

Collider Phenomenology: basics

Fabio Maltoni Centre for Cosmology, Particle Physics and Phenomenology (CP3) Université catholique de Louvain

The purpose of collider physics is to test theoretical predictions experimentally in a controllable environment

Collider	Site	Initial State	Energy	Discovery / Target
SPEAR	SLAC	e^+e^-	4 GeV	charm quark, tau lepton
PETRA	DESY	e^+e^-	38 GeV	gluon
SppS	CERN	$p \bar{p}$	600 GeV	W, Z bosons
LEP	CERN	e^+e^-	210 GeV	SM: elw and QCD
SLC	SLAC	e^+e^-	90 GeV	elw SM
HERA	DESY	ep	320 GeV	quark/gluon structure of proton
Tevatron	FNAL	p ar p	2 TeV	top quark
BaBar / Belle	SLAC / KEK	e^+e^-	10 GeV	quark mix / CP violation
LHC	CERN	pp	7/8/14 TeV	Higgs boson, elw. sb, New Physics
ILC		e^+e^-	> 200 GeV	hi. res of elw sb / Higgs couplings
CLIC		e^+e^-	3 - 5 TeV	hi. res of elw sb / Higgs couplings
FCC		pp	100 TeV	disc. multi-TeV physics

The reach of collider facilities

$A + B \to M$	production in 2-particl	e collisions:	$M^2 = (p_1 + p_2)^2$	
fixed target:	$p_1 \simeq (E, 0, 0, E)$	before	after	
	$p_2 = (m, 0, 0, 0)$	\longrightarrow 0	$\bullet \longrightarrow$	
	$M \simeq \sqrt{2mE}$	root increase	e in M	
	 root Elaw: large energies dense target: large col 	- root E law: large energy loss in $E_{\rm kin}$ - dense target: large collision rate / luminosity		
<u>collider target:</u>	$p_1 = (E, 0, 0, E)$	before	after	
	$p_2 = (E, 0, 0, -E)$	$\longrightarrow \leftarrow$		
	$M \simeq 2E$ - linear <i>E</i> law: no ener - less dense bunches:	gy loss small collision r	ates	

OXFORD

<u>Energy:</u> ranges from a few GeV to several TeV (LHC)

<u>Luminosity:</u> measures the rate of particles in colliding bunches

 $\mathcal{L} = \frac{N_1 N_2 f}{A} \qquad \qquad N_i = \text{ number of particles in bunches} \\ A = \text{ transverse bunch area} \\ f = \text{ bunch collision rate} \end{cases}$

 $\mathcal{L}\sigma =$ observed rate for process with cross section σ

LHC (targeted): $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 300 \text{ fb}^{-1}$ in 3 years <u>Circular vs linear collider:</u>

charged particles in circular motion: permanently accelerated towards center -> emitting photons as synchrotron light $\Delta E \sim E^4/R$

- large loss of energy [hypothetical TeV collider at LEP: $\Delta E \simeq E$ per turn] - no-more sharp initial state energy

OXFORD

UNIVERSITY OF OXFORD

BUSSTEPP - Oxford, Aug 2018

UNIVERSITY OF

LHC master formula

More exactly

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

where the partonic cross section is calculated by

Crucial pieces for the calculation of the hadronic cross section are the **parton distribution** functions $f_{i/p}$ and the squared matrix element $|\mathcal{M}|^2$

LHC master formula

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

Two ingredients necessary:

- 1. Parton Distribution Functions (from exp, but evolution from th).
- 2. Short distance coefficients as an expansion in α_S (from th).

$$\hat{\sigma}_{ab\to X} = \sigma_0 + \alpha_S \sigma_1 + \alpha_S^2 \sigma_2 + \dots$$

Leading order

Next-to-leading order

Next-to-next-to-leading order

BUSSTEPP - Oxford, Aug 2018

UNIVERSITY OF

Fabio Maltoni

I. High- Q^2 Scattering

2. Parton Shower

where new physics lies

Sherpa artist

first principles description

religious in the systematically improved

3. Hadronization

BUSSTEPP - Oxford, Aug 2018

4. Underlying Event

Fabio Maltoni

Basic (QCD) questions

- What does the LHC master formula imply for phenomenology?
- Can the LHC master formula be derived from first principles?
- What are the key properties of QCD that allow for it?
- Why do we treat strong interactions as they were weak?
- Would an abelian gauge theory also work?
- What about non-perturbative physics?
- Are fixed-order calculations meaningful?
- What is resummation?
- How do I relate a calculation with a few partons with a final state with hundreds/thousands of hadrons?
- How do I define observables that are insensitive to long-distance physics?
- What are jets?
- What is an inclusive vs an exclusive quantity?

Let's go back to the basics then..