdot 10^2 & +51.2\% & +1.0\% \\ & -32.0\% & -1.5\% \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$ \begin{array}{ll} {\rm e.7} & pp \mathop{\rightarrow} t\bar{t}W^{\pm} \\ {\rm e.8} & pp \mathop{\rightarrow} t\bar{t}Z \\ {\rm e.9} & pp \mathop{\rightarrow} t\bar{t}\gamma \end{array} $	$\begin{array}{l} p \ p \ > \ t \ t \sim \ wpn \\ p \ p \ > \ t \ t \sim \ z \\ p \ p \ > \ t \ t \sim \ a \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$ \begin{array}{ll} \mathrm{e.10}^* & pp \rightarrow t\bar{t}W^{\pm}j \\ \mathrm{e.11}^* & pp \rightarrow t\bar{t}Zj \\ \mathrm{e.12}^* & pp \rightarrow t\bar{t}\gamma j \end{array} $	$\begin{array}{l} p \ p \ > \ t \ t \sim \ wpm \ j \\ p \ p \ > \ t \ t \sim \ z \ j \\ p \ p \ > \ t \ t \sim \ a \ j \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$ \begin{array}{ll} \mathrm{e.13^{*}} & pp \rightarrow t\bar{t}W^{-}W^{+} \ (\mathrm{4f}) \\ \mathrm{e.14^{*}} & pp \rightarrow t\bar{t}W^{\pm}Z \\ \mathrm{e.15^{*}} & pp \rightarrow t\bar{t}W^{\pm}\gamma \\ \mathrm{e.16^{*}} & pp \rightarrow t\bar{t}ZZ \\ \mathrm{e.17^{*}} & pp \rightarrow t\bar{t}Z\gamma \end{array} $	$\begin{array}{l} p \ p \ > \ t \ t \sim \ u + \ u - \\ p \ p \ > \ t \ t \sim \ w p m \ z \\ p \ p \ > \ t \ t \sim \ w p m \ a \\ p \ p \ > \ t \ t \sim \ z \ z \\ p \ p \ > \ t \ t \sim \ z \ a \end{array}$	$\begin{array}{rrrr} 6.675 \pm 0.006 \cdot 10^{-3} & + 30.9\% & + 2.1\% \\ -2404 \pm 0.002 \cdot 10^{-3} & + 26.6\% & + 2.5\% \\ 2.718 \pm 0.003 \cdot 10^{-3} & - 19.6\% & -1.8\% \\ 1.349 \pm 0.014 \cdot 10^{-3} & + 29.3\% & -1.8\% \\ 2.548 \pm 0.003 \cdot 10^{-3} & - 21.9\% & -1.8\% \\ -21.9\% & -1.8\% & -21.9\% & -1.8\% \\ -21.9\% & -1.8\% & -21.9\% & -1.8\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -21.5\% & -21.5\% \\ -21.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ -20.5\% & -1.6\% \\ +20.5\% & -$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
e.18 [*] $pp \rightarrow t\bar{t}\gamma\gamma$	pp>t t∼ a a	$3.272 \pm 0.006 \cdot 10^{-3}$ +28.4% +1.3% -20.6% -1.1%	$4.402 \pm 0.015 \cdot 10^{-3}$ $^{+7.8\%}_{-9.7\%}$ $^{+1.4\%}_{-1.4\%}$		

D	Pt.	0	die (ab)	P	C	0	then (nh)
Process	Syntax	Citoes set	cuon (po)	Process	Syntax	CTORS SCI	tion (pb)
Single Higgs production		LO 13 TeV	NLO 13 TeV	Higgs pair production		LO 13 TeV	NLO 13 TeV
g.1 $pp \rightarrow H$ (HEFT) g.2 $pp \rightarrow Hj$ (HEFT) g.3 $pp \rightarrow Hjj$ (HEFT) g.4 $pp \rightarrow Hjj$ (HEFT)	pp>h pp>hj pp>hj	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ll} \mbox{h.1} & pp \rightarrow HH \mbox{ (Loop improved)} \\ \mbox{h.2} & pp \rightarrow HHjj \mbox{ (VBF)} \\ \mbox{h.3} & pp \rightarrow HHW^{\pm} \end{array} $	p p > h h p p > h h j j \$\$ v+ v- z p p > h h vpn	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 2.763 \pm 0.008 \cdot 10^{-2} & +11.4\% + 2.1\% \\ -11.8\% - 2.8\% \\ 6.820 \pm 0.026 \cdot 10^{-4} & +0.8\% + 2.6\% \\ 5.002 \pm 0.014 \cdot 10^{-4} & +1.5\% + 2.0\% \\ -1.2\% - 1.8\% \end{array}$
g.4 pp→Hjj(viir)	pp > n]] ## ## #= z	2.557 ± 0.002 · 10 -2.0% -1.4%	2.005 ± 0.000 10" _0.9% _1.5%	h.4 $pp \rightarrow HHW^{\pm}j$	p p > h h wpm j	$1.922 \pm 0.002 \cdot 10^{-4}$ $^{+14.29}_{-11.7\%} \pm 1.39$	$2.218 \pm 0.009 \cdot 10^{-4}$ $^{+2.79}_{-3.3\%}$ $^{+1.89}_{-1.1\%}$
$g_{s} = pp \rightarrow n_{fff} (vnv)$	pp>njjj## u+ u- z	2.824 ± 0.005 · 10 -12.1% -1.0%	a,085 ± 0.010 · 10 · -3.0% -1.1%	h.5' $pp \rightarrow II II W^{+} \gamma$	p p > h h wpm a	$1.952 \pm 0.004 \cdot 10^{-6}$ $^{+8.0\%}_{-3.0\%} + 2.2\%$	$2.347 \pm 0.007 \cdot 10^{-6}$ $^{+2.4\%}_{-2.0\%}$ $^{+2.1\%}_{-1.6\%}$
g.6 $pp \rightarrow HW^{\pm}$	p p > h wpm	$1.195 \pm 0.002 \cdot 10^{0}$ $^{+3.5\%}_{-4.6\%}$ $^{+1.9\%}_{-1.6\%}$	$1.419 \pm 0.005 \cdot 10^{0}$ $^{+2.1\%}_{-2.6\%}$ $^{+1.9\%}_{-1.4\%}$	h.6 $pp \rightarrow IIHZ$	pp>hhz	$2.701 \pm 0.007 \cdot 10^{-4}$ $^{+0.9\%}_{-1.3\%}$ $^{+2.0\%}_{-1.5\%}$	$3.130 \pm 0.008 \cdot 10^{-4}$ $^{+1.6\%}_{-1.2\%}$ $^{+2.0\%}_{-1.5\%}$
g.7 $pp \rightarrow HW^{\pm} j$	p p > h wpn j	$4.018 \pm 0.003 \cdot 10^{-1}$ $^{+10.7\%}_{-9.3\%}$ $^{+0.9\%}_{-0.9\%}$	$4.842 \pm 0.017 \cdot 10^{-1}$ $^{+3.675}_{-2.75}$ $^{+1.976}_{-2.75}$	h.7 $pp \rightarrow HHZj$	pp>hhzj	$1.211 \pm 0.001 \cdot 10^{-4}$ $^{+14.1\%}_{-1.1\%}$ $^{+1.4\%}_{-1.1\%}$	$1.394 \pm 0.006 \cdot 10^{-6}$ $^{+2.7\%}_{-1.0\%}$ $^{+1.5\%}_{-1.1\%}$
g.8" $pp \rightarrow HW^{\pm} jj$	p p > h wpm j j	$1.198 \pm 0.016 \cdot 10^{-1}$ $^{+96.15}_{-19.4\%}$ $^{+0.85}_{-0.6\%}$	$1.574 \pm 0.014 \cdot 10^{-1}$ $^{+5.05}_{-6.5\%}$ $^{+0.95}_{-0.6\%}$	h.8 [*] $pp \rightarrow HHZ\gamma$	pp>hhza	$1.397 \pm 0.003 \cdot 10^{-6} \pm 2.4\% \pm 2.2\%$	$1.604 \pm 0.005 \cdot 10^{-6} \pm 1.7\% \pm 2.3\%$
g.9 $pp \rightarrow HZ$ g.10 $pp \rightarrow HZ j$ g.11* $pp \rightarrow HZ jj$ g.12* $pp \rightarrow HW^+W^-$ (4f)	pp>hz pp>hzj pp>hzj pp>hzjj	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	h.9* $pp \rightarrow HHZZ$ h.10* $pp \rightarrow HHZW^{\pm}$ h.11* $pp \rightarrow HHW^+W^-$ (4f) h.12 $zp \rightarrow HHt\bar{t}$	p p > h h z z p p > h h z upn p p > h h u + u - p p > h h t + u -	$\begin{array}{r} -2.5\% \\ -1.7\% \\ 2.309 \pm 0.005 \cdot 10^{-6} \\ +3.9\% \\ +2.2\% \\ -3.8\% \\ -1.7\% \\ 3.708 \pm 0.013 \cdot 10^{-6} \\ +4.8\% \\ +2.3\% \\ -4.5\% \\ -1.75 \\ -1.75 \\ 7.524 \pm 0.070 \cdot 10^{-6} \\ +3.5\% \\ +2.3\% \\ -3.4\% \\ -1.7\% \\ -3.4\% \\ -1.7\% \\ -1.7\% \\ +30.2\% \\ +1.8\% \end{array}$	$\begin{array}{r} -1.4\% & -1.7\% \\ 2.754 \pm 0.009 \cdot 10^{-6} & +2.3\% & +2.3\% \\ -2.0\% & -1.7\% \\ 4.904 \pm 0.029 \cdot 10^{-6} & +3.7\% & +2.2\% \\ -3.2\% & -1.6\% \\ 9.268 \pm 0.030 \cdot 10^{-6} & +2.3\% & +2.3\% \\ 7.301 \pm 0.024 \cdot 10^{-4} & +1.4\% & +2.2\% \end{array}$
g.13 [*] $pp \rightarrow HW^{\pm}\gamma$	p p > h vpn a	$2.518 \pm 0.006 \cdot 10^{-3} \pm 0.2\% \pm 1.9\%$	$3.309 \pm 0.011 \cdot 10^{-3} \pm 2.7\% \pm 1.7\%$	$h_{13} \longrightarrow HHIi$	nn bhhtt i	$1.844 \pm 0.008 \pm 10^{-5} \pm 0.0\% \pm 1.8\%$	$2.444 \pm 0.000 + 10^{-5} \pm 4.5\% \pm 2.8\%$
g.14* $pp \rightarrow HZW^{\pm}$ g.15* $pp \rightarrow HZZ$	pp>hzwpn pp>hzz	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	h14" $pp \rightarrow HHb\bar{b}$	pp>hhbb~	$\begin{array}{cccccccc} -0.675 & -1.875 \\ 7.849 \pm 0.022 \cdot 10^{-8} & +34.375 \\ -31.975 & -3.775 \end{array}$	$\begin{array}{cccc} -3.1\% & -3.0\% \\ 1.084 \pm 0.012 \cdot 10^{-7} & +7.4\% & +3.1\% \\ -10.8\% & -3.7\% \end{array}$
g.16 $pp \rightarrow Ht\bar{t}$ g.17 $pp \rightarrow Ht\bar{t}$ g.18 $pp \rightarrow Hb\bar{b}$ (4f)	p p > h t t~ p p > h tt j p p > h b b~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 4.608 \pm 0.016 \cdot 10^{-1} & + 5.73 + 2.03 \\ - 9.06 & - 2.96 \\ 6.328 \pm 0.022 \cdot 10^{-2} & + 5.03 + 1.53 \\ 6.085 \pm 0.026 \cdot 10^{-1} & + 7.36 \\ - 9.85 & - 2.05 \\ \end{array}$				
g.19 $pp \rightarrow H l l j$ g.20* $pp \rightarrow H b \bar{b} j$ (4f)	pp>htt~j pp>hbb~j	$\begin{array}{cccc} 2.674 \pm 0.041 \cdot 10^{-1} & + 5.68 & + 2.68 \\ & - 29.26 & - 2.976 \\ 7.367 \pm 0.002 \cdot 10^{-2} & + 55.68 & + 1.88 \\ & - 29.176 & - 2.176 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

Process	Syntax	Cross section (pb)		
Heavy quarks and jets		LO 1 TeV	NLO 1 TeV	
i.1 $e^+e^- \rightarrow jj$ i.2 $e^+e^- \rightarrow jjj$ i.3 $e^+e^- \rightarrow jjjj$	e+ e- > j j e+ e- > j j j e+ e- > j j j j	$\begin{array}{cccc} 6.223 \pm 0.005 \cdot 10^{-1} & +0.0\% \\ & -0.0\% \\ 3.401 \pm 0.002 \cdot 10^{-1} & +9.6\% \\ & -8.6\% \\ 1.047 \pm 0.001 \cdot 10^{-1} & +20.0\% \\ & -15.3\% \end{array}$	$\begin{array}{cccc} 6.389 \pm 0.013 \cdot 10^{-1} & +0.2\% \\ 0.019 \cdot 10^{-1} & +0.2\% \\ 3.166 \pm 0.019 \cdot 10^{-1} & +0.2\% \\ 1.090 \pm 0.006 \cdot 10^{-1} & +0.0\% \\ -2.1\% \\ 0.005 \end{array}$	
${\rm i.4} \qquad e^+e^- \mathop{\rightarrow} jjjjj$	e+ e- > j j j j j	$2.211 \pm 0.006 \cdot 10^{-2}$ $^{+31.4\%}_{-22.0\%}$	$2.771 \pm 0.021 \cdot 10^{-2} {}^{+ 4.4 \% }_{- 8.6 \% }$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>e+ e- > t t~ e+ e- > t t~ j e+ e- > t t~ j j e+ e- > t t~ j j j e+ e- > t t~ t t~ e+ e- > t t~ t t~ j</pre>	$\begin{array}{rrrr} 1.662\pm 0.002\cdot 10^{-1} & +0.0\% \\ -0.0\% \\ 4.813\pm 0.005\cdot 10^{-2} & +9.3\% \\ -7.8\% \\ 8.614\pm 0.009\cdot 10^{-3} & +19.4\% \\ 1.044\pm 0.002\cdot 10^{-3} & +30.5\% \\ 6.456\pm 0.016\cdot 10^{-7} & +19.1\% \\ -14.8\% \\ 2.719\pm 0.005\cdot 10^{-8} & +29.9\% \\ -21.3\% \end{array}$	$\begin{array}{rrrr} 1.745 \pm 0.006 \cdot 10^{-1} & +0.4\% \\ & -0.4\% \\ 5.276 \pm 0.022 \cdot 10^{-2} & +1.3\% \\ 1.094 \pm 0.005 \cdot 10^{-2} & +5.0\% \\ 1.546 \pm 0.010 \cdot 10^{-3} & +10.6\% \\ 1.221 \pm 0.005 \cdot 10^{-6} & +13.2\% \\ 5.338 \pm 0.027 \cdot 10^{-8} & +18.3\% \\ & -15.4\% \end{array}$	
$\begin{array}{lll} {\rm i.11} & e^+e^- \to b\bar{b} \ (4{\rm f}) \\ {\rm i.12} & e^+e^- \to b\bar{b}j \ (4{\rm f}) \\ {\rm i.13}^* & e^+e^- \to b\bar{b}jj \ (4{\rm f}) \\ {\rm i.14}^* & e^+e^- \to b\bar{b}jjj \ (4{\rm f}) \\ {\rm i.15}^* & e^+e^- \to b\bar{b}b\bar{b} \ (4{\rm f}) \\ {\rm i.16}^* & e^+e^- \to b\bar{b}b\bar{b}\bar{b}j \ (4{\rm f}) \end{array}$	e* e- > b b~ e+ e- > b b~ j e* e- > b b~ j j e* e- > b b~ j j e* e- > b b~ b b~ e* e- > b b~ b b~	$\begin{array}{rrrr} 9.198 \pm 0.004 \cdot 10^{-2} & +0.0\% \\ -0.0\% \\ 5.029 \pm 0.003 \cdot 10^{-2} & +9.5\% \\ 1.621 \pm 0.001 \cdot 10^{-2} & +20.0\% \\ 3.641 \pm 0.009 \cdot 10^{-3} & +31.4\% \\ 1.644 \pm 0.003 \cdot 10^{-4} & +19.9\% \\ 7.660 \pm 0.022 \cdot 10^{-5} & +31.3\% \\ -22.0\% \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$ \begin{array}{ll} \mathrm{i.17^{*}} & e^+e^- \rightarrow t \overline{t} b \overline{b} \ (\mathrm{4f}) \\ \mathrm{i.18^{*}} & e^+e^- \rightarrow t \overline{t} b \overline{b} j \ (\mathrm{4f}) \end{array} $	e+ e- > t t∼ b b~ e+ e- > t t∼ b b~ j	$\begin{array}{rrrr} 1.819 \pm 0.003\cdot 10^{-4} & {}^{+19.5\%}_{&-15.0\%} \\ 4.045 \pm 0.011\cdot 10^{-5} & {}^{+30.5\%}_{&-21.6\%} \end{array}$	$\begin{array}{rrrr} 2.923 \pm 0.011 \cdot 10^{-4} & +9.2\% \\ -8.9\% \\ 7.049 \pm 0.052 \cdot 10^{-5} & +13.7\% \\ -13.1\% \end{array}$	

Process		Syntax	Cross section (pb)				
Top o	quarks +bosons		LO 1 TeV	NLO 1 TeV			
j.1	$e^+e^- \rightarrow t\bar{t}H$	e+ e- > t t~ h	$2.018 \pm 0.003 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$ 1.911 ± 0.006 · 10 ⁻³ $^{+0.4\%}_{-0.5\%}$			
j.2*	$e^+e^- \rightarrow t\bar{t}Hj$	e+ e- > t t~ h j	$2.533 \pm 0.003 \cdot 10^{-4}$	$^{+9.2\%}_{-7.8\%}$ 2.658 ± 0.009 · 10 ⁻⁴ $^{+0.5\%}_{-1.5\%}$			
j.3*	$e^+e^- \rightarrow t\bar{t}Hjj$	e+ e- > t t~ h j j	$2.663 \pm 0.004 \cdot 10^{-5}$	$^{+19.3\%}_{-14.9\%}$ 3.278 \pm 0.017 \cdot 10 ⁻⁵ $^{+4.0\%}_{-5.7\%}$			
j.4*	$e^+e^- \rightarrow t\bar{t}\gamma$	$e+e- > t t \sim a$	$1.270 \pm 0.002 \cdot 10^{-2}$	$^{+0.0\%}_{-0.0\%}$ 1.335 ± 0.004 · 10 ⁻² $^{+0.5\%}_{-0.4\%}$			
j.5*	$e^+e^- \rightarrow t\bar{t}\gamma j$	e+ e- > t t∼ a j	$2.355 \pm 0.002 \cdot 10^{-3}$	$^{+9.3\%}_{-7.9\%}$ 2.617 ± 0.010 · 10 ⁻³ $^{+1.6\%}_{-2.4\%}$			
j.6*	$e^+e^- \rightarrow t\bar{t}\gamma jj$	e+ e- > t t~ a j j	$3.103 \pm 0.005 \cdot 10^{-4}$	$^{+19.5\%}_{-15.0\%}$ $4.002 \pm 0.021 \cdot 10^{-4}$ $^{+5.4\%}_{-6.6\%}$			
j.7*	$e^+e^- \rightarrow t\bar{t}Z$	e+ e- > t t~ z	$4.642 \pm 0.006 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$ 4.949 ± 0.014 · 10 ⁻³ $^{+0.6\%}_{-0.5\%}$			
j.8*	$e^+e^- \rightarrow t\bar{t}Zj$	e+ e- > t t~ z j	$6.059 \pm 0.006 \cdot 10^{-4}$	$^{+9.3\%}_{-7.8\%}$ 6.940 ± 0.028 · 10 ⁻⁴ $^{+2.0\%}_{-2.6\%}$			
j.9*	$e^+e^- \rightarrow t\bar{t}Zjj$	e+ e- > t t~ z j j	$6.351 \pm 0.028 \cdot 10^{-5}$	$^{+19.4\%}_{-15.0\%}$ 8.439 \pm 0.051 \cdot 10 ⁻⁵ $^{+5.8\%}_{-6.8\%}$			
j.10*	$e^+e^- \to t\bar{t}W^\pm jj$	e+ e- > t t \sim wpm j j	$2.400 \pm 0.004 \cdot 10^{-7}$	$^{+19.3\%}_{-14.9\%}$ 3.723 \pm 0.012 \cdot 10 ⁻⁷ $^{+9.6\%}_{-9.1\%}$			
j.11*	$e^+e^- \rightarrow t\bar{t}HZ$	e+ e- > t t∼ h z	$3.600 \pm 0.006\cdot 10^{-5}$	$^{+0.0\%}_{-0.0\%}$ 3.579 ± 0.013 · 10 ⁻⁸ $^{+0.1\%}_{-0.0\%}$			
j.12*	$e^+e^- \rightarrow t\bar{t}\gamma Z$	e+ e- > t t~ a z	$2.212\pm 0.003\cdot 10^{-4}$	$^{+0.0\%}_{-0.0\%}$ 2.364 ± 0.006 · 10 ⁻⁴ $^{+0.6\%}_{-0.5\%}$			
j.13*	$e^+e^- \rightarrow t\bar{t}\gamma H$	$e + e - > t t \sim a h$	$9.756 \pm 0.016 \cdot 10^{-5}$	$^{+0.0\%}_{-0.0\%}$ 9.423 ± 0.032 · 10 ⁻⁵ $^{+0.3\%}_{-0.4\%}$			
j.14*	$e^+e^- \rightarrow t\bar{t}\gamma\gamma$	e+ e- > t t∼ a a	$3.650 \pm 0.008 \cdot 10^{-4}$	$^{+0.0\%}_{-0.0\%}$ 3.833 ± 0.013 · 10 ⁻⁴ $^{+0.4\%}_{-0.4\%}$			
j.15*	$e^+e^- \rightarrow t\bar{t}ZZ$	e+ e- > t t∼ z z	$3.788 \pm 0.004 \cdot 10^{-5}$	$^{+0.0\%}_{-0.0\%}$ 4.007 ± 0.013 · 10 ⁻⁸ $^{+0.5\%}_{-0.5\%}$			
j.16*	$e^+e^- \rightarrow t\bar{t}HH$	$e + e - > t t \sim h h$	$1.358 \pm 0.001 \cdot 10^{-5}$	$^{+0.0\%}_{-0.0\%}$ 1.206 ± 0.003 · 10 ⁻⁵ $^{+0.9\%}_{-1.1\%}$			
j.17*	$e^+e^- \mathop{\rightarrow} t\bar{t}W^+W^-$	e+ e- > t t∼ ¥+ ¥-	$1.372\pm0.003\cdot10^{-4}$	$^{+0.0\%}_{-0.0\%}$ 1.540 ± 0.006 · 10 ⁻⁴ $^{+1.0\%}_{-0.9\%}$			

Plan

Loop Induced

Why?

- Main production mechanism for Higgs & Higgs associated processes
- Contribution for NNLO computation
- Correction to shape of observables

Difficulties?

- The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

ME-Reweighting

•Idea: use one (un)weighted generations and associate additional weights from different hypothesis.

$$W_{new} = \frac{|M_{new}|^2}{|M_{old}|^2} * W_{old}$$

Mattelaer Olívíer

Pekín University: MadGraph miniworkshop

g g > ZH

Loop Induced

Why?

- Main production mechanism for Higgs & Higgs associated processes
- Contribution for NNLO computation
- Correction to Shape of observables

Difficulties?

- •The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

Exact Integration

Difficulties?

- •The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

Solution

- Contract the loop to have tree-level diagrams which drive the integration multichannel
- •Use Monte-Carlo over helicity
- Increase parallelization
- •Compute the loop with the color flow algebra

Exact Integration

Difficulties?

- •The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

Solution

- Contract the loop to have tree-level Anich drive Legration mess Lannel •Use Mc An PRASUIT hel: WORK Maran Result hel: work or any result warming: remainder the second secon

sompute the loop with the color flow algebra

First Example: g g> h

First Example: g g> h

Validation

- Comparison of g g > h g between
 - → heft
 - loop induced
 - re-weighting

Validation

Validation

Matched/Merged

Higgs Production up to two loop not considering the VBS production

Three Higgs

Important for the quartic term

Mattelaer Olívíer

Pekín University: MadGraph miniworkshop

Three Higgs

•What is the sensitivity in the 4 Higgs coupling:

 Same sign top discovery will be the proof of New Physics but this process exists in the SM

•QED Loop

suppressed by CKM/bottom mass

p p > h+ h-

Model

- 2HDM type II (generate via NLOCT)
- massive b

Loop

 $\sigma_{loop} = 0.00803(1)pb$

Mattelaer Olívíer

Pekín University: MadGraph miniworkshop

Status

- 2 to 2 processes: OK on a laptop
- 2 to 3 processes: OK on a small size cluster
- 2 to 4 processes: Specific case

$ m Process m Single \ boson + jets$		Syntax	Cross section (pb) 13 TeV	
a.1 pp - a.2 pp - a.3 pp -	$ \begin{array}{l} \rightarrow H \\ \rightarrow Hj \\ \rightarrow Hjj \end{array} $	<pre>p p > h [noborn=QCD] p p > h j [noborn=QCD] p p > h j j [noborn=QCD]</pre>	17.77 ± 0.060 14.82 ± 0.010 8.807 ± 0.010	$\begin{array}{rrrr} +31.3\% & +0.7\% \\ -23.1\% & -1.0\% \\ +43.9\% & +0.6\% \\ -28.4\% & -0.9\% \\ +65.3\% & +0.8\% \\ -36.9\% & -1.0\% \end{array}$
a.4 gg - a.5 gg -	$ \begin{array}{l} \rightarrow Zg \\ \rightarrow Zgg \end{array} $	g g > z g [noborn=QCD] g g > z g g [noborn=QCD]	$\begin{array}{c} 51.80 \pm 0.050 \\ 0.0 {}^{0\%}_{0\%} {}^{0\%}_{0\%} \end{array}$	+46.3% +0.7% -29.4% -1.1%
a.6 gg - a.7 gg -	$ ightarrow \gamma g$ $ ightarrow \gamma g g$	g g > a g [noborn=QCD] g g > a g g [noborn=QCD]	$\begin{array}{cccc} 0.0 & 0\% & 0\% \\ 0\% & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0\% & 0\% & 0\% \end{array}$	

Process	Syntax	Cross section (pb)	
$Double \ bosons + jet$		13 TeV	
b.1 $pp \rightarrow HH$	p p > h h [noborn=QCD]	$1.547 \pm 0.002 \cdot 10^{-2}$ $^{+29.5\%}_{-21.4\%}$ $^{+1.3\%}_{-1.3\%}$	
b.2 $pp \rightarrow HHj$	p p > h h j [noborn=QCD]	$0.0 \begin{array}{c} 0\% & 0\% \\ 0\% & 0\% \end{array}$	
b.3 $pp \rightarrow H\gamma j$	p p > h a j [noborn=QCD]	$0.0 \begin{array}{c} 0\% & 0\% \\ 0\% & 0\% \end{array}$	
b.4 $gg \rightarrow HZ$	g g > h z [noborn=QCD]	$6.180 \pm 0.010 \cdot 10^{-2} {}^{+28.7\%}_{-20.9\%} {}^{+1.1\%}_{-1.2\%}$	
b.5 $gg \rightarrow HZg$	g g > h z g [noborn=QCD]	$0.0 {}^{0\%}_{0\%}{}^{0\%}_{0\%}$	
b.6 $gg \rightarrow ZZ$	g g > z z [noborn=QCD]	1.182 ± 0.003 $^{+26.5\%}_{-19.8\%}$ $^{+0.7\%}_{-10\%}$	
b.7 $gg \rightarrow ZZg$	g g > z z g [noborn=QCD]	$0.0 \begin{array}{c} 0\% & 0\% \\ 0\% & 0\% \end{array}$	
b.8 $gg \rightarrow Z\gamma$	g g > z a [noborn=QCD]	$1.211 \pm 0.006 \qquad \begin{array}{c} +29.2\% +0.8\% \\ -21.7\% -1.1\% \end{array}$	
b.9 $gg \rightarrow Z\gamma g$	g g > z a g [noborn=QCD]	$0.0 {}^{0\%}_{0\%}{}^{0\%}_{0\%}$	
b.10 $gg \rightarrow \gamma \gamma$	g g > a a [noborn=QCD]	$5.119 \pm 0.007 \cdot 10^{+2} + 68.8\% + 1.1\% - 42.0\% - 1.5\%$	
b.11 $gg \rightarrow \gamma \gamma g$	gg>aag[noborn=QCD]	$0.0 \begin{array}{c} 0\% & 0\% \\ 0\% & 0\% \end{array} \qquad $	
b.12 $gg \rightarrow W^+W^+$	g g > w+ w- [noborn=QCD]	3.698 ± 0.010 $^{+26.0\%}_{-19.4\%}$ $^{+0.7\%}_{-10.0\%}$	
b.13 $gg \rightarrow W^+W^-g$	g g > w+ w- g [noborn=QCD]	$0.0 \begin{array}{c} 0\% & 0\% \\ 0\% & 0\% \end{array}$	

Process Triple bosons	Syntax	Cross section (pb) 13 TeV
$ \begin{array}{ccc} c.1 & pp \rightarrow HH \\ c.2 & gg \rightarrow HH \\ c.3 & gg \rightarrow HZ \\ c.4 & gg \rightarrow HZ' \\ c.5 & pp \rightarrow H\gamma \\ c.6 & pp \rightarrow HW \end{array} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{bmatrix} 0.0 & 0\% & 0\% \\ 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0\% & $
$ \begin{array}{ccc} {\rm c.7} & gg \rightarrow ZZZ\\ {\rm c.8} & gg \rightarrow ZZ\gamma\\ {\rm c.9} & gg \rightarrow Z\gamma\gamma\\ {\rm c.10} & gg \rightarrow ZW \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 0.0 & 0\% & 0\% \\ 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\ 0.0 & 0\% & 0\% \\$
c.11 $gg \rightarrow \gamma\gamma\gamma$ c.12 $gg \rightarrow \gamma W$	gg > a a [noborn=QCD] $^+W^-$ gg > a w+ w- [noborn=QCD]	$\begin{bmatrix} 0.0 & 0\% & 0\% \\ 0\% & 0\% & 0\% \\ \text{CD} \end{bmatrix} 0.0 & 0\% & 0\% \\ 0\% & 0\% & 0\% \end{bmatrix}$

Process Selected $2 \rightarrow 4$	Syntax	Cross section (pb) 13 TeV
$ \begin{array}{ccc} \text{d.1} & pp \rightarrow Hjjj \\ \text{d.2} & pp \rightarrow HHjj \\ \text{d.3} & gg \rightarrow e^+e^-\mu^+\mu^- \\ \text{d.4} & pp \rightarrow HZ\gamma j \\ \text{d.5} & gg \rightarrow W^+W^-W^+W^- \end{array} $	<pre>p p > h j j j [noborn=QCD] p p > h h j j [noborn=QCD] g g > e+ e- mu+ mu- [noborn=QCD] g g > h z a g [noborn=QCD] g g > w+ w- w+ w- [noborn=QCD]</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e^+e^- processes		$\hat{s} = 500 \text{ GeV}$
e.1 $e^+e^- \rightarrow ggg$ e.2 $e^+e^- \rightarrow HH$ e.3 $e^+e^- \rightarrow HHgg$	e+ e- > g g g [noborn=QED] e+ e- > h h [noborn=QED] e+ e- > h h g g [noborn=QED]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Conclusion

Demo

Olivier Mattelaer IPPP/Durham

Demo Plan

Example I: HEFT

- Model Description
- Width Computation
- Decay Chain

Example II: MSSM

- Fermion Flow
- Model support
- Systematics

Example III: NLO

Effective Operator

• New Physics at (too?) High Energy

Effective Operator

• New Physics at (too?) High Energy

• New Physics at (too?) High Energy

• New Physics at (too?) High Energy

Additional terms in the Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$

• New Physics at (too?) High Energy

Solution Additional terms in the Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$

- Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

- The number of possible Operators are huge
 - 59 Dimension 6 Operators If
 Preserve the SM gauge symmetries
 Preserve B-L accidental symmetries
 We consider only one flavor

- Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

The number of possible Operators are huge

- 59 Dimension 6 Operators If
 Preserve the SM gauge symmetries
 Preserve B-L accidental symmetries
 We consider only one flavor
- Only One Dimension 5 Operator: $\mathcal{O} = LHLH$ Give a mass to the neutrino

- Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

Only few Operators for one process and different effects

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$

$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi)$$

Demo 1

- import model EWDim6
- •generate p p > w- z
- output
- launch

SM + Interference

- •import model EWDim6
- •generate $p p > w z NP^2 <= 2$
- output
- launch

2-body decay

2-body decay

2 body decay

$$\Gamma = \frac{1}{2MS} \int d\Phi_2 |\mathcal{M}|^2$$

•By Lorentz Invariance the matrix element is constant over the phase-space.

$$\Gamma = \frac{\sqrt{\lambda(M^2, m_1^2, m_2^2)} |\mathcal{M}|^2}{16\pi S M^3}$$
$$\Lambda(M^2, m_1^2, m_2^2) = \left(M^2 - m_1^2 - m_2^2\right)^2 - 4m_1^2 m_2^2$$

2-body decay

2 body decay

$$\Gamma = \frac{1}{2MS} \int d\Phi_2 |\mathcal{M}|^2$$

•By Lorentz Invariance the matrix element is constant over the phase-space.

$$\Gamma = \frac{\sqrt{\lambda(M^2, m_1^2, m_2^2)} |\mathcal{M}|^2}{16\pi S M^3}$$
$$(M^2, m_1^2, m_2^2) = (M^2 - m_1^2 - m_2^2)^2 - 4m_1^2 m_2^2$$

Calculable analytically by FeynRules

N Body Decay

3(and more)-body Decay

- Analytical Formula too complicated
 - Especially in a spectrum independent way
 - Numerical integration
- Need to remove double counting with 2body
- Typically LO computation
 - Remove radiation diagram

Example of code

•Herwig / Bridge / MadWidth

2-body

•Use FeynRules formula (instantaneous)

2-body •Use FeynRules formula (instantaneous) Fast-Estimation of 3-body Only use 2-body decay and **PS** factor

MadWidth

MadWidth

Demo 2

- MadWidth
- •Run_card

Problem
 Process complicated to have the full process

Including off-shell contribution

Problem
 Process complicated to have the full process

Including off-shell contribution

Solution

Only keep on-shell contribution

Marrow-Width Approx.

Comment

Narrow-Width Approx.

Decay chains

•
$$p p > t t \sim w+, (t > w+ b, w+ > |+ v|), (t \sim > w- b \sim, w- > j j), (w+ > |+ v|)$$

- Separately generate core process and each decay
 Decays generated with the decaying particle as resulting wavefunction
- Iteratively combine decays and core processes
- Difficulty: Multiple diagrams in decays

Decay chains

- •Decay chains retain full matrix element for the diagrams compatible with the decay
- Full spin correlations (within and between decays)
- •Full width effects
- •However, no interference with non-resonant diagrams
 - Description only valid close to pole mass
 - ➡ Cutoff at Im ± nFl where n is set in run_card.

Decay chains

Results for g g > go go , (go > t1 t~, t~> b~ all all / h+ , (t1 > t n1 , t > b all all / h+)) in the mssm

Available Results

Links	Events	Tag	Run	Collider	Cross section (pb)	Events
results banner	Parton-level LHE	fermi	test	p p 7000 x 7000 GeV	.33857E-03	10000

Main Page

Thanks to developments in MadEvent, also (very) long decay chains possible to simulate directly in MadGraph!

Mattelaer Olívier

Read Event

generate a virtual mass

generate a decay

generate a virtual mass

generate a decay

- Finite width
- Spin correlation
- unweighted events

unweighted events

generate a virtual mass

associate a weight to the event

 $|M_{LO}^{P+D}|^2 / |M^{P_{LO}}|^2$

Mattelaer Olívíer

Mattelaer Olívíer

Mattelaer Olívíer

Demo 3

Decay ChainMadSpin

Spin/Color

Spin/Color

i ype of miteractions

iype of milliactions

Systematics

Demo

Demo
SysCalc

- •NLO corrections have three parts:
 - The Born contribution, i.e. the Leading order.
 - Virtual (or Loop) corrections: a closed loop of particles interfered with the Born amplitudes
 - Real emission corrections: one extra parton compared to the Born process
- •Both Virtual and Real emission have one power of α_s extra compared to the Born process

$$\sigma^{\rm NLO} = \int_m d\sigma^B + \int_m d\sigma^V + \int_{m+1} d\sigma^R$$

$$\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \dots \right)$$

$$\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \dots \right)$$

- Fixed Order calculations

- Fixed Order calculations

Demo

Demo NLO Fix Order Matched to the shower

Summary

- Presentation of MadGraph5
 - Support of BSM
 - Computation of the Width
 - Narrow width Approximation
 - Decay Chain
 - MadSpin
 - Systematics
 - •NLO

NLO HEFT event generation: MC@NLO method

$$d\sigma^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{R} - \mathcal{C}_{MC} \right) ,$$

$$d\sigma^{(\mathbb{S})} = d\phi_{n+1} \left[\left(\mathcal{B} + \mathcal{V} + \mathcal{C}^{int} \right) \frac{d\phi_n}{d\phi_{n+1}} + \left(\mathcal{C}_{MC} - \mathcal{C} \right) \right]$$

- Different weights stored internally: virtual, real and counter terms
- Reweight on an event-by-event basis using the results of the exact loop matrix elements. Schematically:

 $\mathcal{B}, \mathcal{V}, \mathcal{C}^{(int)}, \mathcal{C}_{MC} \times \mathcal{B}_{FT}/\mathcal{B}_{HEFT}$ $\mathcal{R} \times \mathcal{R}_{FT}/\mathcal{R}_{HEFT}$

- Fully differential re-weighting
- Matching to parton showers with the MC@NLO method

[1401.7340 and 1408.6542]

