# bo2020: wspincorr.nb

File wspincorr.nb, 18.8 KB (added by fabiomaltoni, 8 months ago) |
---|

Line | |
---|---|

1 | (* Content-type: application/vnd.wolfram.mathematica *) |

2 | |

3 | (*** Wolfram Notebook File ***) |

4 | (* http://www.wolfram.com/nb *) |

5 | |

6 | (* CreatedBy='Mathematica 10.4' *) |

7 | |

8 | (*CacheID: 234*) |

9 | (* Internal cache information: |

10 | NotebookFileLineBreakTest |

11 | NotebookFileLineBreakTest |

12 | NotebookDataPosition[ 158, 7] |

13 | NotebookDataLength[ 19130, 707] |

14 | NotebookOptionsPosition[ 17416, 640] |

15 | NotebookOutlinePosition[ 17775, 656] |

16 | CellTagsIndexPosition[ 17732, 653] |

17 | WindowFrame->Normal*) |

18 | |

19 | (* Beginning of Notebook Content *) |

20 | Notebook[{ |

21 | Cell[BoxData[ |

22 | RowBox[{"<<", |

23 | "\"\</Users/marcozaro/Physics/feyncalc-master/FeynCalc/fc.m\>\""}]], "Input"], |

24 | |

25 | Cell[CellGroupData[{ |

26 | |

27 | Cell["Spin correlations in W production at the LHC", "Title", |

28 | CellChangeTimes->{{3.693039048153269*^9, 3.693039055120265*^9}, { |

29 | 3.6931272387546*^9, 3.693127245297575*^9}}], |

30 | |

31 | Cell[CellGroupData[{ |

32 | |

33 | Cell["we compute the cross section u(p1) d~(p2) > e+(p3) v(p4)", "Section", |

34 | CellChangeTimes->{{3.693039062567734*^9, 3.693039094965802*^9}, { |

35 | 3.69312725160856*^9, 3.69312727245778*^9}}], |

36 | |

37 | Cell[BoxData[{ |

38 | RowBox[{ |

39 | RowBox[{ |

40 | RowBox[{"ScalarProduct", "[", |

41 | RowBox[{"p1", ",", "p1"}], "]"}], " ", "=", " ", "0"}], |

42 | ";"}], "\[IndentingNewLine]", |

43 | RowBox[{ |

44 | RowBox[{ |

45 | RowBox[{"ScalarProduct", "[", |

46 | RowBox[{"p2", ",", "p2"}], "]"}], " ", "=", " ", "0"}], |

47 | ";"}], "\[IndentingNewLine]", |

48 | RowBox[{ |

49 | RowBox[{ |

50 | RowBox[{"ScalarProduct", "[", |

51 | RowBox[{"p3", ",", "p3"}], "]"}], " ", "=", " ", "0"}], |

52 | ";"}], "\[IndentingNewLine]", |

53 | RowBox[{ |

54 | RowBox[{ |

55 | RowBox[{"ScalarProduct", "[", |

56 | RowBox[{"p4", ",", "p4"}], "]"}], " ", "=", " ", "0"}], |

57 | ";"}], "\[IndentingNewLine]", |

58 | RowBox[{ |

59 | RowBox[{ |

60 | RowBox[{"ScalarProduct", "[", |

61 | RowBox[{"p1", ",", "p2"}], "]"}], " ", "=", " ", |

62 | RowBox[{"s", "/", "2"}]}], ";"}], "\[IndentingNewLine]", |

63 | RowBox[{ |

64 | RowBox[{ |

65 | RowBox[{"ScalarProduct", "[", |

66 | RowBox[{"p3", ",", "p4"}], "]"}], " ", "=", " ", |

67 | RowBox[{"s", "/", "2"}]}], ";"}], "\[IndentingNewLine]", |

68 | RowBox[{ |

69 | RowBox[{ |

70 | RowBox[{"ScalarProduct", "[", |

71 | RowBox[{"p1", ",", "p3"}], "]"}], " ", "=", " ", |

72 | RowBox[{ |

73 | RowBox[{"-", "t"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]", |

74 | RowBox[{ |

75 | RowBox[{ |

76 | RowBox[{"ScalarProduct", "[", |

77 | RowBox[{"p2", ",", "p4"}], "]"}], " ", "=", " ", |

78 | RowBox[{ |

79 | RowBox[{"-", "t"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]", |

80 | RowBox[{ |

81 | RowBox[{ |

82 | RowBox[{"ScalarProduct", "[", |

83 | RowBox[{"p1", ",", "p4"}], "]"}], " ", "=", " ", |

84 | RowBox[{ |

85 | RowBox[{"-", "u"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]", |

86 | RowBox[{ |

87 | RowBox[{ |

88 | RowBox[{"ScalarProduct", "[", |

89 | RowBox[{"p2", ",", "p3"}], "]"}], " ", "=", " ", |

90 | RowBox[{ |

91 | RowBox[{"-", "u"}], "/", "2"}]}], ";"}]}], "Input", |

92 | CellChangeTimes->{{3.6930391053897133`*^9, 3.6930391058309107`*^9}}] |

93 | }, Open ]], |

94 | |

95 | Cell[CellGroupData[{ |

96 | |

97 | Cell["The quark trace", "Section", |

98 | CellChangeTimes->{{3.693039062567734*^9, 3.693039121124161*^9}, { |

99 | 3.6931272774560013`*^9, 3.693127278919252*^9}}], |

100 | |

101 | Cell[CellGroupData[{ |

102 | |

103 | Cell[BoxData[ |

104 | RowBox[{"quarks", "=", " ", |

105 | RowBox[{ |

106 | RowBox[{ |

107 | RowBox[{"(", |

108 | RowBox[{ |

109 | RowBox[{"g", "/", "2"}], "/", |

110 | RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], "^", "2"}], " ", |

111 | RowBox[{"Tr", "[", |

112 | RowBox[{ |

113 | RowBox[{"GS", "[", "p2", "]"}], ".", |

114 | RowBox[{"GA", "[", "mu", "]"}], ".", |

115 | RowBox[{"(", |

116 | RowBox[{"1", "-", "GA5"}], ")"}], ".", |

117 | RowBox[{"GS", "[", "p1", "]"}], ".", |

118 | RowBox[{"GA", "[", "nu", "]"}], ".", |

119 | RowBox[{"(", |

120 | RowBox[{"1", "-", "GA5"}], ")"}]}], "]"}]}]}]], "Input", |

121 | CellChangeTimes->{{3.693127298399377*^9, 3.693127394646652*^9}, |

122 | 3.69312746452773*^9}], |

123 | |

124 | Cell[BoxData[ |

125 | FormBox[ |

126 | RowBox[{ |

127 | FractionBox["1", "2"], " ", |

128 | SuperscriptBox["g", "2"], " ", |

129 | RowBox[{"(", |

130 | RowBox[{ |

131 | RowBox[{"-", |

132 | RowBox[{"s", " ", |

133 | FormBox[ |

134 | SuperscriptBox[ |

135 | OverscriptBox["g", "_"], |

136 | RowBox[{ |

137 | FormBox[ |

138 | FormBox[ |

139 | FormBox["mu", |

140 | TraditionalForm], |

141 | TraditionalForm], |

142 | TraditionalForm], |

143 | FormBox[ |

144 | FormBox[ |

145 | FormBox["nu", |

146 | TraditionalForm], |

147 | TraditionalForm], |

148 | TraditionalForm]}]], |

149 | TraditionalForm]}]}], "+", |

150 | RowBox[{"2", " ", "\[ImaginaryI]", " ", |

151 | SuperscriptBox["\[Epsilon]", |

152 | RowBox[{ |

153 | FormBox[ |

154 | FormBox["mu", |

155 | TraditionalForm], |

156 | TraditionalForm], |

157 | FormBox[ |

158 | FormBox["nu", |

159 | TraditionalForm], |

160 | TraditionalForm], |

161 | FormBox[ |

162 | OverscriptBox[ |

163 | FormBox["p1", |

164 | TraditionalForm], "_"], |

165 | TraditionalForm], |

166 | FormBox[ |

167 | OverscriptBox[ |

168 | FormBox["p2", |

169 | TraditionalForm], "_"], |

170 | TraditionalForm]}]]}], "+", |

171 | RowBox[{"2", " ", |

172 | FormBox[ |

173 | SuperscriptBox[ |

174 | FormBox[ |

175 | OverscriptBox[ |

176 | FormBox["p2", |

177 | TraditionalForm], "_"], |

178 | TraditionalForm], |

179 | FormBox[ |

180 | FormBox[ |

181 | FormBox["mu", |

182 | TraditionalForm], |

183 | TraditionalForm], |

184 | TraditionalForm]], |

185 | TraditionalForm], " ", |

186 | FormBox[ |

187 | SuperscriptBox[ |

188 | FormBox[ |

189 | OverscriptBox[ |

190 | FormBox["p1", |

191 | TraditionalForm], "_"], |

192 | TraditionalForm], |

193 | FormBox[ |

194 | FormBox[ |

195 | FormBox["nu", |

196 | TraditionalForm], |

197 | TraditionalForm], |

198 | TraditionalForm]], |

199 | TraditionalForm]}], "+", |

200 | RowBox[{"2", " ", |

201 | FormBox[ |

202 | SuperscriptBox[ |

203 | FormBox[ |

204 | OverscriptBox[ |

205 | FormBox["p1", |

206 | TraditionalForm], "_"], |

207 | TraditionalForm], |

208 | FormBox[ |

209 | FormBox[ |

210 | FormBox["mu", |

211 | TraditionalForm], |

212 | TraditionalForm], |

213 | TraditionalForm]], |

214 | TraditionalForm], " ", |

215 | FormBox[ |

216 | SuperscriptBox[ |

217 | FormBox[ |

218 | OverscriptBox[ |

219 | FormBox["p2", |

220 | TraditionalForm], "_"], |

221 | TraditionalForm], |

222 | FormBox[ |

223 | FormBox[ |

224 | FormBox["nu", |

225 | TraditionalForm], |

226 | TraditionalForm], |

227 | TraditionalForm]], |

228 | TraditionalForm]}]}], ")"}]}], TraditionalForm]], "Output", |

229 | CellChangeTimes->{{3.693127361202207*^9, 3.6931273949216747`*^9}, { |

230 | 3.693127449133382*^9, 3.6931274699152*^9}}] |

231 | }, Open ]] |

232 | }, Open ]], |

233 | |

234 | Cell[CellGroupData[{ |

235 | |

236 | Cell["The lepton trace", "Section", |

237 | CellChangeTimes->{{3.693039062567734*^9, 3.693039121124161*^9}, { |

238 | 3.6931272774560013`*^9, 3.6931272881985397`*^9}}], |

239 | |

240 | Cell[CellGroupData[{ |

241 | |

242 | Cell[BoxData[ |

243 | RowBox[{"leptons", "=", " ", |

244 | RowBox[{ |

245 | RowBox[{ |

246 | RowBox[{"(", |

247 | RowBox[{ |

248 | RowBox[{"g", "/", "2"}], "/", |

249 | RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], "^", "2"}], " ", |

250 | RowBox[{"Tr", "[", |

251 | RowBox[{ |

252 | RowBox[{"GS", "[", "p3", "]"}], ".", |

253 | RowBox[{"GA", "[", "mu", "]"}], ".", |

254 | RowBox[{"(", |

255 | RowBox[{"1", "-", "GA5"}], ")"}], ".", |

256 | RowBox[{"GS", "[", "p4", "]"}], ".", |

257 | RowBox[{"GA", "[", "nu", "]"}], ".", |

258 | RowBox[{"(", |

259 | RowBox[{"1", "-", "GA5"}], ")"}]}], "]"}]}]}]], "Input", |

260 | CellChangeTimes->{{3.693127298399377*^9, 3.693127412051713*^9}, { |

261 | 3.693127446690196*^9, 3.693127447336274*^9}}], |

262 | |

263 | Cell[BoxData[ |

264 | FormBox[ |

265 | RowBox[{ |

266 | FractionBox["1", "2"], " ", |

267 | SuperscriptBox["g", "2"], " ", |

268 | RowBox[{"(", |

269 | RowBox[{ |

270 | RowBox[{"-", |

271 | RowBox[{"s", " ", |

272 | FormBox[ |

273 | SuperscriptBox[ |

274 | OverscriptBox["g", "_"], |

275 | RowBox[{ |

276 | FormBox[ |

277 | FormBox[ |

278 | FormBox["mu", |

279 | TraditionalForm], |

280 | TraditionalForm], |

281 | TraditionalForm], |

282 | FormBox[ |

283 | FormBox[ |

284 | FormBox["nu", |

285 | TraditionalForm], |

286 | TraditionalForm], |

287 | TraditionalForm]}]], |

288 | TraditionalForm]}]}], "-", |

289 | RowBox[{"2", " ", "\[ImaginaryI]", " ", |

290 | SuperscriptBox["\[Epsilon]", |

291 | RowBox[{ |

292 | FormBox[ |

293 | FormBox["mu", |

294 | TraditionalForm], |

295 | TraditionalForm], |

296 | FormBox[ |

297 | FormBox["nu", |

298 | TraditionalForm], |

299 | TraditionalForm], |

300 | FormBox[ |

301 | OverscriptBox[ |

302 | FormBox["p3", |

303 | TraditionalForm], "_"], |

304 | TraditionalForm], |

305 | FormBox[ |

306 | OverscriptBox[ |

307 | FormBox["p4", |

308 | TraditionalForm], "_"], |

309 | TraditionalForm]}]]}], "+", |

310 | RowBox[{"2", " ", |

311 | FormBox[ |

312 | SuperscriptBox[ |

313 | FormBox[ |

314 | OverscriptBox[ |

315 | FormBox["p4", |

316 | TraditionalForm], "_"], |

317 | TraditionalForm], |

318 | FormBox[ |

319 | FormBox[ |

320 | FormBox["mu", |

321 | TraditionalForm], |

322 | TraditionalForm], |

323 | TraditionalForm]], |

324 | TraditionalForm], " ", |

325 | FormBox[ |

326 | SuperscriptBox[ |

327 | FormBox[ |

328 | OverscriptBox[ |

329 | FormBox["p3", |

330 | TraditionalForm], "_"], |

331 | TraditionalForm], |

332 | FormBox[ |

333 | FormBox[ |

334 | FormBox["nu", |

335 | TraditionalForm], |

336 | TraditionalForm], |

337 | TraditionalForm]], |

338 | TraditionalForm]}], "+", |

339 | RowBox[{"2", " ", |

340 | FormBox[ |

341 | SuperscriptBox[ |

342 | FormBox[ |

343 | OverscriptBox[ |

344 | FormBox["p3", |

345 | TraditionalForm], "_"], |

346 | TraditionalForm], |

347 | FormBox[ |

348 | FormBox[ |

349 | FormBox["mu", |

350 | TraditionalForm], |

351 | TraditionalForm], |

352 | TraditionalForm]], |

353 | TraditionalForm], " ", |

354 | FormBox[ |

355 | SuperscriptBox[ |

356 | FormBox[ |

357 | OverscriptBox[ |

358 | FormBox["p4", |

359 | TraditionalForm], "_"], |

360 | TraditionalForm], |

361 | FormBox[ |

362 | FormBox[ |

363 | FormBox["nu", |

364 | TraditionalForm], |

365 | TraditionalForm], |

366 | TraditionalForm]], |

367 | TraditionalForm]}]}], ")"}]}], TraditionalForm]], "Output", |

368 | CellChangeTimes->{{3.693127361202207*^9, 3.6931274126831636`*^9}, { |

369 | 3.693127449211101*^9, 3.693127469971283*^9}}] |

370 | }, Open ]] |

371 | }, Open ]], |

372 | |

373 | Cell[CellGroupData[{ |

374 | |

375 | Cell["The full amplitude", "Section", |

376 | CellChangeTimes->{{3.693039062567734*^9, 3.693039121124161*^9}, { |

377 | 3.6931272774560013`*^9, 3.6931272881985397`*^9}, {3.6931274262839108`*^9, |

378 | 3.693127442056554*^9}}], |

379 | |

380 | Cell[CellGroupData[{ |

381 | |

382 | Cell[BoxData[{ |

383 | RowBox[{ |

384 | RowBox[{ |

385 | RowBox[{"(", |

386 | RowBox[{ |

387 | RowBox[{"1", "/", "3"}], "*", |

388 | RowBox[{"1", "/", "4"}]}], ")"}], |

389 | RowBox[{"Contract", "[", |

390 | RowBox[{"quarks", " ", "leptons"}], "]"}]}], " ", "//", |

391 | "Simplify"}], "\[IndentingNewLine]", |

392 | RowBox[{"ampQQtoWtoLep", " ", "=", " ", |

393 | RowBox[{ |

394 | RowBox[{ |

395 | RowBox[{ |

396 | RowBox[{"(", |

397 | RowBox[{ |

398 | RowBox[{"1", "/", "3"}], "*", |

399 | RowBox[{"1", "/", "4"}]}], ")"}], |

400 | RowBox[{"Contract", "[", |

401 | RowBox[{"quarks", " ", "leptons"}], "]"}]}], " ", "/.", |

402 | RowBox[{"{", |

403 | RowBox[{ |

404 | RowBox[{"t", "\[Rule]", |

405 | RowBox[{ |

406 | RowBox[{"s", "/", "2"}], |

407 | RowBox[{"(", |

408 | RowBox[{"1", "-", "cth"}], ")"}]}]}], ",", " ", |

409 | RowBox[{"u", "\[Rule]", |

410 | RowBox[{ |

411 | RowBox[{"s", "/", "2"}], |

412 | RowBox[{"(", |

413 | RowBox[{"1", "+", "cth"}], ")"}]}]}]}], "}"}]}], "//", |

414 | "Simplify"}]}]}], "Input", |

415 | CellChangeTimes->{{3.6931274444580717`*^9, 3.6931274691028147`*^9}, { |

416 | 3.693127515662874*^9, 3.6931275296530113`*^9}, {3.6931276811473618`*^9, |

417 | 3.693127728502334*^9}, {3.693127859453828*^9, 3.693127864500692*^9}, { |

418 | 3.6931318801364937`*^9, 3.693131885075254*^9}}], |

419 | |

420 | Cell[BoxData[ |

421 | FormBox[ |

422 | FractionBox[ |

423 | RowBox[{ |

424 | SuperscriptBox["g", "4"], " ", |

425 | SuperscriptBox["u", "2"]}], "12"], TraditionalForm]], "Output", |

426 | CellChangeTimes->{{3.693127693708705*^9, 3.6931277288724747`*^9}, |

427 | 3.69312786556639*^9, {3.693131882313046*^9, 3.693131885521887*^9}}], |

428 | |

429 | Cell[BoxData[ |

430 | FormBox[ |

431 | RowBox[{ |

432 | FractionBox["1", "48"], " ", |

433 | SuperscriptBox[ |

434 | RowBox[{"(", |

435 | RowBox[{"cth", "+", "1"}], ")"}], "2"], " ", |

436 | SuperscriptBox["g", "4"], " ", |

437 | SuperscriptBox["s", "2"]}], TraditionalForm]], "Output", |

438 | CellChangeTimes->{{3.693127693708705*^9, 3.6931277288724747`*^9}, |

439 | 3.69312786556639*^9, {3.693131882313046*^9, 3.693131885703227*^9}}] |

440 | }, Open ]], |

441 | |

442 | Cell[CellGroupData[{ |

443 | |

444 | Cell[BoxData[ |

445 | RowBox[{"Integrate", "[", |

446 | RowBox[{"ampQQtoWtoLep", " ", ",", " ", |

447 | RowBox[{"{", |

448 | RowBox[{"cth", ",", " ", |

449 | RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", |

450 | CellChangeTimes->{{3.6931277333491583`*^9, 3.6931277475883427`*^9}}], |

451 | |

452 | Cell[BoxData[ |

453 | FormBox[ |

454 | FractionBox[ |

455 | RowBox[{ |

456 | SuperscriptBox["g", "4"], " ", |

457 | SuperscriptBox["s", "2"]}], "18"], TraditionalForm]], "Output", |

458 | CellChangeTimes->{3.693127747961013*^9, 3.6931278678277073`*^9}] |

459 | }, Open ]] |

460 | }, Open ]], |

461 | |

462 | Cell[CellGroupData[{ |

463 | |

464 | Cell["The product of production and decay amplitudes ", "Section", |

465 | CellChangeTimes->{{3.693039062567734*^9, 3.693039121124161*^9}, { |

466 | 3.6931272774560013`*^9, 3.6931272881985397`*^9}, {3.6931274262839108`*^9, |

467 | 3.693127442056554*^9}, {3.693127759701359*^9, 3.693127771091069*^9}}], |

468 | |

469 | Cell[CellGroupData[{ |

470 | |

471 | Cell[BoxData[{ |

472 | RowBox[{"ampQQtoW", "=", |

473 | RowBox[{ |

474 | RowBox[{"(", |

475 | RowBox[{ |

476 | RowBox[{"1", "/", "3"}], "*", |

477 | RowBox[{"1", "/", "4"}]}], ")"}], |

478 | RowBox[{"Contract", "[", |

479 | RowBox[{"quarks", " ", |

480 | RowBox[{"MT", "[", |

481 | RowBox[{"mu", ",", "nu"}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", |

482 | RowBox[{"ampWtoLep", "=", |

483 | RowBox[{ |

484 | RowBox[{"(", |

485 | RowBox[{"1", "/", "3"}], ")"}], |

486 | RowBox[{"Contract", "[", |

487 | RowBox[{"leptons", " ", |

488 | RowBox[{"MT", "[", |

489 | RowBox[{"mu", ",", "nu"}], "]"}]}], "]"}]}]}]}], "Input", |

490 | CellChangeTimes->{{3.6931277751204863`*^9, 3.693127787156171*^9}, { |

491 | 3.6931278195498867`*^9, 3.693127881299366*^9}}], |

492 | |

493 | Cell[BoxData[ |

494 | FormBox[ |

495 | RowBox[{"-", |

496 | FractionBox[ |

497 | RowBox[{ |

498 | SuperscriptBox["g", "2"], " ", "s"}], "12"]}], |

499 | TraditionalForm]], "Output", |

500 | CellChangeTimes->{ |

501 | 3.693127787525576*^9, 3.693127842399394*^9, {3.6931278773450193`*^9, |

502 | 3.693127882528571*^9}}], |

503 | |

504 | Cell[BoxData[ |

505 | FormBox[ |

506 | RowBox[{"-", |

507 | FractionBox[ |

508 | RowBox[{ |

509 | SuperscriptBox["g", "2"], " ", "s"}], "3"]}], TraditionalForm]], "Output",\ |

510 | |

511 | CellChangeTimes->{ |

512 | 3.693127787525576*^9, 3.693127842399394*^9, {3.6931278773450193`*^9, |

513 | 3.693127882540578*^9}}] |

514 | }, Open ]], |

515 | |

516 | Cell[CellGroupData[{ |

517 | |

518 | Cell[BoxData[ |

519 | RowBox[{"ampQQtoW", " ", "*", " ", "ampWtoLep", " "}]], "Input", |

520 | CellChangeTimes->{{3.693127908932888*^9, 3.6931279227785063`*^9}}], |

521 | |

522 | Cell[BoxData[ |

523 | FormBox[ |

524 | FractionBox[ |

525 | RowBox[{ |

526 | SuperscriptBox["g", "4"], " ", |

527 | SuperscriptBox["s", "2"]}], "36"], TraditionalForm]], "Output", |

528 | CellChangeTimes->{3.693127924166553*^9}] |

529 | }, Open ]], |

530 | |

531 | Cell[CellGroupData[{ |

532 | |

533 | Cell[BoxData[ |

534 | RowBox[{"Integrate", "[", |

535 | RowBox[{ |

536 | RowBox[{"ampQQtoW", " ", "*", " ", "ampWtoLep"}], " ", ",", " ", |

537 | RowBox[{"{", |

538 | RowBox[{"cth", ",", " ", |

539 | RowBox[{"-", "1"}], ",", " ", "1"}], "}"}]}], "]"}]], "Input", |

540 | CellChangeTimes->{{3.693127930003166*^9, 3.6931279405690203`*^9}}], |

541 | |

542 | Cell[BoxData[ |

543 | FormBox[ |

544 | FractionBox[ |

545 | RowBox[{ |

546 | SuperscriptBox["g", "4"], " ", |

547 | SuperscriptBox["s", "2"]}], "18"], TraditionalForm]], "Output", |

548 | CellChangeTimes->{3.6931279408780527`*^9}] |

549 | }, Open ]], |

550 | |

551 | Cell[CellGroupData[{ |

552 | |

553 | Cell[BoxData[ |

554 | RowBox[{"Contract", "[", |

555 | RowBox[{ |

556 | RowBox[{"LeviCivita", "[", |

557 | RowBox[{"mu", ",", "nu", ",", " ", "a", ",", "b"}], "]"}], |

558 | RowBox[{"LeviCivita", "[", |

559 | RowBox[{"mu", ",", "nu", ",", " ", "c", ",", " ", "d"}], "]"}]}], |

560 | "]"}]], "Input", |

561 | CellChangeTimes->{{3.693128066707815*^9, 3.6931280909859657`*^9}}], |

562 | |

563 | Cell[BoxData[ |

564 | FormBox[ |

565 | RowBox[{ |

566 | RowBox[{"2", " ", |

567 | FormBox[ |

568 | SuperscriptBox[ |

569 | OverscriptBox["g", "_"], |

570 | RowBox[{ |

571 | FormBox[ |

572 | FormBox[ |

573 | FormBox["a", |

574 | TraditionalForm], |

575 | TraditionalForm], |

576 | TraditionalForm], |

577 | FormBox[ |

578 | FormBox[ |

579 | FormBox["d", |

580 | TraditionalForm], |

581 | TraditionalForm], |

582 | TraditionalForm]}]], |

583 | TraditionalForm], " ", |

584 | FormBox[ |

585 | SuperscriptBox[ |

586 | OverscriptBox["g", "_"], |

587 | RowBox[{ |

588 | FormBox[ |

589 | FormBox[ |

590 | FormBox["b", |

591 | TraditionalForm], |

592 | TraditionalForm], |

593 | TraditionalForm], |

594 | FormBox[ |

595 | FormBox[ |

596 | FormBox["c", |

597 | TraditionalForm], |

598 | TraditionalForm], |

599 | TraditionalForm]}]], |

600 | TraditionalForm]}], "-", |

601 | RowBox[{"2", " ", |

602 | FormBox[ |

603 | SuperscriptBox[ |

604 | OverscriptBox["g", "_"], |

605 | RowBox[{ |

606 | FormBox[ |

607 | FormBox[ |

608 | FormBox["a", |

609 | TraditionalForm], |

610 | TraditionalForm], |

611 | TraditionalForm], |

612 | FormBox[ |

613 | FormBox[ |

614 | FormBox["c", |

615 | TraditionalForm], |

616 | TraditionalForm], |

617 | TraditionalForm]}]], |

618 | TraditionalForm], " ", |

619 | FormBox[ |

620 | SuperscriptBox[ |

621 | OverscriptBox["g", "_"], |

622 | RowBox[{ |

623 | FormBox[ |

624 | FormBox[ |

625 | FormBox["b", |

626 | TraditionalForm], |

627 | TraditionalForm], |

628 | TraditionalForm], |

629 | FormBox[ |

630 | FormBox[ |

631 | FormBox["d", |

632 | TraditionalForm], |

633 | TraditionalForm], |

634 | TraditionalForm]}]], |

635 | TraditionalForm]}]}], TraditionalForm]], "Output", |

636 | CellChangeTimes->{3.693128091400392*^9}] |

637 | }, Open ]] |

638 | }, Open ]] |

639 | }, Open ]] |

640 | }, |

641 | WindowSize->{808, 596}, |

642 | WindowMargins->{{147, Automatic}, {19, Automatic}}, |

643 | FrontEndVersion->"10.4 for Mac OS X x86 (32-bit, 64-bit Kernel) (February 25, \ |

644 | 2016)", |

645 | StyleDefinitions->"Default.nb" |

646 | ] |

647 | (* End of Notebook Content *) |

648 | |

649 | (* Internal cache information *) |

650 | (*CellTagsOutline |

651 | CellTagsIndex->{} |

652 | *) |

653 | (*CellTagsIndex |

654 | CellTagsIndex->{} |

655 | *) |

656 | (*NotebookFileOutline |

657 | Notebook[{ |

658 | Cell[558, 20, 109, 2, 28, "Input"], |

659 | Cell[CellGroupData[{ |

660 | Cell[692, 26, 174, 2, 148, "Title"], |

661 | Cell[CellGroupData[{ |

662 | Cell[891, 32, 188, 2, 64, "Section"], |

663 | Cell[1082, 36, 1767, 55, 182, "Input"] |

664 | }, Open ]], |

665 | Cell[CellGroupData[{ |

666 | Cell[2886, 96, 151, 2, 64, "Section"], |

667 | Cell[CellGroupData[{ |

668 | Cell[3062, 102, 647, 19, 28, "Input"], |

669 | Cell[3712, 123, 2739, 106, 47, "Output"] |

670 | }, Open ]] |

671 | }, Open ]], |

672 | Cell[CellGroupData[{ |

673 | Cell[6500, 235, 154, 2, 64, "Section"], |

674 | Cell[CellGroupData[{ |

675 | Cell[6679, 241, 672, 19, 28, "Input"], |

676 | Cell[7354, 262, 2741, 106, 47, "Output"] |

677 | }, Open ]] |

678 | }, Open ]], |

679 | Cell[CellGroupData[{ |

680 | Cell[10144, 374, 207, 3, 64, "Section"], |

681 | Cell[CellGroupData[{ |

682 | Cell[10376, 381, 1217, 36, 63, "Input"], |

683 | Cell[11596, 419, 293, 7, 50, "Output"], |

684 | Cell[11892, 428, 389, 10, 47, "Output"] |

685 | }, Open ]], |

686 | Cell[CellGroupData[{ |

687 | Cell[12318, 443, 264, 6, 28, "Input"], |

688 | Cell[12585, 451, 220, 6, 50, "Output"] |

689 | }, Open ]] |

690 | }, Open ]], |

691 | Cell[CellGroupData[{ |

692 | Cell[12854, 463, 282, 3, 64, "Section"], |

693 | Cell[CellGroupData[{ |

694 | Cell[13161, 470, 676, 20, 46, "Input"], |

695 | Cell[13840, 492, 271, 9, 50, "Output"], |

696 | Cell[14114, 503, 269, 9, 50, "Output"] |

697 | }, Open ]], |

698 | Cell[CellGroupData[{ |

699 | Cell[14420, 517, 147, 2, 28, "Input"], |

700 | Cell[14570, 521, 196, 6, 50, "Output"] |

701 | }, Open ]], |

702 | Cell[CellGroupData[{ |

703 | Cell[14803, 532, 304, 7, 28, "Input"], |

704 | Cell[15110, 541, 198, 6, 50, "Output"] |

705 | }, Open ]], |

706 | Cell[CellGroupData[{ |

707 | Cell[15345, 552, 335, 8, 28, "Input"], |

708 | Cell[15683, 562, 1693, 73, 33, "Output"] |

709 | }, Open ]] |

710 | }, Open ]] |

711 | }, Open ]] |

712 | } |

713 | ] |

714 | *) |

715 |