MadGraph + MadEvent

Automated Tree-Level Feynman Diagram and Event Generation

Olivier Mattelaer and Fabio Maltoni

Reading Assignment

Reading Assignment

1st question that me or Olivier cannot answer

- 1st question that me or Olivier cannot answer
- 1st question that neither me or Olivier can answer

- 1st question that me or Olivier cannot answer
- 1st question that neither me or Olivier can answer
- Best solution for the final challenge

Plan

- 1. Overview of Standard Model
 - 1.Introduction to Particle Physics --- Close
 - 2. The Standard Model --- Murayama
 - 3. Parton level calculations
- 2. Full Event Simulations
- 3. Final challenge!

Good News! SU(3)xSU_L(2)xU(1)

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!
 - Tested over 30 orders of magnitude!

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!
 - Tested over 30 orders of magnitude!
 - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$)

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!
 - Tested over 30 orders of magnitude!
 - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$)

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!
 - Tested over 30 orders of magnitude!
 - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$)

- Good News! SU(3)xSU_L(2)xU(1)
 - Most successful theory in physics!
 - Tested over 30 orders of magnitude!
 - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$)

- Bad News!
 - We can't solve it!

- Bad News!
 - We can't solve it!

- Bad News!
 - We can't solve it!

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{G}^{\mu\nu} \mathbf{G}_{\mu\nu} \right) + \overline{\mathbf{q}} \left[i \gamma^{\mu} \mathbf{D}_{\mu} - m_{q} \right] \mathbf{q}$$

$$= -\frac{1}{4} \left(\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right) \left(\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} \right) + \sum_{q} \overline{q}_{\alpha} \left[i \gamma^{\mu} \partial_{\mu} - m_{q} \right] q_{\alpha}$$

$$+ \frac{1}{2} \sum_{q} g_{s} \left[\overline{q}_{\alpha} \left(\lambda^{a} \right)_{\alpha\beta} \gamma^{\mu} q_{\beta} \right] G_{\mu}^{a}$$

$$- \frac{1}{2} g_{s} f_{abc} \left(\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} \right) G_{b}^{\mu} G_{c}^{\nu} - \frac{1}{4} g_{s}^{2} f_{abc} f_{ade} G_{b}^{\mu} G_{c}^{\nu} G_{\mu}^{d} G_{c}^{d} G_{c}^{$$

- Bad News!
 - We can't solve it!

$$\mathcal{L}_{QCD} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{G}^{\mu\nu} \mathbf{G} \right)$$

$$= -\frac{1}{4} \left(\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right) \left(\partial_{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right)$$

+
$$\frac{1}{2}\sum_{a}g_{s}\left[\overline{q}_{\alpha}\left(\lambda^{a}\right)_{\alpha\beta}\gamma^{\mu}q_{\beta}\right]$$

$$- \frac{1}{2} \mathbf{g}_{s} f_{abc} \left(\partial_{\mu} G_{v}^{a} - \partial_{v} G_{\mu}^{a} \right)$$

$$-\frac{1}{2}\operatorname{Tr}\left(\mathbf{G}^{\mu\nu}\mathbf{G}\right) \mathbf{W}_{\mu\nu} = \frac{i}{g}\left[\mathbf{n}_{\mu},\mathbf{n}_{\nu}\right] = \frac{\vec{\sigma}}{2} \cdot \vec{W}_{\mu\nu} \rightarrow \mathbf{U}_{L} \mathbf{W}_{\mu\nu} \mathbf{U}_{L}^{\dagger} ; \quad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \rightarrow B_{\mu\nu}$$

$$W_{\mu\nu}^{i} = \partial_{\mu}W_{\nu}^{i} - \partial_{\nu}W_{\mu}^{i} + g\,\varepsilon^{ijk}\,W_{\mu}^{j}W_{\nu}^{k}$$

$$\mathcal{L}_{K} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \text{Tr}(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} \vec{W}_{\mu\nu} \vec{W}_{\mu\nu} = \mathcal{L}_{kin} + \mathcal{L}_{3} + \mathcal{L}_{4}$$

$$\mathcal{L}_{\mathbf{g}} = -i e \cot \theta_{W} \left\{ (\partial^{\mu} W^{\nu} - \partial^{\nu} W^{\mu}) W_{\mu}^{\dagger} Z_{\nu} - (\partial^{\mu} W^{\nu\dagger} - \partial^{\nu} W^{\mu\dagger}) W_{\mu} Z_{\nu} + W_{\mu} W_{\nu}^{\dagger} (\partial^{\mu} Z^{\nu} - \partial^{\nu} Z^{\mu}) \right\}$$

$$-i e \left\{ \left(\partial^{\mu} W^{\nu} - \partial^{\nu} W^{\mu} \right) W_{\mu}^{\dagger} A_{\nu} - \left(\partial^{\mu} W^{\nu\dagger} - \partial^{\nu} W^{\mu\dagger} \right) W_{\mu} A_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \right\}$$

$$\mathcal{L}_{4} = -\frac{e^{2}}{2 \sin^{2} \theta_{W}} \left\{ \left(W_{\mu}^{\dagger} W^{\mu} \right)^{2} - W_{\mu}^{\dagger} W^{\mu \dagger} W_{\nu} W^{\nu} \right\} - e^{2} \cot^{2} \theta_{W} \left\{ W_{\mu}^{\dagger} W^{\mu} Z_{\nu} Z^{\nu} - W_{\mu}^{\dagger} Z^{\mu} W_{\nu} Z^{\nu} \right\}$$

$$- e^2 \cot \theta_w \left\{ 2 W_\mu^\dagger W^\mu Z_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu A^\nu \right\} \\ - e^2 \cot \theta_w \left\{ 2 W_\mu^\dagger W^\mu Z_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu A^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu Z^\mu W_\mu Z^\mu W_\mu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\mu Z$$

Predictions from SM

• Cross Section: $\sigma = \frac{1}{2s} \int |M|^2 d\Phi$ $M = \left\langle \mu^+ \mu^- | T \left(e^{-i \int H_I dt} \right) e^+ e^- \right\rangle$

- Can't solve exactly because interactions change wave functions!
- Perturbation Theory
 - Start w/ Free Particle wave function
 - Assume interactions are small perturbation

Predictions from SM

- Cross Section: $\sigma = \frac{1}{2s} \int |M|^2 d\Phi$ $M = \left\langle \mu^+ \mu^- | T \left(e^{-i \int H_I dt} \right) e^+ e^- \right\rangle$
 - Can't solve exactly because interactions change wave functions!
- Perturbation Theory
 - Start w/ Free Particle wave function
 - Assume interactions are small perturbation

$$M \approx \langle \mu^{+}\mu^{-} | H_{\text{int}} | e^{+}e^{-} \rangle + \frac{1}{2} \langle \mu^{+}\mu^{-} | H_{\text{int}}^{2} | e^{+}e^{-} \rangle + \dots$$

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

Example: e⁺e⁻ → μ⁺μ⁻

$$\sigma = \frac{1}{2s} \int |M|$$

$$M \approx \langle \mu^{+} \mu^{-} |$$

Scattering
$$\mathbf{C}$$

$$\mathbf{W}_{\mu\nu} = \frac{1}{g} \left[\mathbf{D}_{\mu}, \mathbf{D}_{\nu} \right] = \frac{\vec{\sigma}}{2} \cdot \vec{W}_{\mu\nu} \rightarrow \mathbf{U}_{L} \mathbf{W}_{\mu\nu} \mathbf{U}_{L}^{\dagger} \quad ; \quad \mathbf{B}_{\mu\nu} = \partial_{\mu} \mathbf{B}_{\nu} - \partial_{\nu} \mathbf{B}_{\mu} \rightarrow \mathbf{B}_{\mu\nu}$$

$$\mathbf{G} = \frac{1}{g} \left[\mathbf{M} \right] \qquad \qquad \mathbf{W}_{\mu\nu}^{i} = \partial_{\mu} \mathbf{W}_{\nu}^{i} - \partial_{\nu} \mathbf{W}_{\mu}^{i} + g \, \varepsilon^{ijk} \, \mathbf{W}_{\mu}^{j} \mathbf{W}_{\nu}^{k}$$

$$M \approx \left\langle \mu^{+} \mu^{-} \right| \int_{-\frac{1}{4}B_{\mu\nu}}^{2} B^{\mu\nu} - \frac{1}{2} \text{Tr}(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} \vec{W}_{\mu\nu} \vec{W}_{\mu\nu} = \mathcal{L}_{kin} + \mathcal{L}_{3} + \mathcal{L}_{4}$$

$$\begin{split} \mathcal{L}_{\mathbf{a}} &= -i\,e\,\cot\theta_{\mathbf{W}} \left\{ \left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu}\right) W_{\mu}^{\dagger} Z_{\nu} - \left(\partial^{\mu}W^{\nu\dagger} - \partial^{\nu}W^{\mu\dagger}\right) W_{\mu} Z_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu}Z^{\nu} - \partial^{\nu}Z^{\mu}\right) \right\} \\ &- i\,e\, \left\{ \left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu}\right) W_{\mu}^{\dagger} A_{\nu} - \left(\partial^{\mu}W^{\nu\dagger} - \partial^{\nu}W^{\mu\dagger}\right) W_{\mu} A_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}\right) \right\} \end{split}$$

$$\mathcal{L}_{4} = -\frac{e^{2}}{2 \sin^{2} \theta_{w}} \left\{ \left(W_{\mu}^{\dagger} W^{\mu} \right)^{2} - W_{\mu}^{\dagger} W^{\mu \dagger} W_{v} W^{v} \right\} - e^{2} \cot^{2} \theta_{w} \left\{ W_{\mu}^{\dagger} W^{\mu} Z_{v} Z^{v} - W_{\mu}^{\dagger} Z^{\mu} W_{v} Z^{v} \right\}$$

$$-e^2\cot\theta_w\left\{2\,W_\mu^\dagger\,W^\mu\,Z_\nu\,A^\nu-W_\mu^\dagger\,Z^\mu\,W_\nu\,A^\nu-W_\mu^\dagger\,A^\mu\,W_\nu\,Z^\nu\right\}\,-\,e^2\,\left\{W_\mu^\dagger\,W^\mu\,A_\nu\,A^\nu-W_\mu^\dagger\,A^\mu\,W_\nu\,A^\nu\right\}$$

The Standard Model A. Pich - CERN Summer Lectures 2005

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

$$M \approx \overline{v}(e^+)$$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

$$M \approx \overline{v}(e^+) (-iq\gamma^{\mu})$$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

$$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-)$$

Example: $e^+e^- \rightarrow \mu^+\mu^-$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

Feynman Diagrams

$$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-) \frac{-ig_{\mu\nu}}{p^2}$$

Example: $e^+e^- \rightarrow \mu^+\mu^-$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$

Feynman Diagrams

$$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-) \frac{-ig_{\mu\nu}}{p^2} \overline{u}(\mu^+)(-iq\gamma^{\nu})u(\mu^-)$$

Example: $e^+e^- \rightarrow \mu^+\mu^-$

Scattering cross section

$$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$

$$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$

Feynman Diagrams

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	$W^+W^-\gamma$	
Z ~~	QED	$q\overline{q}Z$ $l\overline{l}Z$	W^+W^-Z	
W+	QED	$q\overline{q}'W \ bW$		WWWW.
g asso	QCD	$q\overline{q}g$	888 888	999999 9888
h	QED (m)	$g\overline{q}h$ $l\overline{l}h$	کم کم W ⁺ W ⁻ h	ZZh

 These are basic building blocks, combine to form "allowed" diagrams

- e.g. u u~ > t t~

γ ~~	QED	$\begin{array}{c c} & & \\ & & \\ \hline q \overline{q} \gamma & l^- l^+ \gamma \end{array}$	- 2	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>W</i> + <i>W</i> − <i>Z</i>	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW Seper
G 5000	QCD	$q\overline{q}g$	888 888	3888 8688 8688 8688 8688 8688 8688 8688
h	QED (m)	>	7	ZZh
	(111)	$q\overline{q}h$ llh	W^+W^-h	LLII

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	² ννν ε ⁵ W ⁺ W ⁻ γ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>W</i> + <i>W</i> − <i>Z</i>	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW Sylvy Sylvy
G 5550	QCD	$q\overline{q}g$	888 888 888	2000 gggg
h	QED (m)	$q\overline{q}h$ $l\overline{l}h$	√√ √ W ⁺ W ⁻ h	ZZh

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	² ννν ε ⁵ W ⁺ W ⁻ γ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>W</i> + <i>W</i> − <i>Z</i>	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW See See See See See See See See See See
G 5555	QCD	$q\overline{q}g$	888 888	25888 2688 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 2
h	QED (m)	qq̄h līh	24 25 W+W-h	ZZh

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	² νννν <i>κ</i> ⁺ W ⁻ γ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>W</i> + <i>W</i> − <i>Z</i>	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW See See See See See See See See See See
G 5000	QCD	$q\overline{q}g$	888 888	399888 8888 8
h	QED (m)	qq̄h ll̄h	√√ √√ W+W−h	ZZh

_	gg	>	tt~
---	----	---	-----

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	λλνν 25 W+W-γ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>W</i> + <i>W</i> − <i>Z</i>	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW Sylvy Sylvy
a	QCD	$q\overline{q}g$	288 288 288	2888 2688 2688 2688 2688 2688 2688 2688
	QED	>	مرح	٠٠٠٠٠
	(m)	$q\overline{q}h$ $l\overline{l}h$	W^+W^-h	ZZh

 Draw Feynman of 	diagrams:
-------------------------------------	-----------

- gg > tt~gg > tt~h
- Determine "order" for each diagram

γ ~~	QED	$q\overline{q}\gamma$ $l^-l^+\gamma$	² γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	W^+W^-Z	
W ~~	QED	$q\overline{q}'W \ bW$		WWWW See See See See See See See See See See
a	QCD	$q\overline{q}g$	888 ••••••••••••••••••••••••••••••••••	25888 2688 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 2
0-	QED	>	مرکي	٠٠٠٠٠
N	(m)	$q\overline{q}h$ $l\overline{l}h$	W^+W^-h	کہ ZZh

User Requests:

- User Requests:
 - gg -> tt~bb~

- User Requests:
 - gg -> tt~bb~
 - QCD Order = 4

User Requests:

- gg -> tt~bb~
- QCD Order = 4
- QED Order =0

- User Requests:
 - gg -> tt~bb~
 - QCD Order = 4
 - QED Order =0

- User Requests:
 - gg -> tt~bb~
 - QCD Order = 4
 - QED Order =0

- MadGraph Returns:
 - Feynman diagrams

User Requests:

- gg -> tt~bb~
- QCD Order = 4
- QED Order =0

- Feynman diagrams
- Self-Contained Fortran Code for |M|^2

User Requests:

- gg -> tt~bb~
- QCD Order = 4
- QED Order =0

- Feynman diagrams
- Self-Contained Fortran Code for |M|^2

```
SUBROUTINE SMATRIX(P1,ANS)
C Generated by MadGraph II Version 3.83. Updated 06/13/05
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C AND HELICITIES
C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL)
C FOR PROCESS : g g \rightarrow t t \sim b b \sim
C Crossing 1 is g g -> t t~ b b~
   IMPLICIT NONE
C CONSTANTS
   Include "genps.inc"
   INTEGER
                   NCOMB, NCROSS
                      NCOMB= 64, NCROSS= 1)
   PARAMETER (
   INTEGER THEL
   PARAMETER (THEL=NCOMB*NCROSS)
C ARGUMENTS
   REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS)
```


User Requests:

- gg -> tt~bb~
- QCD Order = 4
- QED Order =0

- Feynman diagrams
- Self-Contained Fortran Code for |M|^2

```
SUBROUTINE SMATRIX(P1,ANS)
C Generated by MadGraph II Version 3.83. Updated 06/13/05
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C AND HELICITIES
C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL)
C FOR PROCESS : g g \rightarrow t t \sim b b \sim
C Crossing 1 is g g -> t t~ b b~
   IMPLICIT NONE
C CONSTANTS
   Include "genps.inc"
   INTEGER
                   NCOMB, NCROSS
                      NCOMB= 64, NCROSS= 1)
   PARAMETER (
   INTEGER THEL
   PARAMETER (THEL=NCOMB*NCROSS)
C ARGUMENTS
   REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS)
```


Partial list from SM

- Draw Feynman diagrams + determine order (QED, QCD):
 - gg -> tt~

- gg -> tt~h

γ ~~	QED	$q\bar{q}\gamma$ $l^-l^+\gamma$	λλλλ χ W ⁺ W ⁻ γ	
Z ~~	QED	$q\bar{q}Z$ $l\bar{l}Z$	<i>X</i> - <i>X</i> - <i>Z</i>	
W ~~	QED	$q\bar{q}'W \ bW$		WWWW Seeder
a	QCD	$q\overline{q}g$	888 888	2888 2888 2888 2888 2888 2888 2888 288
h	QED	>	مرح	مرم
11	(m)	$q\overline{q}h$ $l\overline{l}h$	W^+W^-h	ZZh

Partial list from SM

- gg -> tt~bb~ (QCD only)

Status

Status

Good News

- MadGraph generates all tree-level diagrams
- MadGraph generates fortran code to calculate $\Sigma |\mathbf{M}|^2$

Bad News

- Madgraph generates fortran code....
- Hadron colliders are tough!

Good News

- There's a cool animation next!

Hadron Colliders

Hadron Colliders

- Initial State: Protons
 - Made of quarks/gluons in bound state
 - Strongly interacting P.T. won't work
- Final State: Hadrons
 - Made of quarks/gluons in bound state
 - Strongly interacting P.T. won't work

Parton Distribution Functions (Measured)

Evolution +Splitting

Hard Scattering

Showering Fragmentation

Parton Distribution Functions (Measured)

Evolution

+Splitting

Hard Scattering

Showering Fragmentation

Parton Distribution Functions (Measured)

Evolution

+Splitting

Hard Scattering

Showering Fragmentation

Protons

1

d

11

Protons

- Simple Model
 - 3 "Valence" quarks u u d
 - 2/3 chance of getting up quark
 - 1/3 chance of getting down quark
 - Guess each carries 1/3 of momentum
- Deep Inelastic Scattering Results
 - Short time scales "sea" partons
 - u and d. but also u~ d~ s, c and g with varying amounts of momentum
- Need to multiple matrix element by probability f(x) of finding parton i with fraction of momentum x

Protons

- Simple Model
 - 3 "Valence" quarks u u d
 - 2/3 chance of getting up quark
 - 1/3 chance of getting down quark
 - Guess each carries 1/3 of momentum
- Deep Inelastic Scattering Results
 - Short time scales "sea" partons
 - u and d. but also u~ d~ s, c and g with varying amounts of momentum
- Need to multiple matrix element by probability f(x) of finding parton i with fraction of momentum x

$$\sigma = \frac{1}{2s} \sum \int f_u(x_1) f_{\bar{u}}(x_2) |M|^2 d\Phi dx_1 dx_2$$

u

d

u

Hadron Colliders

Hadron Colliders

- Initial State: Protons
 - Made of quarks/gluons in bound state
 - Approximately free at very short times
 - Measure distributions in experiments and use
- Final State: Hadrons
 - Made of quarks/gluons in bound state
 - Combine into jets and evolve back to partons

u

- Measure hadronization in experiments and use
- Many parton level sub processes contribute to same hadron level event (e.g. pp > e⁺ v j j j)

Exercise

- List processes for signal pp > h > tt~bb~
 - e.g. uu~ > h > tt~ bb~
- List process for background pp > tt~bb~
 - e.g. uu~ > tt~bb~

- List process for reducible background pp>tt~jj
 - e.g. uu~ > tt~gg

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0

MadGraph Returns:

- Feynman diagrams
- Fortran Code for |M|^2
- Summed over all sub processes w/ pdf

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0

MadGraph Returns:

- Feynman diagrams
- Fortran Code for |M|^2
- Summed over all sub processes w/ pdf

```
DOUBLE PRECISION FUNCTION DSIG(PP,WGT)
C Generated by MadGraph II Version 3.83. Updated 06/13/05
    RETURNS DIFFERENTIAL CROSS SECTION
        pp 4 momentum of external particles
        wgt weight from Monte Carlo
    Output:
        Amplitude squared and summed
     IPROC=IPROC+1
                        ! u u~ -> t t~ b b~
    PD(IPROC)=PD(IPROC-1) + u1 * ub2
    IPROC=IPROC+1 ! d d\sim -> t t\sim b b\sim
    PD(IPROC)=PD(IPROC-1) + d1 * db2
     IPROC=IPROC+1 ! s s\sim -> t t\sim b b\sim
     PD(IPROC)=PD(IPROC-1) + s1 * sb2
     IPROC=IPROC+1 ! c c \sim -> t t \sim b b \sim
     PD(IPROC)=PD(IPROC-1) + c1 * cb2
    CALL SMATRIX(PP,DSIGUU)
    dsig = pd(iproc)*conv*dsiguu
```

Hadronic Collision Cross Sections

Hadronic Collision Cross Sections

Good News

- Automatically determine sub processes and Feynman diagrams
- Automatically create function needed to integrate

or =
$$\frac{1}{2s} \int f(x_1) f(x_2) |M|^2 d^3 P_1 ... d^3 P_n \delta^4 (P - p_1 - p_2 ... - p_n)$$
• Bad News

- - Hard to integrate!
 - 3N-4+2 dimensions

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Advantages
 - Large numbers of dimensions

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Advantages
 - Large numbers of dimensions
 - Complicated cuts

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Large numbers of dimensions
- Complicated cuts
- ONLY OPTION

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Large numbers of dimensions
- Complicated cuts
- ONLY OPTION
- Event generation

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Large numbers of dimensions
- Complicated cuts
- ONLY OPTION
- Event generation

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

- Advantages
 - Large numbers of dimensions
 - Complicated cuts
 - ONLY OPTION
 - Event generation
- Limitations

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

Advantages

- Large numbers of dimensions
- Complicated cuts
- ONLY OPTION
- Event generation

Limitations

Only works for function f(x) ≈ 1

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$

Advantages

- Large numbers of dimensions
- Complicated cuts
- ONLY OPTION
- Event generation

Limitations

- Only works for function $f(x) \approx 1$
- Error scales as 1/sqrt(N)

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

• Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$
 - Grid adjusts to numerically flatten peaks
 - Flexible

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$
 - Grid adjusts to numerically flatten peaks
 - Flexible

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$
 - Grid adjusts to numerically flatten peaks
 - Flexible

Limitations

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks

 - Flexible

- Limitations
 - Adjusting grid takes time

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks

 - Flexible

- Limitations
 - Adjusting grid takes time
 - Peaks must lie on integration variable

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks

 - Flexible
- Limitations $\int \frac{1}{((x-y)^2+a)} dxdy$
 - Adjusting grid takes time
 - Peaks must lie on integration variable

Single Diagram Enhanced MadEvent

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

Key Idea

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

- Key Idea
 - Any single diagram is "easy" to integrate

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams
- Get N independent integrals

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams
- Get N independent integrals
 - Errors add in quadrature so no extra cost

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

Key Idea

- Any single diagram is "easy" to integrate
- Divide integration into pieces, based on diagrams

Get N independent integrals

- Errors add in quadrature so no extra cost
- No need to calculate "weight" function from other channels.

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

Key Idea

- Any single diagram is "easy" to integrate
- Divide integration into pieces, based on diagrams

Get N independent integrals

- Errors add in quadrature so no extra cost
- No need to calculate "weight" function from other channels.
- Can optimize # of points for each one independently

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$

Key Idea

- Any single diagram is "easy" to integrate
- Divide integration into pieces, based on diagrams

Get N independent integrals

- Errors add in quadrature so no extra cost
- No need to calculate "weight" function from other channels.
- Can optimize # of points for each one independently
- Parallel in nature

User Requests:

- User Requests:
 - pp -> bb~tt~

- User Requests:
 - pp -> bb~tt~
 - QCD Order = 4

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0
- Cuts + Parameters

- User Requests:
 - pp -> bb~tt~
 - QCD Order = 4
 - QED Order =0
 - Cuts + Parameters
- MadEvent Returns:

- User Requests:
 - pp -> bb~tt~
 - QCD Order = 4
 - QED Order =0
 - Cuts + Parameters
- MadEvent Returns:
 - Feynman diagrams

- User Requests:
 - pp -> bb~tt~
 - QCD Order = 4
 - QED Order =0
 - Cuts + Parameters
- MadEvent Returns:
 - Feynman diagrams
 - Complete package for event generation

User Requests:

- pp -> bb~tt~
- QCD Order = 4
- QED Order =0
- Cuts + Parameters

MadEvent Returns:

- Feynman diagrams
- Complete package for event generation
- Events/Plots on line!

pp > aa

Generate SubProcesses+Diagrams

Generate Parton Level Plots

Radiation, Hadronization + Detectors

Detectors far from hard interaction

- Pythia---HERWIG
 - Radiation---Hadronization ++
- Detector Simulators (PGS)
 - Particle ID, Jets, b-tagging etc

pp > mu+mu- e+e- /a

- Generate SubProcesses+Diagrams
 - Use HEFT for model to get gg>h

Generate Parton Level Plots

Generate Detector Level Plots

Kinematics at LHC

- plots
- invariant mass
- rapidity
- Et

pp > tt~bb~ /aZW+W-

Generate SubProcesses+Diagrams

- Generate Parton Level Plots
 - Cut w/ m_bb > 80 GeV

Generate Detector Level Plots

Final Project

- Good News !!!
- We have hints that there might be 3 new particles at the LHC (Z', H, W+'). Your job is to find them in the three given data sets and determine their mass.

 A person who can efficiently calculate cross sections can be useful to a collaboration

 A person who can efficiently calculate cross sections can be useful to a collaboration

 A person who can efficiently calculate cross sections can be useful to a collaboration

 A person who can efficiently calculate the CORRECT cross section is ESSENTIAL to a collaboration

Conclusions

- Standard Model is Amazing (good news)
- S.M. is tough to Solve (good news!)
 - Factorization allows use of Perturbation Theory
 - Feynman Diagrams help
 - MadGraph/MadEvent can help too
- Good Luck!