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e Overview of Standard Model

e Parton level calculations
e Full Event Simulations

* |dentify 3 Newly Discovered Particles
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Standard Model

» Good News! SU(3)xSU, (2)xU(1) @

— Most successful theory in physi

— Tested over 30 orders of magnitude!
* (photon mass < 1018 ¢V , Tevatron > 10! ¢V)
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Predictions from%SéM

: 1
* Cross Section: o = [IM * do

M = <M+M_ |T€—ifl-[,dt )€+€_>
— Can’t solve exactly because interactions
change wave functions!

 Perturbation Theory
— Start w/ Free Particle wave function
— Assume interactions are small perturbation

M=(u'w |H, |e+e'>+;<u+u' |H lete ) +...
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Example: ete- = u*u

e Scattering cross section

* Feynman Diagrams
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Feynman Rules!
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Feynman Rules!

e These are basic building blocks,
combine to form “allowed” diagrams
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Feynman Rules!

e These are basic building blocks,
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Feynman Rules!

e These are basic building blocks,
combine to form “allowed” diagrams

>@”\<

Order is QCD?
e Draw Feynman diagrams:

QED

QED

QED

QCD

QED
(m)

e Determine “order” for each diagram
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> i MadGraph Version 4 e

WMW A

Generate My  Chster Downloads

Generate Code On-Line

To improve our web services we now request that you register. Registration is quick and free. You may register for a password by clicking here

Code can be generated either by:

1. Fill the form:

Model SM

Input Process:

Max QCD Order: 99

Max QED Order: 9

p and j definitions: prprduscd™u™s™c™g -

sum over leptons: b+ = e+, mu+: = e~ mu-:vl=ve vm v~ =ve™, vm™
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> <MadGraph

 User Requests:
-gg>tt~b b~
— QCD Order =4
— QED Order =0

e MadGraph Returns:
— Feynman diagrams
— Self-Contained Fortran Code for

o

IM|*2
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\/

< MadGraph

SUBROUTINE SMATRIX(P1,ANS)
C
C Generated by MadGraph II Version 3.83. Updated 06/13/05
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
 User Requests:
® C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL)
C

— g g > t t~ b b~ SFORPROCESS:gg_>tt~bbN

CCrossing lisgg->tt~bb~

IMPLICIT NONE
— QCD Order =4 c
C CONSTANTS
C
ED O d —O Include "genps.inc"
- I" el' f— INTEGER NCOMB, NCROSS
PARAMETER ( NCOMB= 64, NCROSS= 1)

INTEGER THEL

PARAMETER (THEL=NCOMB*NCROSS)
C
C ARGUMENTS
C

() M a d G r'a p h Retu r'n S REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS)

— Feynman diagrams
— Self-Contained Fortran Code for |M|*2

o 40
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e Good News

— MadGraph generates all tree-level
diagrams

— MadGraph generates fortran code to
calculate X|M|?
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— Hadron colliders are tough!
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Status

e Good News

— MadGraph generates all tree-level
diagrams

— MadGraph generates fortran code to
calculate X|M|?

e Bad News

— Madgraph generates fortran code....
— Hadron colliders are tough!

e Good News
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Hadron Colliders

o
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=

PPARC OO

46 the Lame Hacron Colider: unvelling the universs
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Hadron Colliders

e |nitial State: Protons ;
d

 Final State: Hadrons

46 the Lame Hacron Colider: unvelling the universs
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Let’s watch an
animation
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Protons
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Protons

e Simple Model
- 3 “Valence” quarksuud
— 2/3 chance of getting up quark o

— 1/3 chance of getting down quark d
— Guess each carries 1/3 of momentum

 Deep Inelastic Scattering Results
— Short time scales “sea” partons

— u and d. but also u~ d~ s, c and g with
varying amounts of momentum

50

Thursday 14 July 2011



Protons

e Simple Model
- 3 “Valence” quarksuud
— 2/3 chance of getting up quark o
— 1/3 chance of getting down quark d

— Guess each carries 1/3 of momentum

 Deep Inelastic Scattering Results
— Short time scales “sea” partons

— u and d. but also u~ d~ s, c and g with
varying amounts of momentum

 Need to multiple matrix element by .
probability f(x) of finding partoni with *
fraction of momentum x

50

Thursday 14 July 2011



Protons

e Simple Model
- 3 “Valence” quarksuud
— 2/3 chance of getting up quark

— 1/3 chance of getting down quark
— Guess each carries 1/3 of momentum

 Deep Inelastic Scattering Results
— Short time scales “sea” partons

— u and d. but also u~ d~ s, c and g with
varying amounts of momentum

 Need to multiple matrix element by
probability f(x) of finding parton i with
fraction of momentum x

0 == D [AANf ()| M F db,

50
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Hadron Colliders
* |nitial State: Protons ;a
— Made of quarks/gluons in bound state d
¢

— Approximately free at very short times
— Measure distributions in experiments and
w
9

use
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Hadron Colliders
* |nitial State: Protons ;a
— Made of quarks/gluons in bound state J
¢

— Approximately free at very short times
— Measure distributions in experiments and

use

* Final State: Hadrons
— Made of quarks/gluons in bound state
— Combine into jets and evolve back to partons

— Measure hadronization in experiments and

=

use
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Hadron Colliders

e |nitial State: Protons 'Y
— Made of quarks/gluons in bound state
— Approximately free at very short times
— Measure distributions in experiments and
use c%a
 Final State: Hadrons
— Made of quarks/gluons in bound state
— Combine into jets and evolve back to partons

— Measure hadronization in experiments and
use

e Many parton level sub processes
contribute to same hadron level event

(e.g.pp>€e*vjjj)

Thursday 14 July 2011
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e List process for background p p>tt~b b~

e List process for reducible background
pp>ttj)
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> <MadGraph

 User Requests:
—-pp>bb~tt~
— QCD Order =4
— QED Order =0

3:18
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> <MadGraph

 User Requests:
—-pp>bb~tt~
— QCD Order =4
— QED Order =0

e MadGraph Returns:
— Feynman diagrams
— Fortran Code for |M|*2
— Summed over all sub processes

w/ pdf

3:18
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<NIadGraph

DOUBLE PRECISION FUNCTION DSIG(PP,WGT)
Cj****************************************************
C Generated by MadGraph II Version 3.83. Updated 06/13/05
RETURNS DIFFERENTIAL CROSS SECTION

 User Requests:
—-pp>bb~tt~
— QCD Order =4
— QED Order =0

e MadGraph Returns:

— Feynman diagrams
— Fortran Code for |M|*2

\/

T~

C

C
C
C
C
C
C

Input:

pp 4 momentum of external particles
wgt weight from Monte Carlo

Output:

Amplitude squared and summed
sk sk sfe sk sk sk sk sk sk sk st ste sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st st sk sk sk sk sk sk sk sk sk skoskok sk sk sk sk skoskoskoskoskoskok

IPROC=IPROC+1

IPROC=IPROC+1

IPROC=IPROC+1

IPROC=IPROC+1

dsig = pd(iproc)*conv*dsiguu

luu~->tt~bb~
PD(IPROC)=PD(IPROC-1) + ul * ub2
ldd~->tt~bb~
PD(IPROC)=PD(IPROC-1) + d1 * db2
lss~->tt~bb~
PD(IPROC)=PD(IPROC-1) + s1 * sb2
lce~->tt~bb~
PD(IPROC)=PD(IPROC-1) + ¢l * cb2
CALL SMATRIX(PP,DSIGUU)

— Summed over all sub processes w/ pdf

3:18
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Cross Sections




Hadronic Collision
Cross Sections

e Good News

— Automatically determine sub processes
and Feynman diagrams

— Automatically create function needed
to integrate
0 =[SV ) M P dRd P (P= p = prv= p,)
e Bad News
— Hard to integrate!
— 3N-4+2 dimensions

3:19
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Monte Carlo Integration
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Monte Carlo Integration
[redn=""0 S £(x)

i=1,N
 Advantages
— Large numbers of dimensions /

— Complicated cuts /
— ONLY OPTION A

— Event generation @
 Limitations ’ ¢ i:
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Monte Carlo Integration
[redn=""0 S £(x)

i=1,N
 Advantages
— Large numbers of dimensions
— Complicated cuts
— ONLY OPTION
— Event generation

* Limitations
— Only works for function f(x) = 1
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Monte Carlo Integration
[redn=""0 S £(x)

i=1,N
 Advantages
— Large numbers of dimensions
— Complicated cuts
— ONLY OPTION
— Event generation

e Limitations
— Only works for function f(x) = 1
— Error scales as 1/sqrt(N)

3:22
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Adaptive M.C. (VEGAS)

. > v lap)+a,(p)'V
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N g N

: dxdy
+b)

* Advantages [ (lew) =
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— Grid adjusts to numerically flatten peaks
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Adaptive M.C. (VEGAS)

O =f|a +a, | d(PS) = a(p)+a,(p)[ V
1 2
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— Grid adjusts to numerically flatten peaks
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T 1
e Limitations [ G ea ™Y

— Adjusting grid takes time
— Peaks must lie on integration variable
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Single Diagram Enhanced
lVladEvent

|al+a1| |a1+al|

0 = fla+a, d(PS)= [~ SRl P APS)+ [~ ST la d(PS)

e Key ldea

— Any single diagram is “easy” to integrate

— Divide integration into pieces, based on diagrams
e Get N independent integrals

— Errors add in quadrature so no extra cost

— No need to calculate “weight” function from other
channels.

— Can optimize # of points for each one independently
— Parallel in nature
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— QCD Order =4
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> <MadEventv

 User Requests:
—pp>bb~tt~
— QCD Order=4
— QED Order =0
— Cuts + Parameters

e MadEvent Returns:
— Feynman diagrams

— Complete package for event generation
— Events/Plots on line!
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pp > aa

e Generate SubProcesses+Diagrams

e Generate Parton Level Plots
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Radiation, Hadronization +
Detectors

e Detectors far from hard interaction

e Pythia---HERWIG

e Detector Simulators (PGS)
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P P> mut+mu-e+e-/a

e Generate SubProcesses+Diagrams

e Generate Parton Level Plots

e Generate Detector Level Plots
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pp > tt~bb~ /aZW+W-

e Generate SubProcesses+Diagrams

e Generate Parton Level Plots

e Generate Detector Level Plots
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Final Project

. Good News....we have discovered 3 new particles at the LHC (Z2’, H, W+’) Your job is to determine
their mass using the plots provided.

Thursday 14 July 2011




Advice

4:25

Thursday 14 July 2011




Advice

A person who can efficiently calculate
cross sections can be useful to a
collaboration
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Advice

A person who can efficiently calculate
cross sections can be useful to a
collaboration

A person who can efficiently calculate
the cross section is
to a collaboration
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Conclusions

 Standard Model is Amazing (good news)

e S.M. is tough to Solve (good news!)

— Factorization allows use of Perturbation
Theory

— Feynman Diagrams help
— MadGraph/MadEvent can help too

e Good Luck!
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