MadGraph + MadEvent Automated Tree-Level Feynman Diagram and Event Generation Olivier Mattelaer and Fabio Maltoni # Reading Assignment # Reading Assignment 1st question that me or Olivier cannot answer - 1st question that me or Olivier cannot answer - 1st question that neither me or Olivier can answer - 1st question that me or Olivier cannot answer - 1st question that neither me or Olivier can answer - Best solution for the final challenge # Plan - 1. Overview of Standard Model - 1.Introduction to Particle Physics --- Close - 2. The Standard Model --- Murayama - 3. Parton level calculations - 2. Full Event Simulations - 3. Final challenge! Good News! SU(3)xSU_L(2)xU(1) - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Tested over 30 orders of magnitude! - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Tested over 30 orders of magnitude! - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$) - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Tested over 30 orders of magnitude! - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$) - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Tested over 30 orders of magnitude! - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$) - Good News! SU(3)xSU_L(2)xU(1) - Most successful theory in physics! - Tested over 30 orders of magnitude! - (photon mass $< 10^{-18} \text{ eV}$, Tevatron $> 10^{12} \text{ eV}$) - Bad News! - We can't solve it! - Bad News! - We can't solve it! - Bad News! - We can't solve it! $$\mathcal{L}_{\text{QCD}} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{G}^{\mu\nu} \mathbf{G}_{\mu\nu} \right) + \overline{\mathbf{q}} \left[i \gamma^{\mu} \mathbf{D}_{\mu} - m_{q} \right] \mathbf{q}$$ $$= -\frac{1}{4} \left(\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right) \left(\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} \right) + \sum_{q} \overline{q}_{\alpha} \left[i \gamma^{\mu} \partial_{\mu} - m_{q} \right] q_{\alpha}$$ $$+ \frac{1}{2} \sum_{q} g_{s} \left[\overline{q}_{\alpha} \left(\lambda^{a} \right)_{\alpha\beta} \gamma^{\mu} q_{\beta} \right] G_{\mu}^{a}$$ $$- \frac{1}{2} g_{s} f_{abc} \left(\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} \right) G_{b}^{\mu} G_{c}^{\nu} - \frac{1}{4} g_{s}^{2} f_{abc} f_{ade} G_{b}^{\mu} G_{c}^{\nu} G_{\mu}^{d} G_{c}^{d} G_{c}^{$$ - Bad News! - We can't solve it! $$\mathcal{L}_{QCD} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{G}^{\mu\nu} \mathbf{G} \right)$$ $$= -\frac{1}{4} \left(\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right) \left(\partial_{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu} \right)$$ + $$\frac{1}{2}\sum_{a}g_{s}\left[\overline{q}_{\alpha}\left(\lambda^{a}\right)_{\alpha\beta}\gamma^{\mu}q_{\beta}\right]$$ $$- \frac{1}{2} \mathbf{g}_{s} f_{abc} \left(\partial_{\mu} G_{v}^{a} - \partial_{v} G_{\mu}^{a} \right)$$ $$-\frac{1}{2}\operatorname{Tr}\left(\mathbf{G}^{\mu\nu}\mathbf{G}\right) \mathbf{W}_{\mu\nu} = \frac{i}{g}\left[\mathbf{n}_{\mu},\mathbf{n}_{\nu}\right] = \frac{\vec{\sigma}}{2} \cdot \vec{W}_{\mu\nu} \rightarrow \mathbf{U}_{L} \mathbf{W}_{\mu\nu} \mathbf{U}_{L}^{\dagger} ; \quad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \rightarrow B_{\mu\nu}$$ $$W_{\mu\nu}^{i} = \partial_{\mu}W_{\nu}^{i} - \partial_{\nu}W_{\mu}^{i} + g\,\varepsilon^{ijk}\,W_{\mu}^{j}W_{\nu}^{k}$$ $$\mathcal{L}_{K} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \text{Tr}(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} \vec{W}_{\mu\nu} \vec{W}_{\mu\nu} = \mathcal{L}_{kin} + \mathcal{L}_{3} + \mathcal{L}_{4}$$ $$\mathcal{L}_{\mathbf{g}} = -i e \cot \theta_{W} \left\{ (\partial^{\mu} W^{\nu} - \partial^{\nu} W^{\mu}) W_{\mu}^{\dagger} Z_{\nu} - (\partial^{\mu} W^{\nu\dagger} - \partial^{\nu} W^{\mu\dagger}) W_{\mu} Z_{\nu} + W_{\mu} W_{\nu}^{\dagger} (\partial^{\mu} Z^{\nu} - \partial^{\nu} Z^{\mu}) \right\}$$ $$-i e \left\{ \left(\partial^{\mu} W^{\nu} - \partial^{\nu} W^{\mu} \right) W_{\mu}^{\dagger} A_{\nu} - \left(\partial^{\mu} W^{\nu\dagger} - \partial^{\nu} W^{\mu\dagger} \right) W_{\mu} A_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \right\}$$ $$\mathcal{L}_{4} = -\frac{e^{2}}{2 \sin^{2} \theta_{W}} \left\{ \left(W_{\mu}^{\dagger} W^{\mu} \right)^{2} - W_{\mu}^{\dagger} W^{\mu \dagger} W_{\nu} W^{\nu} \right\} - e^{2} \cot^{2} \theta_{W} \left\{ W_{\mu}^{\dagger} W^{\mu} Z_{\nu} Z^{\nu} - W_{\mu}^{\dagger} Z^{\mu} W_{\nu} Z^{\nu} \right\}$$ $$- e^2 \cot \theta_w \left\{ 2 W_\mu^\dagger W^\mu Z_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu A^\nu \right\} \\ - e^2 \cot \theta_w \left\{ 2 W_\mu^\dagger W^\mu Z_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger A^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu A^\nu - W_\mu^\dagger Z^\mu W_\nu Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu A^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\nu \right\} \\ - e^2 \left\{ W_\mu^\dagger W^\mu A_\nu A^\mu W_\nu Z^\mu W_\mu Z^\mu W_\mu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\nu Z^\mu W_\mu Z$$ # Predictions from SM • Cross Section: $\sigma = \frac{1}{2s} \int |M|^2 d\Phi$ $M = \left\langle \mu^+ \mu^- | T \left(e^{-i \int H_I dt} \right) e^+ e^- \right\rangle$ - Can't solve exactly because interactions change wave functions! - Perturbation Theory - Start w/ Free Particle wave function - Assume interactions are small perturbation # Predictions from SM - Cross Section: $\sigma = \frac{1}{2s} \int |M|^2 d\Phi$ $M = \left\langle \mu^+ \mu^- | T \left(e^{-i \int H_I dt} \right) e^+ e^- \right\rangle$ - Can't solve exactly because interactions change wave functions! - Perturbation Theory - Start w/ Free Particle wave function - Assume interactions are small perturbation $$M \approx \langle \mu^{+}\mu^{-} | H_{\text{int}} | e^{+}e^{-} \rangle + \frac{1}{2} \langle \mu^{+}\mu^{-} | H_{\text{int}}^{2} | e^{+}e^{-} \rangle + \dots$$ $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ # Example: e⁺e⁻ → μ⁺μ⁻ $$\sigma = \frac{1}{2s} \int |M|$$ $$M \approx \langle \mu^{+} \mu^{-} |$$ Scattering $$\mathbf{C}$$ $$\mathbf{W}_{\mu\nu} = \frac{1}{g} \left[\mathbf{D}_{\mu}, \mathbf{D}_{\nu} \right] = \frac{\vec{\sigma}}{2} \cdot \vec{W}_{\mu\nu} \rightarrow \mathbf{U}_{L} \mathbf{W}_{\mu\nu} \mathbf{U}_{L}^{\dagger} \quad ; \quad \mathbf{B}_{\mu\nu} = \partial_{\mu} \mathbf{B}_{\nu} - \partial_{\nu} \mathbf{B}_{\mu} \rightarrow \mathbf{B}_{\mu\nu}$$ $$\mathbf{G} = \frac{1}{g} \left[\mathbf{M} \right] \qquad \qquad \mathbf{W}_{\mu\nu}^{i} = \partial_{\mu} \mathbf{W}_{\nu}^{i} - \partial_{\nu} \mathbf{W}_{\mu}^{i} + g \, \varepsilon^{ijk} \, \mathbf{W}_{\mu}^{j} \mathbf{W}_{\nu}^{k}$$ $$M \approx \left\langle \mu^{+} \mu^{-} \right| \int_{-\frac{1}{4}B_{\mu\nu}}^{2} B^{\mu\nu} - \frac{1}{2} \text{Tr}(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} \vec{W}_{\mu\nu} \vec{W}_{\mu\nu} = \mathcal{L}_{kin} + \mathcal{L}_{3} + \mathcal{L}_{4}$$ $$\begin{split} \mathcal{L}_{\mathbf{a}} &= -i\,e\,\cot\theta_{\mathbf{W}} \left\{ \left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu}\right) W_{\mu}^{\dagger} Z_{\nu} - \left(\partial^{\mu}W^{\nu\dagger} - \partial^{\nu}W^{\mu\dagger}\right) W_{\mu} Z_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu}Z^{\nu} - \partial^{\nu}Z^{\mu}\right) \right\} \\ &- i\,e\, \left\{ \left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu}\right) W_{\mu}^{\dagger} A_{\nu} - \left(\partial^{\mu}W^{\nu\dagger} - \partial^{\nu}W^{\mu\dagger}\right) W_{\mu} A_{\nu} + W_{\mu} W_{\nu}^{\dagger} \left(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}\right) \right\} \end{split}$$ $$\mathcal{L}_{4} = -\frac{e^{2}}{2 \sin^{2} \theta_{w}} \left\{ \left(W_{\mu}^{\dagger} W^{\mu} \right)^{2} - W_{\mu}^{\dagger} W^{\mu \dagger} W_{v} W^{v} \right\} - e^{2} \cot^{2} \theta_{w} \left\{ W_{\mu}^{\dagger} W^{\mu} Z_{v} Z^{v} - W_{\mu}^{\dagger} Z^{\mu} W_{v} Z^{v} \right\}$$ $$-e^2\cot\theta_w\left\{2\,W_\mu^\dagger\,W^\mu\,Z_\nu\,A^\nu-W_\mu^\dagger\,Z^\mu\,W_\nu\,A^\nu-W_\mu^\dagger\,A^\mu\,W_\nu\,Z^\nu\right\}\,-\,e^2\,\left\{W_\mu^\dagger\,W^\mu\,A_\nu\,A^\nu-W_\mu^\dagger\,A^\mu\,W_\nu\,A^\nu\right\}$$ The Standard Model A. Pich - CERN Summer Lectures 2005 $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$ $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$ $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ $$M \approx \overline{v}(e^+)$$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ $$M \approx \overline{v}(e^+) (-iq\gamma^{\mu})$$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ $$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-)$$ ### Example: $e^+e^- \rightarrow \mu^+\mu^-$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ Feynman Diagrams $$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-) \frac{-ig_{\mu\nu}}{p^2}$$ ### Example: $e^+e^- \rightarrow \mu^+\mu^-$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{\text{int}} | e^+ e^- \rangle + \dots$$ Feynman Diagrams $$M \approx \overline{v}(e^+) (-iq\gamma^{\mu}) v(e^-) \frac{-ig_{\mu\nu}}{p^2} \overline{u}(\mu^+)(-iq\gamma^{\nu})u(\mu^-)$$ ### Example: $e^+e^- \rightarrow \mu^+\mu^-$ Scattering cross section $$\sigma = \frac{1}{2s} \int |M|^2 d\Phi$$ $$M \approx \langle \mu^+ \mu^- | H_{int} | e^+ e^- \rangle + \dots$$ Feynman Diagrams | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | $W^+W^-\gamma$ | | |--------|------------|--------------------------------------|---|----------------| | Z ~~ | QED | $q\overline{q}Z$ $l\overline{l}Z$ | W^+W^-Z | | | W+ | QED | $q\overline{q}'W \ bW$ | | WWWW. | | g asso | QCD | $q\overline{q}g$ | 888
888 | 999999
9888 | | h | QED
(m) | $g\overline{q}h$ $l\overline{l}h$ | کم
کم
W ⁺ W ⁻ h | ZZh | These are basic building blocks, combine to form "allowed" diagrams - e.g. u u~ > t t~ | γ ~~ | QED | $\begin{array}{c c} & & \\ & & \\ \hline q \overline{q} \gamma & l^- l^+ \gamma \end{array}$ | - 2 | | |---------------|------------|--|--------------------------------|--| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>W</i> + <i>W</i> − <i>Z</i> | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
Seper | | G 5000 | QCD | $q\overline{q}g$ | 888
888 | 3888
8688
8688
8688
8688
8688
8688
8688 | | h | QED
(m) | > | 7 | ZZh | | | (111) | $q\overline{q}h$ llh | W^+W^-h | LLII | | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | ² ννν
ε ⁵
W ⁺ W ⁻ γ | | |---------------|------------|--------------------------------------|---|------------------------| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>W</i> + <i>W</i> − <i>Z</i> | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
Sylvy
Sylvy | | G 5550 | QCD | $q\overline{q}g$ | 888
888
888 | 2000 gggg | | h | QED
(m) | $q\overline{q}h$ $l\overline{l}h$ | √√
√
W ⁺ W ⁻ h | ZZh | | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | ² ννν
ε ⁵
W ⁺ W ⁻ γ | | |---------------|------------|--------------------------------------|---|---| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>W</i> + <i>W</i> − <i>Z</i> | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
See See See See See See See See See See | | G 5555 | QCD | $q\overline{q}g$ | 888
888 | 25888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
2688
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
2 | | h | QED
(m) | qq̄h līh | 24
25
W+W-h | ZZh | | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | ² νννν
<i>κ</i> ⁺ W ⁻ γ | | |---------------|------------|--------------------------------------|---|---| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>W</i> + <i>W</i> − <i>Z</i> | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
See See See See See See See See See See | | G 5000 | QCD | $q\overline{q}g$ | 888
888 | 399888
8888
8 | | h | QED
(m) | qq̄h ll̄h | √√
√√
W+W−h | ZZh | | _ | gg | > | tt~ | |---|----|---|-----| |---|----|---|-----| | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | λλνν
25
W+W-γ | | |----------|-----|--------------------------------------|-----------------------------------|--| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>W</i> + <i>W</i> − <i>Z</i> | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
Sylvy
Sylvy | | a | QCD | $q\overline{q}g$ | 288
288
288 | 2888
2688
2688
2688
2688
2688
2688
2688 | | | QED | > | مرح | ٠٠٠٠٠ | | | (m) | $q\overline{q}h$ $l\overline{l}h$ | W^+W^-h | ZZh | | Draw Feynman of | diagrams: | |-------------------------------------|-----------| |-------------------------------------|-----------| - gg > tt~gg > tt~h - Determine "order" for each diagram | γ ~~ | QED | $q\overline{q}\gamma$ $l^-l^+\gamma$ | ² γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ | | |----------|-----|--------------------------------------|---|---| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | W^+W^-Z | | | W ~~ | QED | $q\overline{q}'W \ bW$ | | WWWW
See See See See See See See See See See | | a | QCD | $q\overline{q}g$ | 888
•••••••••••••••••••••••••••••••••• | 25888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
2688
26888
26888
26888
26888
26888
26888
26888
26888
26888
26888
2 | | 0- | QED | > | مرکي | ٠٠٠٠٠ | | N | (m) | $q\overline{q}h$ $l\overline{l}h$ | W^+W^-h | کہ
ZZh | User Requests: - User Requests: - gg -> tt~bb~ - User Requests: - gg -> tt~bb~ - QCD Order = 4 #### User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - MadGraph Returns: - Feynman diagrams #### User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - Feynman diagrams - Self-Contained Fortran Code for |M|^2 #### User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - Feynman diagrams - Self-Contained Fortran Code for |M|^2 ``` SUBROUTINE SMATRIX(P1,ANS) C Generated by MadGraph II Version 3.83. Updated 06/13/05 C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS C AND HELICITIES C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL) C FOR PROCESS : g g \rightarrow t t \sim b b \sim C Crossing 1 is g g -> t t~ b b~ IMPLICIT NONE C CONSTANTS Include "genps.inc" INTEGER NCOMB, NCROSS NCOMB= 64, NCROSS= 1) PARAMETER (INTEGER THEL PARAMETER (THEL=NCOMB*NCROSS) C ARGUMENTS REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS) ``` #### User Requests: - gg -> tt~bb~ - QCD Order = 4 - QED Order =0 - Feynman diagrams - Self-Contained Fortran Code for |M|^2 ``` SUBROUTINE SMATRIX(P1,ANS) C Generated by MadGraph II Version 3.83. Updated 06/13/05 C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS C AND HELICITIES C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL) C FOR PROCESS : g g \rightarrow t t \sim b b \sim C Crossing 1 is g g -> t t~ b b~ IMPLICIT NONE C CONSTANTS Include "genps.inc" INTEGER NCOMB, NCROSS NCOMB= 64, NCROSS= 1) PARAMETER (INTEGER THEL PARAMETER (THEL=NCOMB*NCROSS) C ARGUMENTS REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS) ``` Partial list from SM - Draw Feynman diagrams + determine order (QED, QCD): - gg -> tt~ - gg -> tt~h | γ ~~ | QED | $q\bar{q}\gamma$ $l^-l^+\gamma$ | λλλλ
χ
W ⁺ W ⁻ γ | | |----------|-----|-----------------------------------|---|---| | Z ~~ | QED | $q\bar{q}Z$ $l\bar{l}Z$ | <i>X</i> - <i>X</i> - <i>Z</i> | | | W ~~ | QED | $q\bar{q}'W \ bW$ | | WWWW
Seeder | | a | QCD | $q\overline{q}g$ | 888
888 | 2888
2888
2888
2888
2888
2888
2888
288 | | h | QED | > | مرح | مرم | | 11 | (m) | $q\overline{q}h$ $l\overline{l}h$ | W^+W^-h | ZZh | Partial list from SM - gg -> tt~bb~ (QCD only) ### Status ### Status #### Good News - MadGraph generates all tree-level diagrams - MadGraph generates fortran code to calculate $\Sigma |\mathbf{M}|^2$ #### Bad News - Madgraph generates fortran code.... - Hadron colliders are tough! #### Good News - There's a cool animation next! ### **Hadron Colliders** ### **Hadron Colliders** - Initial State: Protons - Made of quarks/gluons in bound state - Strongly interacting P.T. won't work - Final State: Hadrons - Made of quarks/gluons in bound state - Strongly interacting P.T. won't work ### Parton Distribution Functions (Measured) Evolution +Splitting Hard Scattering Showering Fragmentation ### Parton Distribution Functions (Measured) Evolution +Splitting Hard Scattering Showering Fragmentation ### Parton Distribution Functions (Measured) Evolution +Splitting Hard Scattering Showering Fragmentation ### **Protons** 1 d 11 ### **Protons** - Simple Model - 3 "Valence" quarks u u d - 2/3 chance of getting up quark - 1/3 chance of getting down quark - Guess each carries 1/3 of momentum - Deep Inelastic Scattering Results - Short time scales "sea" partons - u and d. but also u~ d~ s, c and g with varying amounts of momentum - Need to multiple matrix element by probability f(x) of finding parton i with fraction of momentum x ### **Protons** - Simple Model - 3 "Valence" quarks u u d - 2/3 chance of getting up quark - 1/3 chance of getting down quark - Guess each carries 1/3 of momentum - Deep Inelastic Scattering Results - Short time scales "sea" partons - u and d. but also u~ d~ s, c and g with varying amounts of momentum - Need to multiple matrix element by probability f(x) of finding parton i with fraction of momentum x $$\sigma = \frac{1}{2s} \sum \int f_u(x_1) f_{\bar{u}}(x_2) |M|^2 d\Phi dx_1 dx_2$$ u d u ### **Hadron Colliders** ### **Hadron Colliders** - Initial State: Protons - Made of quarks/gluons in bound state - Approximately free at very short times - Measure distributions in experiments and use - Final State: Hadrons - Made of quarks/gluons in bound state - Combine into jets and evolve back to partons u - Measure hadronization in experiments and use - Many parton level sub processes contribute to same hadron level event (e.g. pp > e⁺ v j j j) ### Exercise - List processes for signal pp > h > tt~bb~ - e.g. uu~ > h > tt~ bb~ - List process for background pp > tt~bb~ - e.g. uu~ > tt~bb~ - List process for reducible background pp>tt~jj - e.g. uu~ > tt~gg #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 #### MadGraph Returns: - Feynman diagrams - Fortran Code for |M|^2 - Summed over all sub processes w/ pdf #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 #### MadGraph Returns: - Feynman diagrams - Fortran Code for |M|^2 - Summed over all sub processes w/ pdf ``` DOUBLE PRECISION FUNCTION DSIG(PP,WGT) C Generated by MadGraph II Version 3.83. Updated 06/13/05 RETURNS DIFFERENTIAL CROSS SECTION pp 4 momentum of external particles wgt weight from Monte Carlo Output: Amplitude squared and summed IPROC=IPROC+1 ! u u~ -> t t~ b b~ PD(IPROC)=PD(IPROC-1) + u1 * ub2 IPROC=IPROC+1 ! d d\sim -> t t\sim b b\sim PD(IPROC)=PD(IPROC-1) + d1 * db2 IPROC=IPROC+1 ! s s\sim -> t t\sim b b\sim PD(IPROC)=PD(IPROC-1) + s1 * sb2 IPROC=IPROC+1 ! c c \sim -> t t \sim b b \sim PD(IPROC)=PD(IPROC-1) + c1 * cb2 CALL SMATRIX(PP,DSIGUU) dsig = pd(iproc)*conv*dsiguu ``` # Hadronic Collision Cross Sections ### **Hadronic Collision Cross Sections** #### Good News - Automatically determine sub processes and Feynman diagrams - Automatically create function needed to integrate or = $$\frac{1}{2s} \int f(x_1) f(x_2) |M|^2 d^3 P_1 ... d^3 P_n \delta^4 (P - p_1 - p_2 ... - p_n)$$ • Bad News - - Hard to integrate! - 3N-4+2 dimensions $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Advantages - Large numbers of dimensions $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Advantages - Large numbers of dimensions - Complicated cuts $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Large numbers of dimensions - Complicated cuts - ONLY OPTION $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Large numbers of dimensions - Complicated cuts - ONLY OPTION - Event generation $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Large numbers of dimensions - Complicated cuts - ONLY OPTION - Event generation $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ - Advantages - Large numbers of dimensions - Complicated cuts - ONLY OPTION - Event generation - Limitations $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ #### Advantages - Large numbers of dimensions - Complicated cuts - ONLY OPTION - Event generation #### Limitations Only works for function f(x) ≈ 1 $$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1,N} f(x_i)$$ #### Advantages - Large numbers of dimensions - Complicated cuts - ONLY OPTION - Event generation #### Limitations - Only works for function $f(x) \approx 1$ - Error scales as 1/sqrt(N) $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ • Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ - Grid adjusts to numerically flatten peaks - Flexible $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ - Grid adjusts to numerically flatten peaks - Flexible $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ - Grid adjusts to numerically flatten peaks - Flexible Limitations $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks - Flexible - Limitations - Adjusting grid takes time $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks - Flexible - Limitations - Adjusting grid takes time - Peaks must lie on integration variable $$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$ - Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks - Flexible - Limitations $\int \frac{1}{((x-y)^2+a)} dxdy$ - Adjusting grid takes time - Peaks must lie on integration variable # Single Diagram Enhanced MadEvent $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ Key Idea $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ - Key Idea - Any single diagram is "easy" to integrate $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ - Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ - Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams - Get N independent integrals $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ - Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams - Get N independent integrals - Errors add in quadrature so no extra cost $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ #### Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams #### Get N independent integrals - Errors add in quadrature so no extra cost - No need to calculate "weight" function from other channels. $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ #### Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams #### Get N independent integrals - Errors add in quadrature so no extra cost - No need to calculate "weight" function from other channels. - Can optimize # of points for each one independently $$\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_1|^2}{|a_1|^2 + |a_1|^2} |a_2|^2 d(PS)$$ #### Key Idea - Any single diagram is "easy" to integrate - Divide integration into pieces, based on diagrams #### Get N independent integrals - Errors add in quadrature so no extra cost - No need to calculate "weight" function from other channels. - Can optimize # of points for each one independently - Parallel in nature User Requests: - User Requests: - pp -> bb~tt~ - User Requests: - pp -> bb~tt~ - QCD Order = 4 #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 - Cuts + Parameters - User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 - Cuts + Parameters - MadEvent Returns: - User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 - Cuts + Parameters - MadEvent Returns: - Feynman diagrams - User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 - Cuts + Parameters - MadEvent Returns: - Feynman diagrams - Complete package for event generation #### User Requests: - pp -> bb~tt~ - QCD Order = 4 - QED Order =0 - Cuts + Parameters #### MadEvent Returns: - Feynman diagrams - Complete package for event generation - Events/Plots on line! ### pp > aa Generate SubProcesses+Diagrams Generate Parton Level Plots ## Radiation, Hadronization + Detectors Detectors far from hard interaction - Pythia---HERWIG - Radiation---Hadronization ++ - Detector Simulators (PGS) - Particle ID, Jets, b-tagging etc ### pp > mu+mu- e+e- /a - Generate SubProcesses+Diagrams - Use HEFT for model to get gg>h Generate Parton Level Plots Generate Detector Level Plots #### Kinematics at LHC - plots - invariant mass - rapidity - Et #### pp > tt~bb~ /aZW+W- Generate SubProcesses+Diagrams - Generate Parton Level Plots - Cut w/ m_bb > 80 GeV Generate Detector Level Plots ## Final Project - Good News !!! - We have hints that there might be 3 new particles at the LHC (Z', H, W+'). Your job is to find them in the three given data sets and determine their mass. A person who can efficiently calculate cross sections can be useful to a collaboration A person who can efficiently calculate cross sections can be useful to a collaboration A person who can efficiently calculate cross sections can be useful to a collaboration A person who can efficiently calculate the CORRECT cross section is ESSENTIAL to a collaboration #### Conclusions - Standard Model is Amazing (good news) - S.M. is tough to Solve (good news!) - Factorization allows use of Perturbation Theory - Feynman Diagrams help - MadGraph/MadEvent can help too - Good Luck!