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• perspective:  the big picture 

• concepts: QCD from high-Q2 to low-Q2, asymptotic 
freedom, infrared safety, factorisation 

• tools & techniques: Fixed Order (FO) computations, Parton 
showers, Monte Carlo’s (MC)

Aims
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Plan

• Intro and QCD fundamentals 

• QCD in the final state : e+ e- collisions  

• QCD in the initial state : p p collisions
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QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts 

2. From QED to QCD: the importance of color 

3. Renormalization group and asymptotic freedom
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Strong interactions
Strong interactions are characterised at moderate energies by a single* 
dimensionful scale, ΛS , of few hundreds of MeV: 

σh ≅ 1/Λs2 ≅ 10 mb 
Γh ≅ Λs 

R ≅ 1/Λs ≅ 1 fm 

No hint to the presence of a small parameter! Very hard to understand and 
many attempts...

*neglecting quark masses..!!!
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Nowadays we have a satisfactory model of strong interactions based 
on a non-abelian gauge theory, i.e.. Quantum Chromo Dynamics.

Why is QCD a good theory?

1. Hadron spectrum 

2. Scaling 

3. QCD: a consistent QFT   

4. Low energy symmetries 

5. MUCH more....

Strong interactions
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Hadron spectrum
• Hadrons are made up of spin 1/2 quarks, of different flavors (d,u,s,c,b,[t]) 

• Each flavor comes in three colors, thus quarks carry a flavor and color 
index             

ψ
(f)
i

ψi →

∑

k

Uikψk

∑

k

ψ∗

kψk

∑

ijk

ϵijkψiψjψk

Mesons

Baryons

• The global SU(3) symmetry acting on color is exact:
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Note that physical states are classified in multiplets of the FLAVOR SU(3)f group!

3f ⊗ 3̄f = 8f ⊕ 1f

Hadron spectrum
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3f ⊗ 3f ⊗ 3f = 10S ⊕ 8M ⊕ 8M ⊕ 1A

We need an extra quantum number (color) to have the Δ++ with similar properties 
to the Σ*0. All particles in the multiplet have symmetric spin, flavour and spatial 
wave-function. Check that nq - nqbar  = n x Nc, with n integer.

Note that physical states are classified in multiplets of the FLAVOR SU(3)f group!

uds

uuu

Hadron spectrum
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Scaling
cms energy2 
momentum transfer2 
scaling variable 
energy loss 
rel. energy loss 

recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

d�elastic

dq2
=

✓
d�

dq2

◆

point

· F 2
elastic(q

2) �(1� x) dx

d�inelastic

dq2
=

✓
d�

dq2

◆

point

· F 2
inelastic(q

2, x) dx

What should we expect for F(q2,x)?
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Two plausible and one crazy scenarios for the  |q2| →∞ (Bjorken) limit: 
1.Smooth electric charge distribution:                                                          (classical picture) 

F2elastic(q2) ∼ F2inelastic(q2) <<1
i.e., external probe penetrates the proton as knife through the butter! 

2. Tightly bound point charges inside the proton:                                             (bound quarks) 

F2elastic(q2) ∼1 and F2inelastic(q2) <<1
i.e., quarks get hit as single particles, but momentum is immediately redistributed as they are 
tightly bound together (confinement) and cannot fly away. 

3. And now the crazy one:                                                                                (free quarks) 

F2elastic(q2) <<1  and F2inelastic(q2) ~ 1
i.e., there are points (quarks!) inside the protons, however the hit quark behaves as a free 
particle that flies away without feeling or caring about confinement!!!

Scaling



BUSSTEPP - Oxford, Aug 2018             Fabio Maltoni

Remarkable!!! Pure dimensional analysis! 
The right hand side does not depend on ΛS ! 
This is the same behaviour one may find in a  
renormalizable theory like in QED. 
Other stunning example is again e+e- → hadrons.

d2σEXP

dxdy
∼

1

Q2

This motivated the search for a 
weakly-coupled theory at high 
energy!

Scaling
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Asymptotic freedom
Among QFT theories in 4 dimension only the non-Abelian gauge theories are “asymptotically 
free”.  

It becomes then natural to promote the global color SU(3) symmetry into a local symmetry where 
color is a charge.  

This also hints to the possibility that the color neutrality of the hadrons could have a dynamical 
origin

Q2

αs Perturbative region

In renormalizable QFT’s scale invariance is broken by the renormalization procedure and couplings 
depend logarithmically on scales.
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InteractionGauge 
Fields 

Matter

The QCD Lagrangian

Very similar to the QED Lagrangian.. we’ll see in a moment where the 
differences come from!

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i∂̸ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ijA̸a)ψ(f)

j

[ta, tb] = ifabctc

tr(tat
b) =

1

2
δ

ab

→Algebra of SU(N)

→Normalization 
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The symmetries of the QCD Lagrangian
Now we know that strong interacting physical states have very good symmetry properties 
like the isospin symmetry: particles in the same multiplets (n,p) or (π+,π-,π0) have nearly 
the same mass. Are these symmetries accounted for?

LF =
∑

f

ψ̄
(f)
i

[

(i̸∂ − mf )δij − gst
a
ij ̸Aa

]

ψ
(f)
j

ψ(f)
→

∑

f ′

Uff ′

ψ(f ′)
Isospin transformation acts only f=u,d. 

It is a simple EXERCISE to show that the lagrangian is invariant if mu=md or mu, md→0. 
It is the second case that is more appealing. If the masses are close to zero the QCD 
lagrangian is MORE symmetric: 

CHIRAL SYMMETRY
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LF =
∑

f

{

ψ̄
(f)
L (i̸∂ − gst

a ̸Aa) ψ
(f)
L + ψ̄

(f)
R (i̸∂ − gst

a ̸Aa) ψ
(f)
R

}

−

∑

f

mf

({

ψ̄
(f)
R ψ

(f)
L + ψ̄

(f)
L ψ

(f)
R

)}

ψ
(f)
L → eiφL

∑

f ′

U
ff ′

L ψ
(f ′)
L

ψ
(f)
R → eiφR

∑

f ′

U
ff ′

R ψ
(f ′)
R

SUL(N) × SUR(N) × UL(1) × UR(1)

Do these symmetries have counterpart in the real world? 

-The vector subgroup is realized in nature as the isospin 
-The corresponding U(1) is the baryon number conservation 
-The axial UA(1) is not there due the axial anomaly 
-The remaining axial transformations are spontaneously 
broken and the goldstone bosons are the pions. 

This is amazing! Without knowing anything about the dynamics of confinement we correctly 
describe isospin, the small mass of the pions, the scattering properties of pions, and many other 
features. 

ψL =
1

2
(1 − γ5)ψ

ψR =
1

2
(1 + γ5)ψ

The symmetries of the QCD Lagrangian
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• QCD is a non-abelian gauge theory, is renormalizable, is asymptotically free, 
is a one-parameter theory [Once you measure αS (and the quark masses) you 
know everything fundamental about (perturbative) QCD].  

• It explains the low energy properties of the hadrons, justifies the observed 
spectrum and catch the most important dynamical properties. 

• It explains scaling (and BTW anything else we have seen up to now!!) at high 
energies.  

• It leaves EW interaction in place since the SU(3) commutes with SU(2) x 
U(1). There is no mixing and there are no enhancements of parity violating 
effect or flavor changing currents.

Why do we believe  QCD is  
a good theory of strong interactions?

ok, then. Are we done?
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Why do many people care about QCD?
At “low” energy: 

1. QCD Thermodynamics with application to 
cosmology, astrophysics , nuclei.
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1. QCD Thermodynamics with application to 
cosmology, astrophysics , nuclei.

2. Confinement still to be proved 106$ (millenium) 
prize by the Clay Mathematics Institute. 

Why do many people care about QCD?
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At “low” energy: 

1. QCD Thermodynamics with application to 
cosmology, astrophysics , nuclei.

3. Measurement of quark masses, mixings and CP 
violation parameters essential to understand the 
Flavor structure of the SM. Requires accurate 
predictions of non-perturbative form factors and 
matrix elements. Need for lattice simulations,

2. Confinement still to be proved 106$ (millenium) 
prize by the Clay Mathematics Institute. 

Why do many people care about QCD?
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At high energy: 

QCD is a necessary tool to 
decode most hints that Nature is 
giving us on the fundamental 
issues!
*Measurement of αS, sin2θW give 
information on possible patterns 
of unification. 

*Measurements and discoveries 
a t hadron col l iders need 
accurate predictions for QCD 
backgrounds! 

BTW, is this really true?

Why do many people care about QCD?
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Discoveries at hadron colliders

hard 

shape
pp→gg,gq,qq→jets+ET~~~~~~

Background shapes needed. 
Flexible MC for both signal 
and background tuned and 
validated with data. 

/

“easy” 

peak
pp→H→4l

Background directly measured  
from data. TH needed only for 
p a r a m e t e r e x t r a c t i o n 
(Normalization, acceptance,...)

very hard 

discriminant
pp→H→W+W-

Background normalization and 
shapes known very well. 
In te rp lay wi th the bes t 
theoretical predictions (via 
MC) and data.
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Motivations for QCD predictions

• Accurate and experimental friendly predictions for collider physics range 
from being very useful to strictly necessary. 

• Confidence on possible excesses, evidences and eventually discoveries 
builds upon an intense (and often non-linear) process of description/
prediction of data via MC’s.  

• Measurements and exclusions always rely on accurate predictions.  

• Predictions for both SM and BSM on the same ground.

no QCD ⇒ no PARTY !
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QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts 

2. From QED to QCD: the importance of color 

3. Renormalization group and asymptotic freedom
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L = −
1

4
FµνFµν + ψ̄(i∂̸ − m)ψ − eQψ̄A̸ψ

where Fµν = ∂µAν − ∂νAµ

From QED to QCD

=
i

/p�m+ i✏

=
�igµ⌫
p2 + i✏

= �ie�µQ
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We want to focus on how gauge invariance is realized in practice. 
Let’s start with the computation of a simple process e+e- →γγ.  There are two diagrams:

q

k1,μ

k2,ν

q

-

From QED to QCD

Gauge invariance requires that:

iM = Mµ⌫✏
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
/✏1u(q) + v̄(q̄)/✏1

1

/q � /k2
/✏2u(q)

◆

✏⇤µ1 k⌫2Mµ⌫ = ✏⇤⌫2 kµ1Mµ⌫ = 0
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So now let’s calculate qq → gg and we obtain

i

g2
s

Mg ≡ (tbta)ijD1 + (tatb)ijD2

Mg = (tatb)ijMγ − g2fabctcijD1

Let’s try now to generalize what we have done for SU(3). In this case we take the 
(anti-)quarks to be in the (anti-)fundamental representation of SU(3), 3 and 3*.  Then the 
current is in a 3 ⊗ 3* = 1 ⊕ 8. The singlet is like a photon, so we identify the gluon with 
the octet and generalize the QED vertex to : 

−igst
a
ijγ

µ
[ta, tb] = ifabctcwith

j

i

a

From QED to QCD

= �v̄(q̄)/✏2u(q) + v̄(q̄)/✏2u(q) = 0

Mµ⌫k
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
(/k1 � /q)u(q) + v̄(q̄)(/k1 � /̄q)

1

/k1 � /q
/✏2u(q)

◆

Only the sum of the two diagrams is gauge invariant. For the amplitude to be gauge 
invariant it is enough that one of the polarizations is longitudinal. The state of the other 
gauge boson is irrelevant. 
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But in this case one piece is left out

k1µMµ
g = i(−gsf

abcϵµ
2
)(−igst

c
ij v̄i(q̄)γµui(q))

k1µMµ
g = −g2

sfabctcij v̄i(q̄)ϵ̸2ui(q)

To satisfy gauge invariance we still need: 

k
µ

1
ϵ2

ν
M

µ,ν

g = k
ν

2 ϵ
µ

1
M

µ,ν

g = 0.

−gsf
abcVµ1µ2µ3

(p1, p2, p3)

We indeed see that we interpret as the normal vertex 
times a new 3 gluon vertex:

From QED to QCD
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How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ϵ
ν
1(k1)ϵ

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)̸ϵ2u(q) −
k2 · ϵ2
2k1 · k2

v̄(q̄)̸k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!
One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD
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The QCD Lagrangian

InteractionGauge 
Fields and 

their 
interact. 

Matter

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i∂̸ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ijA̸a)ψ(f)

j

F a
µν = ∂µAa

ν − ∂νAa
µ−gfabcAb

µAc
ν

By direct inspection and by using the form non-abelian covariant derivation, we can check that 
indeed non-abelian gauge symmetry implies self-interactions. This is not surprising since the gluon 
itself is charged (In QED the photon is not!)
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How many colors?

Γ ∼ N2

c

[

Q2

u − Q2

d

]2 m3
π

f2
π

�EXP = 7.7± 0.6 eV

�TH =

✓
Nc

3

◆2

7.6 eV

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∼ Nc

X

q

e2q

= 2(Nc/3) q = u, d, s

= 3.7(Nc/3) q = u, d, s, c, b
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The Feynman Rules of QCD
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From QED to QCD:  physical states

For gluons the situation is different, since k1· M ~ ε2· k2 . So the production of two unphysical 
gluons is not zero!!

X

phys pol

✏µi ✏
⇤⌫
i = �gµ⌫ +

kµk̄⌫ + k⌫ k̄µ
k · k̄

In QED, due to abelian gauge invariance, one can sum over the polarization of the external photons 
using:

X

pol

✏µi ✏
⇤⌫
i = �gµ⌫

I In fact the longitudinal and time-like component cancel each other, no matter what the choice for 
ε2 is. The production of any number of unphysical photons vanishes. 

In QCD this would give a wrong result!! 

We can write the sum over the polarization in a convenient form using the vector k=(k0, 0,0,-k0).
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In the case of non-Abelian theories it is therefore important to restrict the sum over polarizations 
(and the off-shell propagators) to the physical degrees of freedom. 

Alternatively, one has to undertake a formal study of the implications of gauge-fixing in non-
physical gauges. The outcome of this approach is the appearance of two color-octet scalar degrees 
of freedom that have the peculiar property that behave like fermions. 

Ghost couple only to gluons and appear in internal loops and as external states (in place of two 
gluons). Since they break the spin-statistics theorem their contribution can be negative, which is 
what is require to cancel the the non-physical dof in the general case. 

Adding the ghost contribution gives 

which exactly cancels the non-physical polarization in a covariant gauge.

From QED to QCD:  physical states

−

∣

∣

∣

∣

ig2

sfabcta
1

2k1 · k2

v̄(q̄)k̸1u(q)

∣

∣

∣

∣

2

⇒
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Tr(tat
b) = TRδ

ab = TR * 

Tr(ta) = 0 = 0

(tat
a)ij = CF δij = CF * 

= (F c
F

c)ab = CAδab

∑

cd

facdf bcd

= CA* 

The color algebra



BUSSTEPP - Oxford, Aug 2018             Fabio Maltoni

1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra
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Problem:  Show that the one-gluon exchange between quark-antiquark pair can be attractive or 
repulsive. Calculate the relative strength.

t
a
ijt

a
kl =

1

2
(δilδkj −

1

Nc
δijδkl)

l

ji

k

-1/Nc= 1/2 * 

Solution: a q qb pair can be in a singlet state (photon) or in octet (gluon) : 3 ⊗ 3 = 1⊕ 8 

-

l

ji

k

l

ji

k

1

2
(δikδlj −

1

Nc
δijδlk)δki =

1

2
δlj(Nc −

1

Nc
) = CF δlj

1

2
(δikδlj −

1

Nc
δijδlk)taki = −

1

2Nc
t
a
lj

<0, repulsive

>0, attractive

The color algebra
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Very sharp peaks => small widths (~ 100 KeV) compared to hadronic resonances (100 MeV) => 
very long lived states.  QCD is “weak” at scales >> ΛQCD (asymptotic freedom),  non-relativistic 
bound  states are formed like positronium!

The QCD-Coulomb attractive potential is like:

Quarkonium states

V (r) ≃ −CF

αS(1/r)

r
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i
g
√

2
γµ
1
δ

iq

j1
δi1
jq

i
g
√

2

∑
Kµ1µ2µ3δi3

j1
δi1
j2

δi2
j3

i
g2

2

∑
Pµ1µ2µ3µ4δi4

j1
δi1
j2

δi2
j3

δi3
j4

Color algebra: ‘t Hooft double line

≈ 1/2 

This formulation leads to a graphical representation of the simplifications occuring in the large Nc 
limit, even though it is exactly equivalent to the usual one. 

In the large Nc limit, a gluon behaves as a quark-antiquark pair. In addition it behaves classically, in 
the sense that quantum interference, which are effects of order 1/Nc2  are neglected.  Many QCD 
algorithms and codes (such a the parton showers) are based on this picture.
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4. QCD production is a background to precise 
measurements of couplings

w,z

w,z

w,z

w,z

Example: VBF fusion

1. Important channel for light Higgs
both for discovery and measurement

Facts:

3. Characteristic signature:                             
forward-backward jets + RAPIDITY GAP

2. Color singlet exchange in the t-channel

Third jet distribution
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δijδkl

Consider VBF: at LO there is no exchange of color between the quark lines:

CF δijδkl ⇒

MtreeM
∗

1−loop = CF N
2
c ≃ N

3
c

MtreeM
∗

1−loop = 0

1

2
(δikδlj −

1

Nc
δijδkl) ⇒

Also at NLO there is no color exchange! With one little exception.... 
At NNLO exchange is possible but it suppressed by 1/Nc2 

Example: VBF fusion
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QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts 

2. From QED to QCD: the importance of color 

3. Renormalization group and asymptotic freedom
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e-

e+

γ*,Z

R0 =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

∑

f

Q2
f

Zeroth Level:  e+ e- → qq

Very simple exercise. The calculation is 
exactly the same as for the µ+µ-.

Let us consider the process: 
e-e+ → hadrons and for a Q2 >> ΛS2.  
At this point (though we will!) we don’t 
have an idea how to calculate the details of 
such a process. 
So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  

Ren. group and asymptotic freedom

_
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e-

e+

γ*,Z

First improvement:  e+ e- → qq at NLO 
Already a much more difficult calculation!  
There are real and virtual contributions. 
There are: 
* UV divergences coming from loops  
* IR divergences coming from loops and 
real diagrams. Ignore the IR for the moment 
(they cancel anyway) We need some kind of 
trick to regulate the divergences. Like 
dimensional regularization or a cutoff M.  
At the end the result is VERY SIMPLE:

R1 = R0

(

1 +
αS

π

)

No renormalization is needed! Electric charge is left untouched by strong interactions!

_

Ren. group and asymptotic freedom
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Second improvement: e+ e- → qq at NNLO 
Extremely difficult calculation!  
Something new happens:

R2 = R0

(

1 +
αS

π
+

[

c + πb0 log
M2

Q2

]

(αS

π

)2
)

The result is explicitly dependent on the 
arbitrary cutoff scale. We need to perform 
normalization of the coupling and since QCD 
is renormalizable we are guaranteed that this 
fixes all the UV problems at this order.

αS(µ) = αS + b0 log
M2

µ2
α2

S

e-

e+

γ*,Z
_

Ren. group and asymptotic freedom
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Comments: 

1. Now R2 is finite but depends on an arbitrary scale µ, directly and through αs. We had to 
introduce µ because of the presence of M. 
2. Renormalizability guarantees than any physical quantity can be made finite with the SAME 
substitution. If a quantity at LO is AαsN then the UV divergence will be N A b0 log M2 αsN+1. 
3. R  is a physical quantity and therefore cannot depend on the arbitrary scale µ!!  One can show 
that at order by order:

which is obviously verified by Eq. (1).  Choosing µ ≈ Q the logs ...are resummed!

µ2
d

dµ2
Rren = 0 ⇒ Rren(αS(µ),

µ2

Q2
) = Rren(αS(Q), 1)

b0 =
11Nc − 2nf

12π

Rren

2 (αS(µ),
µ2

Q2
) = R0

(

1 +
αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ)

π

)2
)

(1)

αS(µ) = αS + b0 log
M2

µ2
α2

S(2)
>0

Ren. group and asymptotic freedom
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β(αS) ≡ µ2
∂αS

∂µ2
= −b0α

2

S ⇒
4.  From (2) one finds that:

αS(µ) =
1

b0 log µ2

Λ2

This gives the running of αS.  Since b0 > 0, this expression make sense for all scales µ>Λ.  
In general one has:

dαS(µ)

d log µ2
= −b0α

2
S(µ) − b1α

3
S(µ) − b2α

4
S(µ) + . . .

where all bi  are finite (renormalization!).  At present we know the bi up to b3 (4 loop calculation!!). 
b1and b2 are renormalization scheme independent. Note that the expression for αS( µ) changes 
accordingly to the loop order.  At two loops we have:

αS(µ) = αS + b0 log
M2

µ2
α2

S b0 =
11Nc − 2nf

12π
(2) >0

αS(µ) =
1

b0 log µ2

Λ2

[

1 −

b1

b2
0

log log µ2/Λ2

log µ2/Λ2

]

Ren. group and asymptotic freedom
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Roughly speaking, quark loop diagram (a) contributes a negative Nf  term in b0, while the 
gluon loop, diagram (b) gives a positive contribution proportional to the number of colors Nc, 
which is dominant and make the overall beta function negative.

b0 =
11Nc − 2nf

12π
>0     ⇒  β(αS)<0 in QCD

b0 = −

nf

3π
<0     ⇒  β(αS)>0 in QED

αEM (µ) =
1

b0 log µ2

Λ2
QED

Perturbative regionPerturbative region
αEM

Why is the beta function negative in QCD? 
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QED
charge screening

as a result the charge
increases as you get
closer to the center

DIELECTRIC ε>1

Why is the beta function negative in QCD? 
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QCD
charge screening

from quarks

gluons align as little 
magnets along the 
color lines and make 
the field increase at 
larger distances.

charge anti-screening
 from gluons

DIAMAGNETIC μ<1
(=DIELECTRIC ε>1, SINCE με=1) 

PARAMAGNETIC μ>1

Why is the beta function negative in QCD? 
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R(MZ) = R0

(

1 +
αS(MZ)

π

)

= R0(1 + 0.046)

αS(µ) =
1

b0 log µ2

Λ2

Given 

b0 =
11Nc − 2nf

12π

It is tempting to use identify Λ with ΛS=300 MeV and see what we get for LEP I

which is in very reasonable agreement with LEP.   

This example is very sloppy since it does not take into account heavy flavor thresholds, higher 
order effects, and so on. However it is important to stress that had we measured 8% effect at LEP 
I we would have extracted Λ= 5 GeV, a totally unacceptable value...

Ren. group and asymptotic freedom
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Many measurements at different scales all leading to very 
consistent results once evolved to the same reference scale, 
MZ.

αS: Experimental results
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Summary

• We have given evidence of why we think QCD is a good theory: 
hadron spectrum, scaling, QCD is a renormalizable and 
asymptotically free QFT, low energy (broken) symmetries. 

• We have seen how gauge invariance is realized in QCD starting from 
QED. 

• We have illustrated with an example the use of the renormalization 
group and the appearance of asymptotic freedom.
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Scale dependence
Rren

2 (αS(µ),
µ2

Q2
) = R0

(

1 +
αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ)

π

)2
)

As we said,  at all orders physical quantities do not depend on the choice of the 
renormalization scale.  At fixed order, however, there is a residual dependence due to the 
non-cancellation of the higher order logs:   

d

d log µ

N
∑

n=1

cn(µ)αn
S(µ) ∼ O

(

αn
S(µ)N+1(µ)

)

So possible (related) questions are: 

* Is there a systematic procedure to estimate the residual uncertainty in the theoretical prediction? 

* Is it possible to identify a scale corresponding to our best guess for the theoretical prediction?

BTW:  The above argument proves that the more we work the better a prediction becomes!
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Let’s take  our best TH prediction

�tot =
12⇡↵2

s

 
X

q

q2f

!
(1 +�)

�(µ) =
↵S(µ)

⇡
+ [1.41 + 1.92 log(µ2/s)]

✓
↵S(µ)

⇡

◆2

= [�12.8 + 7.82 log(µ2/s) + 3.67 log2(µ2/s)]

✓
↵S(µ)

⇡

◆3

Cross section for e+e- → hadrons:

Scale dependence
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First curve Δ1  

Second curve Δ2 

Possible choice: 

ΔPMS = Δ(µ0) where  at µ0  dΔ/dµ=0  
and error band p∈[1/2,2] 

Take αs(Mz) = 0.117, √s = 34 GeV, 5 flavors and let’s plot ∆(µ) as function 
of p where µ=2p √s. 

Principle of mimimal sensitivity!

Improvement of a factor of two from LO to NLO!  
How good is our error estimate?

Scale dependence
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What happens at αs3?  

Scale dependence
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N=2

N=3

N=1

N=3 less scale dependent. 
Two places where µ is stationary. 
Take the average, then the previous 
estimate was sligthly off.

What happens at αs3?  

Scale dependence
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Bottom line 

There is no theorem that states the right 95% confidence interval for the 
uncertainty associated to the scale dependence of a theoretical predictions. 

There are however many recipes available, where educated guesses 
(meaning physical). For example the so-called BLM choice.  

In hadron-hadron collisions things are even more complicated due to the 
presence of another scale, the factorization scale, and in general also on a 
multi-scale processes...

Scale dependence
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1. Intro and QCD fundamentals 

2. QCD in the final state : e+ e- collisions  

3. QCD in the initial state : p p collisions

Plan
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1. Infrared safety 

2. Towards realistic final states 

3. Jets

e+ e- collisions : QCD in the final state
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New set of questions

1. How can we identify a cross sections for producing quarks and gluons 
with a cross section for producing hadrons?  

2. Given the fact that free quarks are not observed, why is the computed 
Born cross section so good? 

3. Are there other calculable, i.e., that do not depend on the non-perturbative 
dynamics (like hadronization), quantities besides the total cross section? 

The “infrared” behaviour of QCD

64
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Real

Virtual

Anatomy of a NLO calculation

σ
NLO =

∫
R

|Mreal|
2
dΦ3 +

∫
V

2Re (M0M
∗

virt) dΦ2 = finite!

∫
ddk

(2π)d
. . .

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate 
with a final state with no gluon at all (virtual).
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p̄, j

p, i

k, a

p̄, j

p, i

k, a

γ∗, Z γ∗, Z

A = ū(p)̸ϵ(−igs)
−i

̸p + ̸k
Γµv(p̄)ta + ū(p)Γµ

i

̸p̄ + ̸k
(−igs)̸ϵv(p̄)ta

= −gs

[

ū(p)ϵ̸(p̸ + k̸)Γµv(p̄)

2p · k
−

ū(p)Γµ(̸̄p + k̸)ϵ̸v(p̄)

2p̄ · k

]

ta

The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
emission. By neglecting k in the numerators and using the Dirac equation, the amplitude simplifies 
and factorizes over the Born amplitude:

2p · k = p0k0(1 − cos θ)

ABorn = ū(p)Γµv(p̄)Asoft = −gst
a

(

p · ϵ

p · k
−

p̄ · ϵ

p̄ · k

)

ABorn

Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) 
process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq. 
The full calculation is a little bit tedious, but 
since we in any case interested in the issues 
arising in the infra-red, we already start in that 
approximation.
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Anatomy of a NLO calculation
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0 ≤ x1, x2 ≤ 1, and x1 + x2 ≥ 1

Two collinear divergences and a soft one.  Very often you find the integration over phase space 
expressed in terms of x1 and x2, the fraction of energies of the quark and anti-quark:

x1 = 1 − x2x3(1 − cos θ23)/2

x2 = 1 − x1x3(1 − cos θ13)/2

x1 + x2 + x3 = 2

collinear soft

collinear

dσ
VIRT
qq̄ = −σ

Born
qq̄ CF

αS

2π

∫
d cos θ

′
dk′

0

k′

0

1

1 − cos2 θ
2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit 
calculation is necessary:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

By squaring the amplitude we obtain:
REAL
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Anatomy of a NLO calculation
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Summary:
�REAL + �VIRT = 1�1 =?

Solution: regularize the “intermediate” divergences, by giving a gluon a mass (see later) or going to 
d=4-2ε dimensions.

Z 1 1

1� x
dx = � log 0

regularization!
Z 1 (1� x)�2✏

1� x
dx = � 1

2✏

lim
✏!0

(�REAL + �VIRT) = CF
3

4

↵S

⇡
�Born

R1 = R0

(

1 +
αS

π

)

as presented before

�REAL = �BornCF
↵S

2⇡

✓
2

✏2
+

3

✏
+

19

2
� ⇡2

◆

�VIRT = �BornCF
↵S

2⇡

✓
� 2

✏2
� 3

✏
� 8 + ⇡2

◆

This gives:
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1. How can we identify a cross sections for producing (few) quarks and 
gluons with a cross section for producing (many) hadrons?  

2. Given the fact that free quarks are not observed, why is the computed 
Born cross section so good?

      Answers:     

The Born cross section IS NOT the cross section for producing q qbar, since the coefficients 
of the perturbative expansion are infinite!  But this is not a problem since we don’t observe 
q qbar and nothing else. So there is no contradiction here. 

On the other hand the cross section for producing hadrons is finite order by order and its 
lowest order approximation IS the Born. 

A further insight can be gained by thinking of what happens in QED and what is different 
there. For instance soft and collinear divergence are also there. In QED one can prove that 
cross section for producing “only two muons” is zero... 

New set of questions
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Infrared divergences
Even in high-energy, short-distance regime, 
long-distance aspects of QCD cannot be 
ignored.  
 
This is because there are configurations in 
phase space for gluons and quarks, i.e. when 
gluons  are soft and/or when are pairs of 
partons are collinear. 

⇒

∫
ddk

(2π)d

1

k2(k + p)2(k − p̄)2

also for soft and collinear or collinear configurations associated to the virtual partons with 
the region of integration of the loop momenta.

Asoft = −gst
a

(

p · ϵ

p · k
−

p̄ · ϵ

p̄ · k

)

ABorn
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k+
≃

√
s/2

k−

≃ (kT + 2k+k−)
√

s/2

x+
≃ 1/k−

x−

≃ 1/k+

large

small

large

small

travel a long 
distance along the 

light-cone

Space-time picture of IR singularities
The singularities can be understood in terms of light-cone coordinates. Take pµ=(p0, p1, p2, p3) and  
define p±=(p0±p3)/√2. Then choose the direction of the + axis as the one of the largest between + 
and - . A particle with small virtuality travels for a long time along the x+  direction. 
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Infrared divergences arise from interactions that happen a long time after the 
creation of the quark/antiquark pair. 

When distances become comparable to the hadron size of ~1 Fermi, quasi-
free partons of the perturbative calculation are confined/hadronized non-
perturbatively. 

We have seen that in total cross sections such divergences cancel. But what 
about for other quantities? 

Obviously, the only possibility is to try to use the pQCD calculations for 
quantities that are not sensitive to the to the long-distance physics. 

Can we formulate a criterium that is valid in general?

YES!  It is called INFRARED SAFETY

72

Infrared divergences
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Infrared-safe quantities
DEFINITION: quantities are that are insensitive to soft and collinear 
branching.  

For these quantities, an extension of the general theorem (KLN) exists 
which proves that infrared divergences cancel between real and virtual 
or are simply removed by kinematic factors.  

Such quantities are determined primarily by hard, short-distance 
physics. Long-distance effects give power corrections, suppressed by 
the inverse power of a large momentum scale (which must be present in 
the first place to justify the use of PT).  

Examples:  
1. Multiplicity of gluons is not IRC safe 
2. Energy of hardest particle is not IRC safe 
3. Energy flow into a cone is IRC safe 
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q

q

Event shape variables

pencil-like spherical
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Event shape variables

The idea is to give more information than just 
total cross section by defining “shapes” of an 
hadronic event (pencil-like, planar, spherical, 
etc..) 

In order to be comparable with theory it MUST 
be IR-safe, that means that the quantity should 
not change if one of the parton “branches”  pk →pi 
+ pj  

Examples are : Thrus t , Spheroci ty, C-
parameters,... 

Similar quantities exist for hadron collider too, 
but they much less used (so far…)  
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Is the thrust IR safe?

T = maxn⃗

∑
i
p⃗i · n⃗∑
i
p⃗i

|(1� �)~pk · ~u|+ |�~pk · ~u| = |~pk · ~u|

|(1� �)~pk|+ |�~pk| = |~pk|
and
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1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2
− 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

−

3(3T − 2)(2 − T )

1 − T

]

.

Calculation of event shape variables: Thrust
The values of the different event-shape variables for different topologies are

O(αS2) corrections (NLO) are also 
known. Comparison with data provide 
test of QCD matrix elements, through 
shape distribution and measurement 
of αS from overall rate. Care must be 
taken around T=1 where  
(a) hadronization effects become large 
and  
(b) large higher order terms of the 
form αSN [log2N-1 (1-T)]/(1-T) need to 
be resummed.  
At lower T multi-jet matrix element 
become important. 
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QCD in the final state

1. Infrared safety 

2. Towards realistic final states 

3. Jets
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?γ*,Z

79

Towards realistic predictions 
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�2j = �Born

"
1� ↵SCF

⇡
log2 y +

1

2!

✓
↵SCF

⇡
log2 y

◆2

+ . . .

#
= �Borne�

↵SCF
⇡ log2 y

Assuming “abelian” gluons one finds that something magic happens at higher orders: 

�3j = �Born↵SCF

⇡
log2 y e�

↵SCF
⇡ log2 y

�nj = �Born 1

n!

✓
↵SCF

⇡
log2 y

◆n

e�
↵SCF

⇡ log2 y

...

The number of jets is distributed as a Poisson with average (and the full QCD result):

< nj >= 2 +
↵SCF

⇡
log2 y < nj >QCD=

CF

CA
exp

s
↵SCA

2⇡
log2

1

y

80

More exclusive quantities

y = M2/s
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Identifying one particle with one jet at resolution scale of Λs  one obtains an estimate 
for the average number of particles in an event (multiplicity):

< np >=
↵SCF

⇡
log2

s

⇤2
s

=
CF

⇡b0
log

s

⇤2
s

ie. the multiplicity grows with the log of the com energy.

Finally the jet mass can also be easily estimated by integrating the 
cross sections over two emispheres identified by the thrust axis:

< m2
j >=

1

2�Born

"Z

(I)
(q + k)2d�g +

Z

(II)
(q + k)2d�g

#
=

↵SCF

⇡
s

This result gives the correct scaling of the jet mass, mj ∼√αs Ej , which is also valid at 
hadron colliders (replacing E with pt)!

< np >QCD= exp

r
2CA

⇡b0
log

s

⇤s
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Parton showers

• We need to be able to describe an 
arbitrarily number of parton branchings, 
i.e. we need to ‘dress’ partons with 
radiation 

• This effect should be unitary: the inclusive 
cross section shouldn’t change when extra 
radiation is added 

• And finally we want to turn partons into 
hadrons (hadronization)....
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2
a

b

c
θ

Mn+1θ ➞ 0

Collinear factorization

• Consider a process for which two particles are separated by a small angle θ. 

• In the limit of θ ➞ 0 the contribution is coming from a single parent particle 
going on shell: therefore its branching is related to time scales which are 
very long with respect to the hard subprocess. 

• The inclusion of such a branching cannot change the picture set up by the 
hard process: the whole emission process must be writable in this limit as the 
simpler one times a branching probability. 

• The first task of Monte Carlo physics is to make this statement quantitative.
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•  The process factorizes in the collinear limit. This procedure it universal!  
 

84

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a

2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

Pg!qq(z) = TR

⇥
z2 + (1� z)2

⇤
, Pg!gg(z) = CA


z(1� z) +

z

1� z
+

1� z

z

�
,

Pq!qg(z) = CF


1 + z2

1� z

�
, Pq!gq(z) = CF


1 + (1� z)2

z

�
.

• Notice that what has been roughly called ‘branching probability’ is actually a 
singular factor, so one will need to make sense precisely of this definition. 

• At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi 
splitting kernels are defined as:

Collinear factorization
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• t can be called the ‘evolution variable’ (will become clearer later): it can be the 
virtuality m2 of particle a or its pT2 or E2θ2 ... 

•It represents the hardness of the branching and tends to 0 in the collinear 
limit. 

• Indeed in the collinear limit one has:  
so that the factorization takes place  
for all these definitions:

d✓2/✓2 = dm2/m2 = dp2T /p
2
T
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2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a

2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

•  The process factorizes in the collinear limit. This procedure it universal!  
 

m2 ' z(1� z)✓2E2
a

p2T ' zm2

Collinear factorization
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2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a

2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

•  The process factorizes in the collinear limit. This procedure it universal!  
 

Collinear factorization

• z is the “energy variable”: it is defined to be the energy fraction taken by 
parton b from parton a. It represents the energy sharing between b and c and 
tends to 1 in the soft limit (parton c going soft) 

• Φ is the azimuthal angle. It can be chosen to be the angle between the 
polarization of a and the plane of the branching.
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• Now consider Mn+1 as the new core process and use the recipe we used for the first 
emission in order to get the dominant contribution to the (n+2)-body cross section: add 
a new branching at angle much smaller than the previous one:  
 
 

• This can be done for an arbitrary number of emissions. The recipe to get the leading 
collinear singularity is thus cast in the form of an iterative sequence of emissions 
whose probability does not depend on the past history of the system: a ‘Markov chain’. 
No interference!!!

Multiple emission
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|Mn+2|2d�n+2 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

⇥dt0

t0
dz0

d�0

2⇡

↵S

2⇡
Pb!de(z

0)

θ, θ’ ➞ 0  
θ’ ≪ θ

2
a

b

c
θ

θ’

d

e ×
b

c

a

2a

Mn

d

e

b×Mn+2
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• The dominant contribution comes from the region where the subsequently emitted 
partons satisfy the strong ordering requirement: θ ≫ θ’ ≫ θ’’... 
For the rate for multiple emission we get  
 
 
 
 
where Q is a typical hard scale and Q0 is a small infrared cutoff that separates 
perturbative from non perturbative regimes. 

• Each power of αs comes with a logarithm. The logarithm can be easily large, and 
therefore it can lead to a breakdown of perturbation theory.
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Z Q2

Q2
0

dt

t

Z t

Q2
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dt0

t0
...
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dt(k�1)

t(k�1)
/ �n

⇣↵S
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θ
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Mn

d
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Multiple emission
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Absence of interference
• The collinear factorization picture gives a branching sequence for a given leg 

starting from the hard subprocess all the way down to the non-perturbative 
region. 

• Suppose you want to describe two such histories from two different legs: these 
two legs are treated in a completely uncorrelated way. And even within the 
same history, subsequent emissions are uncorrelated. 

• The collinear picture completely misses the possible interference effects 
between the various legs. The extreme simplicity comes at the price of 
quantum inaccuracy. 

• Nevertheless, the collinear picture captures the leading contributions: it gives 
an excellent description of an arbitrary number of (collinear) emissions: 

• it is a “resummed computation”  

• it bridges the gap between fixed-order perturbation theory and the non-
perturbative hadronization.
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The differential probability for the branching a ⟶ bc between scales t and 
t+dt knowing that no emission occurred before:  
 

The probability that a parton does NOT split between the scales t and t+dt is 
given by 1-dp(t). Probability that particle a does not emit between scales Q2 
and t

Sudakov form factor
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�(Q2, t) =
⌅

k

�
1�

⇤

bc

dtk
tk

⇧
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

⇥
=

exp

�
�

⇤

bc

⇧ Q2

t

dt⇥

t⇥
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

⇥
= exp

�
�

⇧ Q2

t
dp(t⇥)

⇥

dp(t) =
�

bc

dt

t

⇥
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

Δ(Q2,t) is the Sudakov form factor
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Parton shower algorithm

91

• The Sudakov form factor is the heart of the parton shower. It gives the 
probability that a parton does not branch between two scales 

• Using this no-emission probability the branching tree of a parton is generated. 
• Define dPk as the probability for k ordered splittings from leg a at given scales  
 
 
 
 

• Q02 is the hadronization scale (~1 GeV). Below this scale we do not trust the 
perturbative description for parton splitting anymore. 

• This is what is implemented in a parton shower, taking the scales for the 
splitting ti randomly (but weighted according to the no-emission probability).

dP1(t1) = �(Q2, t1) dp(t1)�(t1, Q2
0),

dP2(t1, t2) = �(Q2, t1) dp(t1) �(t1, t2) dp(t2) �(t2, Q2
0)⇥(t1 � t2),

... = ...

dPk(t1, ..., tk) = �(Q2, Q2
0)

k�

l=1

dp(tl)⇥(tl�1 � tl)
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Unitarity

• The parton shower has to be unitary (the sum over all branching trees should 
be 1). We can explicitly show this by integrating the probability for k 
splittings: 
 
 

• Summing over all number of emissions  
 
 

• Hence, the total probability is conserved
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dPk(t1, ..., tk) = �(Q2, Q2
0)

k�
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dp(tl)⇥(tl�1 � tl)
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dPk(t1, ..., tk) = �(Q2, Q2
0)

1
k!

�⇤ Q2

Q2
0

dp(t)

⇥k

, ⇥k = 0, 1, ...

�⇤

k=0

Pk = �(Q2, Q2
0)
�⇤

k=0

1
k!

�⌅ Q2

Q2
0

dp(t)

⇥k

= �(Q2, Q2
0) exp

�⌅ Q2

Q2
0

dp(t)

⇥
= 1
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• We have shown that the showers is unitary. However, how are the IR 
divergences cancelled explicitly? Let’s show this for the first emission:  
Consider the contributions from (exactly) 0 and 1 emissions from leg a: 
 

• Expanding to first order in αs gives 

• Same structure of the two latter terms, with opposite signs: cancellation of 
divergences between the approximate virtual and approximate real 
emission cross sections. 

• The probabilistic interpretation of the shower ensures that infrared 
divergences will cancel for each emission.

Cancellation of singularities
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Choice of evolution parameter

• There is a lot of freedom in the choice of evolution parameter 
t. It can be the virtuality m2 of particle a or its pT2 or E2θ2 ... 
For the collinear limit they are all equivalent 

• However, in the soft limit (z ⟶ 1) they behave differently 

• Can we chose it such that we get the correct soft limit?
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�(Q2, t) = exp

�
�

⇤

bc

⌅ Q2

t

dt⇥

t⇥
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

⇥

YES! It should be (proportional to) the angle θ
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Angular ordering

Radiation inside cones around the orginal partons is allowed (and described 
by the eikonal approximation), outside the cones it is zero (after averaging 
over the azimuthal angle)
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photon+
photon
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Intuitive explanation

If the transverse wavelength of the emitted gluon is longer than the 
separation between q and qbar, the gluon emission is suppressed, 
because the q qbar system will appear as colour neutral (i.e. dipole-
like emission, suppressed) 

Therefore d>1/k⊥ , which implies    θ < φ.

Angular ordering
(slide by M. Mangano)

An intuitive explanation of angular ordering

φ

θμ!
k

p

Distance between q and qbar after τ:

d =  φτ = (φ/θ) 1/k⊥

If the transverse wavelength of the emitted gluon is longer than 
the separation between q and qbar, the gluon emission is 
suppressed, because the q qbar system will appear as colour 
neutral (=> dipole-like emission, suppressed)

μ! = (p+k)! = 2E k₀ (1-cosθ) 
∼ E k₀ θ! ∼ E k⊥ θ

Lifetime of the virtual intermediate state:

τ < γ/μ = E/μ!  = 1 / (k₀θ!)= 1/(k⊥θ)

Therefore d> 1/k⊥ , which implies θ < φ
12Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 25 / 83
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• Lifetime of the virtual intermediate state:  
τ < γ/µ = E/µ2 = 1/(k0θ2) = 1/(k⊥θ) 

• Distance between q and qbar after τ: 
d = φτ = (φ/θ) 1/k⊥

μ2 = (p+k)2 = 2E k0 (1-cosθ)  
∼ E k0 θ2 ∼ E k⊥ θ
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Angular ordering
The construction can be iterated to the next 
emission, with the result that the emission 
angles keep  getting smaller and smaller. 
One can generalize it to a generic parton of 
color charge Qk splitting into two partons i 
and j, Qk=Qi+Qj.  The result is that inside 
the cones i and j emit as independent 
charges, and outside their angular-ordered 
cones the emission is coherent and can be 
treated as if it was directly from color 
charge Qk.  

KEY POINT FOR THE MC! 

Angular ordering is automatically satisfied 
in θ ordered showers! (and easy to account 
for in pT ordered showers).
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e-

e+

Cluster model

98

The structure of the perturbative evolution including angular ordering, 
leads naturally to the clustering in phase-space of color-singlet parton 
pairs (preconfinement). Long-range correlations are strongly suppressed. 
Hadronization will only act locally, on low-mass color singlet clusters.
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Parton Shower MC

99

A parton shower program associates one of the possible histories (and pre-
histories in case of pp collisions) of an hard event in an explicit and fully detailed 
way, such that the sum of the probabilities of all possible histories is unity.
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1. Infrared safety 

2. Towards realistic final states 

3. Jets

100

QCD in the final state
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q

q

Jets

2-jets 3-jets 4-jets

Jets are in the eye of the beholder!

GavinSalam®

same event!!
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Jet algorithms

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

GavinSalam®

Projection to jets must be resilient to QCD effects

A jet definition is a fully specified set of rules for projecting information 
from hundreds of hadrons, onto a handful of parton-like objects. 

In the projection a lot of information is lost. 

102



Fabio MaltoniBUSSTEPP - Oxford, Aug 2018             Fabio Maltoni

•The precise definition of a procedure how to cut be 
three-jet (and multi-jet) events is called “jet 
algorithm”. 

•Which jet algorithm to use for a given measurement/
experiment needs to be found out. Different 
algorithms have very different behaviors both 
experimentally and theoretically. Of course, it is 
important that a complete information is given on the 
jet algorithm when experimental data are to be 
compared with theory predictions! 

•Weinberg-Sterman jets (intuitive definition):                     
“An event is identified as a 2-jets if one can find 2 
cones with opening angle δ that contain all but a 
small fraction εE of the total energy E”.

Jet algorithms
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Jets (top-down) at e-e+
Let’s see when the various contributions add up to 
the Sterman-Weinberg 2-jet cross section: 

✸ The Born cross section contributes to the 2-jet 
cross section, INDEPENDENTLY of ε and δ. 

✸The SAME as above for the virtual corrections. 

✸The real corrections when k0<εE (soft). 

✸The real corrections when k0>εE AND θ<δ 
   (collinear). 

Born + Virtual + Real (a) + Real (b)= σ
Born

− σ
Born 4αSCF

2π

∫ E

ϵE

dk0

k0

∫ π−δ

δ

d cos θ

1 − cos2 θ

As long as  δ and ε are not too small, we find that the fraction of 2-jet cross section is almost 1! 
At high energy most of the events are two-jet events. As the energy increases the jets become 
thinner. 

= �Born

✓
1� 4↵SCF

2⇡
log ✏ log �

◆
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A very simple jet iterative algorithm 
(bottom-up)

1. Consider e+e- →N partons 
2. Consider all pairs i and j and 
calculate 
    IF  

min (pi + pj)2 < ycut s  
THEN   
replace the two partons i,j by pij 

= pi + pj   and decrease N → N-1 
3.  IF N=1 THEN stop ELSE goto 
2. 
4.  N = number of jets in the event 
using the “scale” y. 

The result of the algo can be calculated  
analytically at NLO: 

�2j = �Born

✓
1� ↵SCF

⇡
log2 y + . . .

◆

�3j = �Born↵SCF

⇡
log2 y + . . .
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Infrared safety and jet algo’s
GavinSalam®

•Take hardest particle as seed for cone axis 

•Draw cone around seed 

•Sum the momenta use as new seed direction, iterate until stable 

•Convert contents into a “jet” and remove from event
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Infrared safety and jet algo’s
GavinSalam®
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Infrared safety and jet algo’s

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞
n

αs x (− )∞
n

αs x (+ )∞
n

αs x (− )∞
n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

GavinSalam®

Invalidates comparison with perturbation theory results
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kT  algorithm at hadron colliders

Measure (dimensionful):

dij = min(p2ti, p
2
tj)

�R2
ij

R2

diB = p2ti

The algorithm proceeds by searching for the smallest of the dij and the diB.  
If it is a then dij particles i and j  are recombined* into a single new particle.  
If it is a diB then i is removed from the list of particles, and called a jet. 

This is repeated until no particles remain. 

kT algorigthm “undoes” the QCD shower

*a 4-momenta recombination scheme is needed (E-scheme)

GavinSalam®
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Anti-kT  algorithm

Measure (dimensionful):

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2

diB =
1

p2ti

Objects that are close in angle prefer to cluster early, but that clustering tends to occur with a hard 
particle (rather than necessarily involving soft particles). This means that jets `grow' in concentric 
circles out from a hard core, until they reach a radius R, giving circular jets. 

Unlike cone algorithms the `anti-kT' algorithm is collinear (and infrared) safe. This has led to be the 
default jet algorithm at the LHC. 

It’s a handy algorithm but it does not provide internal structure information.

GavinSalam®
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Summary

1. We have studied the problem of infrared divergences in the calculation of 
the fully inclusive cross section, with the help of the soft limit.  

2. We have introduced the concept of an infrared safe quantity, i.e., an 
observable which is both computable at all orders in pQCD and has a well 
defined counterpart at the experimental level.  

3. We have discussed more exclusive quantities, from shape functions to fully 
exclusive quantities and compared them with e+ e- data. 

3. We have explained the basic concept idea of a parton shower MC. 

4. We have introduced the idea of jet algorithms (top-down and bottom-up) and 
discussed the most recent algorithms.
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1. Intro and QCD fundamentals 

2. QCD in the final state : e+ e- collisions  

3. QCD in the initial state : p p collisions
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QCD in the initial state

1. DIS: from the parton model to pQCD 

2. Q2 Evolution and PDF’s 

3. pp collisions : a glimpse
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“deep inelastic” : Q2 >> 1 GeV2

“scaling limit”: Q2 →∞, x fixed

The idea is that by measuring all the kinematics variables of the outgoing electron 
one can study the structure of the proton in terms of the probe characteristics, 
Q2,x,y... Very inclusive measurement from the QCD point of view.

cms energy2

momentum transfer2

scaling variable
energy loss
rel. energy loss

recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

DIS: the parton model
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* Divide phase-space factor into a leptonic and a hadronic part:

* Separate also the square of the Feynman amplitude, by defining:

* The leptonic tensor can be calculated explicitly:

* Combine the hadronic part of the amplitude and phase space into “hadronic tensor”  and 
use just Lorentz symmetry and gauge invariance to write

q q

pp

Wµν(p, q) =

(

−gµν −

qµqν

q2

)

F1(x, Q2)+

(

pµ − qµ

p · q

q2

) (

pν − qν

p · q

q2

)

1

p · q
F2(x, Q2)

d� =
d3k0

(2⇡)32E0 d�X =
ME

8⇡2
y dy dx d�X

1

4

X
|M|2 =

e4

Q4
Lµ⌫hXµ⌫

Lµ⌫ =
1

4
tr[k/�µk0/�⌫ ] = kµk0⌫ + k0µk⌫ � gµ⌫k · k0

Wµ⌫ =
X

X

Z
d�XhXµ⌫
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 

Comments:

�ep!eX =
X

X

1

4ME

Z
d�

1

4

X

spin

|M|2
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We want to “watch” the scattering from a frame where the physics is clear. Feynman suggested 
that what happens can be best understood  in a reference frame where the proton moves very 
fast and Q>>mh is large.

(p+, p−, p⃗T )
1
√

2
(mh, mh, 0⃗)

1
√

2
(
Q

x
,
xm2

h

Q
, 0⃗)

(q+, q−, q⃗T ) 1
√

2
(−mhx,

Q2

mhx
, 0⃗)

1
√

2
(−Q, Q, 0⃗)

4-vector hadron 
rest frame

Breit frame

(a+, a−, a⃗) → (eωa+, e−ωa−, a⃗) with eω = Q/(xmh)

You can check that a Lorentz transformation acts on a light-cone formulation of the four-
momentum:
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large

Now let’s see how the proton looks in this frame, and in the light-cone 
space coordinates (suitable for describing relativistic particles).

Lorentz transformation divides out the 
interactions. Hadron at rest has separation of 
order: 

Δx+~Δx- ~1/m,  

while in the moving hadron has: 

Δx+~1/m x Q/m = Q/m2     LARGE 

Δx- ~1/m x m/Q = 1/Q,      SMALL 
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And now let the virtual photon hit the fast moving hadron:

S t r u c k q u a r k 
kicked into the x- 
direction

In this frame the time scale of a typical parton-parton interaction is much larger than the hard 
interaction time. 

So we can picture the hadron as an incoherent flux of partons (p+,p-,p⊥)i , each carrying a 
fraction 0<ξi = pi+/p+<1 of the total available momentum.

Moving hadron has: 

Δx+~Q/m2,  

interaction with photon q-~Q is 
localized within  

Δx+ ~ 1/Q,       

thus quarks and gluons are like 
partons and effectively free.
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p
⇠p short distance

long distance

The space-time picture suggests the possibility of separating short- and long-distance physics 
⇒ factorization! Turned into the language of Feynman diagrams DIS looks like:

d2�

dxdQ2
=

Z 1

0

d⇠

⇠

X

i

fi(⇠)
d2�̂

dxdQ2
(
x

⇠
, Q2)

where
is the probability to find a 
parton with flavor i in an 
hadron h carrying a light-
cone momentum ξp+

is the cross section for 
electron-parton scattering

d2�̂

dxdQ2
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dσ̂

dQ2
=

2πα2e2
q

Q4

[

1 + (1 − y)2
]

Notice that the outgoing quark is on its mass shell: 

ξ = x

d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

δ(x − ξ)

This implies that               at LO!

We can now explain scaling within the parton model: 

Let’s take the LO computation we performed for e+e- → qq, cross it (which also mean to be 
careful with color), and use it the DIS variables to express the differential cross section in dQ2
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

We can now compare with our “inclusive” description of DIS in terms of structure 
functions (which, BTW, are physical measurable quantities),

with our parton model formulas:

we find (be careful to distinguish x and ξ) 

* So we find the scaling is true: no dependence on Q2. 
* q and qbar enter together : no way to distinguish them with NC. Charged currents are needed. 
* FL(x) =  F2(x) - 2 F1(x) vanishes at LO (Callan-Gross relation), which is a test that quarks are 
spin 1/2 particles! In fact if the quarks where scalars we would have had F1(x) = 0 and F2=FL .

with
d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

e2

q
δ(x − ξ)
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d2σ

dxdQ2
=

∫ 1

0

dξ

ξ

∑
i

fi(ξ)
d2σ

dx̂dQ2
(
x

ξ
, Q2)

F2(x) = 2xF1 =
∑

i=q,q̄

∫ 1

0

dξfi(ξ) xe2

qδ(x − ξ) =
∑

i=q,q̄

e2

q xfi(x)

DIS: the parton model
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Probed at scale Q, sea contains all quarks flavours with mq less than Q.  
For Q ∼1 we expect

And experimentally one finds 

Thus quarks carry only about 50% of proton’s momentum. The rest is carried by gluons.  
Although not directly measured in DIS, gluons participate in other hard scattering 
processes such as large-pt and prompt photon production.
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The sea is NOT SU(3) flavor symmetric.  

The gluon is huge at small x  

There is an asymmetry between the ubar 
and dbar quarks in the sea. 

Note that there are uncertainty bands!!

Comments:
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1.What has QCD to say about the naïve parton model? 

2.Is the picture unchanged when higher order corrections are included? 

3.Is scaling exact?
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Scaling violations

At HERA scaling violations were observed!

first ep collider
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We got a long way without even invoking QCD. Let’s do it now. 

The first diagram to consider is the same as in the parton model: 

At NLO we find again both real and virtual corrections:

Our experience so far: have to expect IR divergences!  
In order to make the intermediate steps of the calculation finite, we introduce a 
regulator, which will be removed at the end. 

Dimensional regularization is the best choice to perform serious calculations. 
However for illustrative purposes other regulators (that cannot be easily used beyond 
NLO) are better suited. We’ll use here a small quark/gluon mass.

αS corrections to the LO process        photon-gluon fusion
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Once we compute the diagrams we indeed find that UV and soft divergences all cancel, 
but for a collinear divergence arising when the emitted gluon becomes collinear to the 
incoming quark: 

= e2

qx

[

δ(1 − x) +
αS

4π

[

Pqq(x) log
Q2

m2
g

+ Cq
2
(x)

]]

d2σ̂
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q
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e2
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q

+ C
g
2
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]]

The presence of large logs is a clear sign that we have a 
residual infrared sensitivity that we have to deal with! 

IR cutoff
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Important observations:
1. Large logarithms of Q2/m2  or (1/ε in dim reg) incorporate ALL the RESIDUAL long-
distance physics left after summing over all real and virtual diagram. These terms are of a 
collinear nature. 

2. The coefficients Pij(x) that multiply the log’s are UNIVERSAL and calculable in 
perturbative QCD. 

They are called SPLITTING FUNCTIONS and their physical meaning is easy to give: 

Pij(x) give the probability that a parton j splits collinearly into a parton i + something else 
carrying a momentum fraction x of the original parton j.

 Pqq(x)  Pgq(x)  Pqg(x)  Pgg(x)
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So the natural question is: what is it that is going wrong? Do we have IR sensitiveness in a 
physical observable? Well not yet!! 

To obtain the physical cross section we have to convolute our partonic results with the 
parton densities, as we have learned from the parton model.  

For instance: 

And now comes the magic:  as long as the divergences are universal and do not depend on 
the hard scattering functions but only on the partons involved in the splitting, we can 
reabsorb the dependence on the IR cutoff (once for all!) into fq,0(x):

“Renormalized” parton densities: we have factorized the IR collinear physics into a 
quantity that we cannot calculate but it is universal. So how does the final result looks like?

F q
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F q
2
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∑
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The structure function is a MEASURABLE object, 
therefore, at all orders, it cannot depend on the 
choice of scales.
This will lead exactly to the same concepts of 
renormalization group invariance that we found 
in the UV.

Long distance physics is universally factorized into 
the parton distribution functions. These cannot 
be calculated in pQCD. They depend on μf in the 
exact way so as to cancel the overall 
dependence at all orders. 

Short-distance (Wilson coefficient), perturbative 
calculable and finite. It depends on the 
factorization scale. It also depends on finite terms 
which define the factorization scheme.

The final result depends of course also on αS 
and t he re fo re to t he cho i ce o f t he 
renormalization scale.
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F q
2
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Questions: 

1. Can we exploit the fact that physical quantities have to be scale 
independent to gain information on the pdfs? 

2. What exactly have we gained in hiding the large logs in the 
redefined pdf’s?  Aren’t we just hiding the problem?
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1. DIS: from the parton model to pQCD 

2. Q2 Evolution and PDF’s 

3. pp collisions : a glimpse

QCD in the initial state
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F2(x, Q2) ∼
∑

i

fi(x, µf ) ⊗ F̂2(x,
Q

µf
)

As a first step  it is very convenient to transform the nasty convolution into a simple 
product. This can be done with the help of a Mellin transform:

Let us show that a Mellin transform turns a convolution into a simple product:
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Let’s now apply it to F2

we get:

dF2(x, Q2)

d log µf
= 0

dq(N,µf )

d log µf
F̂2(N,

µf

Q
) + q(N,µf )

dF̂2(N,
µf

Q
)

d log µf
= 0

These are called anomalous 
dimensions and are just the 
Mellin transform of the 
corresponding spl itt ing 
function

whose solution is:

The pdf  “evolves” with the scale!
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Now dqq(1)=0 and dqq(N) <0 for N>1. Thus as t 
increases q decreases at large x and increases at small 
x. Physically this is due to an increase in the phase 
space for gluon emission by quarks as t increases, 
leading to a loss of momentum.

where

The solution for q can be rewritten in terms of t and αS 
as follows:

Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u

dqq(N) = �(0)
qq /2⇡b0

q(N, t) = q(N, t0)

✓
↵S(t0)

↵S(t)

◆dqq(N)
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Q2
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u
u

d d u
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g
u u

In fact the equations are a bit more complicated as quarks and gluons do mix. 
It is convenient to introduce two linear combinations, the singlet Σ and the non-singlet qNS to  
separate the piece that mixes with that that does not:

⌃(x,Q2) =
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these evolve independently

d

dt

✓
�⌃(N,Q2)
�g(N,Q2)

◆
=

↵S(t)

2⇡

✓
�S
qq 2nf�S

qg

�S
gq �S

gg

◆ ✓
�⌃(N,Q2)
�g(N,Q2)

◆

d

dt
�qNS(N,Q2) =

↵S(t)

2⇡
�NS
qq (N,↵S(t))�qNS(N,Q2)

The complete evolution equations (in Mellin space)  to solve are: 
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Q2
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gd
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u u

•As Q2  increases, pdf’s decrease at large x and increase at small x due to radiation and momentum loss. 
•Gluon singularity at N=1 ⇒ it grows more at small x. 
•γqq(1)=0  ⇒ number of quarks conserved.

StefanoForte®
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MSTW2008
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MSTW2008
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We now have a strategy to get a reliable result in perturbation theory: 

1. Calculate the short distance coefficient in pQCD corresponding to an 
observable. All divergences will cancel except those due to the collinear 
splitting of initial partons. 

2. Re-absorbe such divergences in the pdf’s and introduce a factorization 
scale. 

3. Extract from experiment the initial condition for the pdf’s at a given 
reference scale. 

4. Evolve the pdf’s at the scale of the process we are interested it. In so doing 
all large logs of the factorization scale over a small scale are resummed.

Final strategy for QCD predictions
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QCD in the initial state

1. DIS: from the parton model to pQCD 

2. Q2 Evolution and PDF’s 

3. pp collisions : a glimpse
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LHC master formula

p

× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
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)σX =
∑
a,b
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2
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p

µFµF

x1E x2E

`+ `�

long distance
long distance

(30)
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We describe the collision in terms of parton 
energies 

E1= x1 Ebeam 
E2= x2 Ebeam 

Obviously the partonic c.m.s. frame will be in  
general boosted. Let us say that the two partons 
annihilate into a particle of mass M.   

M
2

= x1x2S = x1x24E
2
beam

y =
1

2
log

x1

x2

x1 =

M
√

S
e
y

x2 =

M
√

S
e
−y

pp kinematics
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Rapidity and pseudo-rapidity
y =

1

2
log

E + pz

E − pz

=
1

2
log

p+

p−

1. Rapidity transforms additively under a Lorentz boost : y→y’=y+ω  
2. Rapidity differences are Lorentz invariants : Δy→Δy’  
3. Pseudo rapidity has a direct experimental definition but no special properties under the Lorentz boosts. 
4. For massless particles rapidity and pseudo rapidity are the same.

RAPIDITY

PSEUDORAPIDITY

tan θ =
pT

pz

with
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1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist
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Sherpa artist

2. Parton Shower 

☞ where new physics lies 

☞ process dependent
☞ first principles description

☞ it can be systematically improved

1. High-Q  Scattering2

3. Hadronization 4. Underlying Event 
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Sherpa artist

1. High-Q  Scattering2 2. Parton Shower 

4. Underlying Event 3. Hadronization 

☞ QCD -”known physics”
☞ universal/ process independent
☞ first principles description
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1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist

☞ universal/ process 
independent

☞ model  dependent

☞ low Q   physics2
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3. Hadronization 4. Underlying Event 

Sherpa artist

☞ energy and process dependent 
☞ model  dependent

☞ low Q2   physics

2. Parton Shower 1. High-Q  Scattering2
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× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
Q2

µ2

R

)σX =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µ
2

F )fb(x2, µ
2

F )

σ̂ab→X = σ0 + αSσ1 + α
2

Sσ2 + . . .

Two  ingredients necessary: 

1. Parton Distribution Functions  (from exp, but evolution from th). 

2. Short distance coefficients as an expansion in αS (from th).

Leading order
Next-to-leading order

Next-to-next-to-leading order

LHC master formula
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