bo2020: phenHiggs.nb

File phenHiggs.nb, 110.9 KB (added by Fabio Maltoni, 5 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 10.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 158, 7]
13NotebookDataLength[ 113358, 2897]
14NotebookOptionsPosition[ 108069, 2719]
15NotebookOutlinePosition[ 108507, 2736]
16CellTagsIndexPosition[ 108464, 2733]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell["Phenomenology of pp\[Rule]H+X at NLO", "Title"],
24
25Cell[CellGroupData[{
26
27Cell["Introduction", "Section"],
28
29Cell[TextData[{
30 StyleBox["In this notebook we calculate the inclusive cross section for \
31Higgs production at hadron colliders, at NLO in the strong coupling. We use \
32the analytic results obtained in a previous notebook corresponding to the \
33original calculation by Sally Dawson (Nuclear Physics B (1991) 283). To get \
34useful numbers we use a modern set of PDF, i.e. the MRST as implemented in ",
35 FontSize->16],
36 StyleBox["Mathematica",
37 FontSize->16,
38 FontSlant->"Italic"],
39 StyleBox[" by J.Andersen (many thanks!). A description of the calculation, \
40including the formulas used here for the numerical results, is given in the \
41notes.",
42 FontSize->16]
43}], "Text"]
44}, Open ]],
45
46Cell[CellGroupData[{
47
48Cell["Preliminaries", "Section"],
49
50Cell["\<\
51Off[General::spell];
52Off[General::spell1];
53Clear[\"Global`*\"];\
54\>", "Input"],
55
56Cell[CellGroupData[{
57
58Cell["Install Vegas", "Subsection"],
59
60Cell["\<\
61I use the Vegas package of CUBA library of T. Hahn (hep-ph/0404043). If you \
62do not want to use it, use NIntegrate instead of Vegas\
63\>", "Text"],
64
65Cell[CellGroupData[{
66
67Cell[BoxData[
68 RowBox[{
69 RowBox[{
70 "Install", "[", "\"\</Users/fabiomaltoni/Physics/Codes/CUBA/VegasX\>\"",
71 "]"}],
72 RowBox[{
73 "Install", "[", "\"\</Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX\>\"",
74 "]"}]}]], "Input"],
75
76Cell[BoxData[
77 FormBox[
78 RowBox[{
79 StyleBox[
80 RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
81 RowBox[{
82 ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
83MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
84\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
85ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
86ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
87 "MSG",
88 CellChangeTimes->{3.692597281046434*^9, 3.6925973706453047`*^9,
89 3.692598560178931*^9, 3.692600928086647*^9}],
90
91Cell[BoxData[
92 FormBox[
93 RowBox[{
94 StyleBox[
95 RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
96 RowBox[{
97 ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
98MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
99\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
100ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
101ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
102 "MSG",
103 CellChangeTimes->{3.692597281046434*^9, 3.6925973706453047`*^9,
104 3.692598560178931*^9, 3.692600928130375*^9}],
105
106Cell[BoxData[
107 FormBox[
108 SuperscriptBox["$Failed", "2"], TraditionalForm]], "Output",
109 CellChangeTimes->{3.692597281097068*^9, 3.69259737067906*^9,
110 3.692598560229701*^9, 3.692600928162171*^9}]
111}, Open ]]
112}, Open ]],
113
114Cell[CellGroupData[{
115
116Cell["Call special graphics routines", "Subsection"],
117
118Cell[CellGroupData[{
119
120Cell["\<\
121<< Graphics`Colors`;
122<< Graphics`Graphics`;\
123\>", "Input"],
124
125Cell[BoxData[
126 FormBox[
127 RowBox[{
128 StyleBox[
129 RowBox[{"Get", "::", "noopen"}], "MessageName"],
130 RowBox[{
131 ":", " "}], "\<\"Cannot open \
132\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Graphics`Colors`\\\\\\\"\\\", \
133TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
134ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
135ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
136\\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
137 CellChangeTimes->{3.692597281174869*^9, 3.692597370755665*^9,
138 3.692598560342369*^9, 3.692600928264494*^9}],
139
140Cell[BoxData[
141 FormBox[
142 RowBox[{
143 StyleBox[
144 RowBox[{"Get", "::", "noopen"}], "MessageName"],
145 RowBox[{
146 ":", " "}], "\<\"Cannot open \
147\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Graphics`Graphics`\\\\\\\"\\\", \
148TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
149ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
150ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
151\\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
152 CellChangeTimes->{3.692597281174869*^9, 3.692597370755665*^9,
153 3.692598560342369*^9, 3.692600928322658*^9}]
154}, Open ]]
155}, Open ]],
156
157Cell[CellGroupData[{
158
159Cell["Install PDF'S: for help read the PDF-HOWTO document", "Subsection"],
160
161Cell[CellGroupData[{
162
163Cell[BoxData[{
164 RowBox[{"SetDirectory", "[", "\"\<~/DropBox/GGI/GGHiggs/Jeppe\>\"",
165 "]"}], "\[IndentingNewLine]",
166 RowBox[{"Install", "[", "\"\<pdf.exe\>\"", "]"}]}], "Input",
167 CellChangeTimes->{{3.6925973632884817`*^9, 3.692597419539439*^9}}],
168
169Cell[BoxData[
170 FormBox["\<\"/Users/marcozaro/Dropbox/GGI/GGHiggs/Jeppe\"\>",
171 TraditionalForm]], "Output",
172 CellChangeTimes->{
173 3.6925972813152027`*^9, {3.692597370915719*^9, 3.692597375754075*^9},
174 3.69259742117518*^9, 3.6925985604805*^9, 3.692600928383765*^9}],
175
176Cell[BoxData[
177 FormBox[
178 RowBox[{
179 StyleBox[
180 RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
181 RowBox[{
182 ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
183MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
184\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
185ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
186ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
187 "MSG",
188 CellChangeTimes->{
189 3.6925972813085747`*^9, {3.692597370911001*^9, 3.692597375749536*^9},
190 3.6925974212093563`*^9, 3.692598560484562*^9, 3.692600928387562*^9}],
191
192Cell[BoxData[
193 FormBox["$Failed", TraditionalForm]], "Output",
194 CellChangeTimes->{
195 3.6925972813152027`*^9, {3.692597370915719*^9, 3.692597375754075*^9},
196 3.69259742117518*^9, 3.6925985604805*^9, 3.692600928390266*^9}]
197}, Open ]],
198
199Cell[CellGroupData[{
200
201Cell["\<\
202
203<<\"loadCTEQ5.m\";\
204\>", "Input"],
205
206Cell[CellGroupData[{
207
208Cell[BoxData[
209 FormBox["\<\"Loading Package: PDF\"\>", TraditionalForm]], "Print",
210 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
211 3.692600928429875*^9}],
212
213Cell[BoxData[
214 FormBox["\<\"PDF's from CTEQ5\"\>", TraditionalForm]], "Print",
215 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
216 3.692600928434042*^9}],
217
218Cell[BoxData[
219 FormBox["\<\"Eur.Phys.J.C12:375-392,2000 \"\>", TraditionalForm]], "Print",
220 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
221 3.6926009284386387`*^9}],
222
223Cell[BoxData[
224 FormBox["\<\"*** Warning *** Unofficial release. \"\>",
225 TraditionalForm]], "Print",
226 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
227 3.6926009284427223`*^9}],
228
229Cell[BoxData[
230 FormBox["\<\"*** Cross-check with official Fortran code.\"\>",
231 TraditionalForm]], "Print",
232 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
233 3.6926009284466553`*^9}],
234
235Cell[BoxData[
236 FormBox["\<\" Version 1.0: Written by Tamara Trout & Fred Olness, October 1, \
2372000\"\>", TraditionalForm]], "Print",
238 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
239 3.692600928450611*^9}],
240
241Cell[BoxData[
242 FormBox["\<\" \"\>", TraditionalForm]], "Print",
243 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
244 3.692600928454577*^9}],
245
246Cell[BoxData[
247 FormBox["\<\"In case of problems, contact:\"\>", TraditionalForm]], "Print",
248 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
249 3.692600928458466*^9}],
250
251Cell[BoxData[
252 FormBox["\<\"Fred Olness: olness@mail.physics.smu.edu\"\>",
253 TraditionalForm]], "Print",
254 CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
255 3.6926009284624033`*^9}]
256}, Open ]]
257}, Open ]],
258
259Cell[CellGroupData[{
260
261Cell["\<\
262Wrapper to call the pdf. Notation is self-explanatory. Just notice that all \
263parton distribution codes usually return x f(x). To avoid confusion, at \
264expense of a couple more floating point operations, I divide all the values \
265by the corresponding x. pdfcall calculates the parton-parton luminoties, gg \
266qg, qq~\
267\>", "Subsubsection"],
268
269Cell["\<\
270(* MRST *)
271
272pdfMRST[X1_,X2_,q_]:=Module[
273{Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
274Q=q*1.;
275xgDF =f[3,X1,Q]/X1;
276xdbDF=f[8,X1,Q]/X1;
277xdDF =f[2,X1,Q]/X1+xdbDF;
278xubDF=f[4,X1,Q]/X1;
279xuDF =f[1,X1,Q]/X1+xubDF;
280xsDF =f[6,X1,Q]/X1;
281xcDF =f[5,X1,Q]/X1;
282xbDF =f[7,X1,Q]/X1;
283
284pd1={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
285xgDF =f[3,X2,Q]/X2;
286xdbDF=f[8,X2,Q]/X2;
287xdDF =f[2,X2,Q]/X2+xdbDF;
288xubDF=f[4,X2,Q]/X2;
289xuDF =f[1,X2,Q]/X2+xubDF;
290xsDF =f[6,X2,Q]/X2;
291xcDF =f[5,X2,Q]/X2;
292xbDF =f[7,X2,Q]/X2;
293pd2={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
294
295
296xgg=pd1[[1]]*pd2[[1]];
297xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
298))+
299 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
300);
301xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
302 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
303
304 Return[{xgg,xqg,xqq}];
305];\
306\>", "Input"],
307
308Cell["\<\
309
310(* cteq5 *)\
311\>", "Input"],
312
313Cell["\<\
314pdfCTEQ[X1_,X2_,q_]:=Module[
315{Q,pd1,pd2,xgg,xqg,xqq},
316Q=q*1.;
317
318pd1={cteq5pdf[1,0,X1,Q],
319 cteq5pdf[1,2,X1,Q],
320 cteq5pdf[1,-2,X1,Q],
321 cteq5pdf[1,1,X1,Q],
322 cteq5pdf[1,-1,X1,Q],
323 cteq5pdf[1,3,X1,Q],
324 cteq5pdf[1,4,X1,Q],
325 cteq5pdf[1,5,X1,Q]};
326pd2={cteq5pdf[1,0,X2,Q],
327 cteq5pdf[1,2,X2,Q],
328 cteq5pdf[1,-2,X2,Q],
329 cteq5pdf[1,1,X2,Q],
330 cteq5pdf[1,-1,X2,Q],
331 cteq5pdf[1,3,X2,Q],
332 cteq5pdf[1,4,X2,Q],
333 cteq5pdf[1,5,X2,Q]};
334
335xgg=pd1[[1]]*pd2[[1]];
336xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
337))+
338 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
339);
340xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
341 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
342
343 Return[{xgg,xqg,xqq}];
344];
345
346pdfCTEQLO[X1_,X2_,q_]:=Module[
347{Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
348Q=q*1.;
349
350pd1={cteq5pdf[3,0,X1,Q],
351 cteq5pdf[3,2,X1,Q],
352 cteq5pdf[3,-2,X1,Q],
353 cteq5pdf[3,1,X1,Q],
354 cteq5pdf[3,-1,X1,Q],
355 cteq5pdf[3,3,X1,Q],
356 cteq5pdf[3,4,X1,Q],
357 cteq5pdf[3,5,X1,Q]};
358pd2={cteq5pdf[3,0,X2,Q],
359 cteq5pdf[3,2,X2,Q],
360 cteq5pdf[3,-2,X2,Q],
361 cteq5pdf[3,1,X2,Q],
362 cteq5pdf[3,-1,X2,Q],
363 cteq5pdf[3,3,X2,Q],
364 cteq5pdf[3,4,X2,Q],
365 cteq5pdf[3,5,X2,Q]};
366
367xgg=pd1[[1]]*pd2[[1]];
368xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
369))+
370 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
371);
372xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
373 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
374
375 Return[{xgg,xqg,xqq}];
376];\
377\>", "Input"]
378}, Open ]],
379
380Cell[CellGroupData[{
381
382Cell["Decide the pdf family to be used ", "Subsubsection"],
383
384Cell["pdfcall[x__] = pdfCTEQ[x];", "Input"]
385}, Open ]]
386}, Open ]],
387
388Cell[CellGroupData[{
389
390Cell["\<\
391Alpha_S: Very basic implementation of Alpha_S.
392Check that the value of Lamda_4 or Lambda_5 is consistent with that of the \
393PDF.
394One simple, but indirect way to do it is to compare the value of alphas(MZ) \
395with the one quoted by MRST.\
396\>", "Subsection"],
397
398Cell[BoxData[{
399 RowBox[{
400 RowBox[{
401 RowBox[{
402 RowBox[{"b", "[", "nf_", "]"}], ":=",
403 RowBox[{
404 RowBox[{
405 RowBox[{"(",
406 RowBox[{"33", "-",
407 RowBox[{"2", " ", "nf"}]}], ")"}], "/", "12"}], "/", "Pi"}]}], ";"}],
408 " "}], "\[IndentingNewLine]",
409 RowBox[{
410 RowBox[{
411 RowBox[{"bp", "[", "nf_", "]"}], ":=",
412 RowBox[{
413 RowBox[{
414 RowBox[{
415 RowBox[{"(",
416 RowBox[{"153", "-",
417 RowBox[{"19", " ", "nf"}]}], ")"}], "/", "2"}], "/", "Pi"}], "/",
418 RowBox[{"(",
419 RowBox[{"33", "-",
420 RowBox[{"2", " ", "nf"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
421 RowBox[{
422 RowBox[{
423 RowBox[{"t", "[", "nf", "]"}], ":=",
424 RowBox[{"Log", "[",
425 RowBox[{
426 RowBox[{"q", "^", "2"}], "/",
427 RowBox[{
428 RowBox[{"\[CapitalLambda]", "[", "nf", "]"}], "^", "2"}]}], "]"}]}],
429 ";"}], "\[IndentingNewLine]",
430 RowBox[{
431 RowBox[{
432 RowBox[{"mb", "=", "4.75"}], ";"}],
433 "\[IndentingNewLine]"}], "\[IndentingNewLine]",
434 RowBox[{
435 RowBox[{
436 RowBox[{"\[CapitalLambda]", "[", "5", "]"}], "=", "0.146"}],
437 ";"}], "\[IndentingNewLine]",
438 RowBox[{
439 RowBox[{
440 RowBox[{"asLO", "[",
441 RowBox[{"q_", ",", "nf_"}], "]"}], "=",
442 RowBox[{"1", "/",
443 RowBox[{"(",
444 RowBox[{
445 RowBox[{"b", "[", "nf", "]"}], " ",
446 RowBox[{"t", "[", "nf", "]"}]}], ")"}]}]}], ";"}], "\n",
447 RowBox[{
448 RowBox[{
449 RowBox[{"\[CapitalLambda]", "[", "5", "]"}], "=", "0.226"}],
450 ";"}], "\[IndentingNewLine]",
451 RowBox[{
452 RowBox[{
453 RowBox[{"asNLO", "[",
454 RowBox[{"q_", ",", "nf_"}], "]"}], "=",
455 RowBox[{
456 RowBox[{"1", "/",
457 RowBox[{"(",
458 RowBox[{
459 RowBox[{"b", "[", "nf", "]"}], " ",
460 RowBox[{"t", "[", "nf", "]"}]}], ")"}]}],
461 RowBox[{"(",
462 RowBox[{"1", "-",
463 RowBox[{
464 RowBox[{
465 RowBox[{"bp", "[", "nf", "]"}], "/",
466 RowBox[{"b", "[", "nf", "]"}]}], " ",
467 RowBox[{
468 RowBox[{"Log", "[",
469 RowBox[{"t", "[", "nf", "]"}], "]"}], "/",
470 RowBox[{"t", "[", "nf", "]"}]}]}]}], ")"}]}]}], ";"}]}], "Input"],
471
472Cell[CellGroupData[{
473
474Cell["Check the values of alpha_S at the scale MZ", "Subsubsection"],
475
476Cell[CellGroupData[{
477
478Cell["asNLO[91.118,5]", "Input"],
479
480Cell[BoxData[
481 FormBox["0.11799518835498904`", TraditionalForm]], "Output",
482 CellChangeTimes->{3.692597281533689*^9, 3.692597537385448*^9,
483 3.692598560867756*^9, 3.6926009285672293`*^9}]
484}, Open ]]
485}, Open ]]
486}, Open ]],
487
488Cell[CellGroupData[{
489
490Cell["Color factors ", "Subsection"],
491
492Cell["\<\
493CF=4/3;
494CA=3;
495nf=5;
496TF=1/2;
497b0=11/6 CA -2 nf TF/3;
498\
499\>", "Input"]
500}, Open ]]
501}, Open ]],
502
503Cell[CellGroupData[{
504
505Cell["LO cross section", "Section"],
506
507Cell[CellGroupData[{
508
509Cell["\<\
510Integral of the LO loop. The sign of the Imaginary part is given by the usual \
511prescription mt^2-i eps which is equivalent to t+i eps in the notation below.
512t=mh^2/4/mt^2;\
513\>", "Subsubsection"],
514
515Cell[" ", "Input"],
516
517Cell[CellGroupData[{
518
519Cell["\<\
520eps=0.00000001;
521inte01[t_]=Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}, \
522Assumptions->{t>0, t<1}]//Simplify
523integt1[t_]=Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}, \
524Assumptions->{Im[t]>0, Re[t]>1}]//Simplify
525inte[t_]:=3*If[ Re[t]<1, inte01[t], integt1[t]]
526Plot[{Re[inte[t+I eps]],Im[inte[t+I \
527eps]]},{t,0,10},PlotStyle\[Rule]{{Blue,Thickness[0.007]},{Red,Thickness[0.007]\
528}}]\
529\>", "Input",
530 CellChangeTimes->{{3.692598014632957*^9, 3.692598098844996*^9}, {
531 3.692598128904375*^9, 3.6925981341662483`*^9}, {3.692598281716309*^9,
532 3.6925982901939507`*^9}, 3.692598627050342*^9, 3.692598666202496*^9,
533 3.692598717354951*^9, {3.69259877873766*^9, 3.6925987812311983`*^9}, {
534 3.69259881448775*^9, 3.692598872665801*^9}, {3.692598907681793*^9,
535 3.692598969264979*^9}, {3.692599025202613*^9, 3.692599123951459*^9}, {
536 3.6925992374042807`*^9, 3.692599269005123*^9}}],
537
538Cell[BoxData[
539 FormBox[
540 FractionBox[
541 RowBox[{
542 RowBox[{
543 RowBox[{"(",
544 RowBox[{"t", "-", "1"}], ")"}], " ",
545 TemplateBox[{"2",RowBox[{
546 RowBox[{"2", " ", "t"}], "-",
547 RowBox[{"2", " ", "\[ImaginaryI]", " ",
548 SqrtBox[
549 RowBox[{
550 RowBox[{"-",
551 RowBox[{"(",
552 RowBox[{"t", "-", "1"}], ")"}]}], " ", "t"}]]}]}]},
553 "PolyLog"]}], "+",
554 RowBox[{
555 RowBox[{"(",
556 RowBox[{"t", "-", "1"}], ")"}], " ",
557 TemplateBox[{"2",RowBox[{
558 RowBox[{"2", " ", "t"}], "+",
559 RowBox[{"2", " ", "\[ImaginaryI]", " ",
560 SqrtBox[
561 RowBox[{
562 RowBox[{"-",
563 RowBox[{"(",
564 RowBox[{"t", "-", "1"}], ")"}]}], " ", "t"}]]}]}]},
565 "PolyLog"]}], "+",
566 RowBox[{"2", " ", "t"}]}],
567 RowBox[{"4", " ",
568 SuperscriptBox["t", "2"]}]], TraditionalForm]], "Output",
569 CellChangeTimes->{
570 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
571 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
572 3.69259928561417*^9, 3.6926009513029757`*^9}],
573
574Cell[BoxData[
575 FormBox[
576 FractionBox[
577 RowBox[{
578 RowBox[{
579 RowBox[{"(",
580 RowBox[{"t", "-", "1"}], ")"}], " ",
581 TemplateBox[{"2",RowBox[{
582 RowBox[{"2", " ", "t"}], "-",
583 RowBox[{"2", " ",
584 SqrtBox[
585 RowBox[{
586 RowBox[{"(",
587 RowBox[{"t", "-", "1"}], ")"}], " ", "t"}]]}]}]},
588 "PolyLog"]}], "+",
589 RowBox[{
590 RowBox[{"(",
591 RowBox[{"t", "-", "1"}], ")"}], " ",
592 TemplateBox[{"2",RowBox[{"2", " ",
593 RowBox[{"(",
594 RowBox[{"t", "+",
595 SqrtBox[
596 RowBox[{
597 RowBox[{"(",
598 RowBox[{"t", "-", "1"}], ")"}], " ", "t"}]]}], ")"}]}]},
599 "PolyLog"]}], "+",
600 RowBox[{"2", " ", "t"}]}],
601 RowBox[{"4", " ",
602 SuperscriptBox["t", "2"]}]], TraditionalForm]], "Output",
603 CellChangeTimes->{
604 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
605 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
606 3.69259928561417*^9, 3.6926010000319*^9}],
607
608Cell[BoxData[
609 FormBox[
610 GraphicsBox[{{{}, {},
611 {RGBColor[0, 0, 1], Thickness[0.007], Opacity[1.],
612 LineBox[CompressedData["
6131:eJwVlnc81t3/x82oqBRCsi5JSDRkxOtTaQ8qpWGvVMqtW6lQomGklFGJlF1u
6146muFSjIjZJSSvWVe0zU+uvyu3x/ncR6vf855v97jeY66i/dhdxEhIaEJwfr/
615PfG6yzxDtwgLh+gy0Oem8fzkhKmt2hl0Cl1xnhahov1A+EU1tavY2Xz2aa84
616FX67TiwSVwvDlgqvD18WUrGzkrBjqz6F12MVmbfLqcgO3hhCVX2FQmFD+a51
617VPQ558hPqhZjyz6xJ+XOVPgfOuc0rlqLUuH1ug71VPBDjBR77tXi5/+oFqub
618qAgqFG5p4dbilLXLeUYrFbdWPNle0lqHtAOH9WM7qLg/VKkVdrceHZSmRv4Y
619FS+uqkxqTX+Dw+5kbe8FNAw0jW4xdGyFncsT9Yl9NGiePaiYFdsKy9A6E4o1
620DR6i+SzN+lYsMEhY7WBDw+imGzkKJt9RnvArqceOhol4OTWhZT9gwV5VK3OB
621hhm3baLfqtsg3jp+2eQhDfO5z2q99H/jP0vNwsbfNBjfbb+21/k3aOfiqi16
622aPCUW66nHfMbdnHi8nkDNFQbPro/wP0NcbmCR5kTNNw6G3rkZFUHgn90TdXw
623aRDq9O3aZdcFEbPLwz0UOvx70q/I7OiFsMKW2CIfOh6l7zgU5NALyW07wsov
6240/H6/OCaab9eGPVbzjb70/GbVO+of92LTr3MKOE7dBgrJJqHLukDX9/jZ2o8
625HTPW0SJzHX2YdlR9LlFFh0/5jXsTFwdg+a7QMUOFAY5MTHZHxACEyquSHTUZ
626uO6c2ViXOgCJiKeLVXUYuCfUvORV2wBsnT/k5m1iINNCI9bddBBn+/x2Gh1g
627oLekMrFbeAh+59iSeYEMWOfNf9MUNQzza/60DUMM/BRRafr0ahgShq8y/o4z
6284HB4PS2nfBhaLXkFzXQGvGgnN0Qyh0GEPXN7KsRE6Lr/3u05PgJH9V6JLGUm
629PmUdLCtXHcWth6z5vGNM6KdGN+fn/MHDy+EBMT+YkH1iwC6r/YPxXxFxhd1M
630kBENyg2Df6Bz+OiViREmvvwr4TmkNIa3pWmrY3lMuGz358vdHYNpqNKiYTUW
631YvtddP0cx+Hmf7aB7sNCQNucdci1cbQlFJ0MC2DBpS7h8oPYcaTE3V+45S4L
632+rltnzO+jqPodFYlJ4GFLzf3Hv+1eQJmzuNSw7UszKqtv22yZBLDzzXfn9GZ
633Qb/st9c7dCfxt6l7m+HmGdRKejUd2jkJy4bGI1qWM4ijpq04GzAJ/T96Si8c
634ZmBQppgbPzoJC+ZrYmHcDOTzC3+mi07B5cGyIL/UGfzNOPI3V2UK/ky/cEre
635DOoeRO7+ajOFDDHjC7ubZ+DqKNxDlk1Ba11SgYkMG3uPPBeT7JzCLCFybbkG
636Gwa7zHRk2VOoVQXdbgMbs/qXLumtnYZrWaDndls2+jWWPjPePY2zekt1yTNs
6371Mq/KbN0ncb+rLjAPYFsxPFHF9o/FXAiu+41P42NAPptwzP50xA5YW+c+p4N
63812EN20vfprHZuS3wXAsbCqf1m6sFHEmO1hVTnMfB0EFP5R5jKj5+o9dc9eNA
639ttpL8/oOKvKNzAwDozjYZu6jt/IwFeFft3RwMzl4oXtty6lzVBDFwtGnf3Fg
640J3nP7mciFU0zXiMHDbmIuBHldvm1gAvMYfqxnVyUzMR4yb2jov+0UdToSS6W
641DyUGHBFwZfChqvDbYC5aPr9J+CZCw+zi3ddEGrgQNslPvbCYBq+h2kXh3VwY
642vC36T1qZBpcVE6dfTXMR+fzzh32baOi1FaIXLOFht39rZ81pGqyXjKauP8iD
643H/3noIcvDTrUc82pdjykn+mcEL9JA7fMdNX7szyIHh+a3R5PQ4sTn9N+m4fS
644jWzlsnoaxNb8+TuviIfJLFLTsZ2GlCUV5p8reFCmCK3lD9EQpK95VecbD1dl
6455ptvmaNBNbK4f9EQD5mh0js6FtJh4yN26940D21zMgeuKdARFLBRopTLw8Yp
646JfsiQzpmPTVctkqTcHVXdbe1oONz3YbbsfIkHnVSzs/speOqOl8tWZXEdJ1e
6474EY3OqZbZ1f9MSDxOsMi8W2c4DzFPo391iTaVbanWaXQsVej+c9NWxKScbuy
648p97Q4fkl8PoVBxLut6w/6tXScWLF3YmscyRiSJuqrz/o2JfS+2rMh0T5xRMN
649Z/vp6Hy+7O+kHwk1Z5euTJKOrrwHojtDSFj98hjaJclAym7JwIRQEtetzk0O
650yzKgUtSu8D6SRKe5719NfQby1+xZafOYxMKCK+KVpgzcibM2aHpGwlQvUNp1
651FwMBOS9Llr8g8VjpzsqXTgy87aK7S2WSmBlozDh4gYH7lJcVEv+RsMlevn7W
652nwH+0WP6tW9I5F12+vAqTMClBR/iD+WRWEq82mn7mIFHBR7cl4Uk/plPbxJL
653Y6CSNWr0vpjEtxbTU7m5DMhdHjZ7/oHEPfd6b+lGBlZVpulWfSYxpi/HK+lg
654QLs68/uCShJ7OPa3PP8IOBdd/3llNYnMz+mL5NkMWKgr1PJrSMyLmH5SIcbE
655yJjUx5xaEm42xhSfpUxY7X3npf+VRMXKm9kqakx0+pemXK8noTFSu7l+LRNe
656Vr46LxpIBL1dWn7VjAmH0MGq6EYS3VdP7V+9h4l/pgY2n/xGwnx7att3ATc3
657yqiCKdAJUpNOwW5MtH3SfuzSRIL3Y9P4uotMcIxCOWkCfTzp+qWuG0xozatR
658+CTQ7zxr5sIjmYjLuf46R6Dl1y8JN37GRNmsu/0lgfYlj8sOZzJhreLQvUyg
659WypfPo8uFPi5dONnuOA+w/tj2lsrmdiqr0X9LYgvynZD3lQzE38j+fViAj2l
660FmCe0CPgvrTMkvkCP/vHKmv2TAriN2g8Pirwn5UnfZgt4HY6RckypY7EgsBj
661namSLESoH/cyFeTLc2eSx2F5FoITL53JEeSzevEodY7CgpAxq2muisSqdgP/
662bEMWiADupnWCevSfK38geYAFjaorJjplJIhNC5UKT7KQtLWQPvORRBL/SKqr
663JwtRZ2R6Ut6TsHs4VFQawoKT3/kLLwT9UHJSf7vXQxb2hlQq0QT9oqjp16CY
664xILWCo6U5v9ItBVK9vuWsKDDnvdpfRYJ607dhbo0Fu547WwSek4iJ8039hef
665hflplwx84klIe39UvSM1A5GRqISaOBJ1wlYb+1bPYH/Xs+PaD0hYrr5o/1jw
666LugM+hJV10mYXCx6I1o/Azb3eGD1CRJNc2YOPu0zEM5RMOi1IeER+UmqZ3gG
6672gfKR4etBPOeWX2mRJiNUSa78MMOQX92f6f4bGbD/E1Q1CPBvCfsoz3uTmaj
668TluzYI0oCb6mTlDxVQ607IeO9CfyEJObrb/6LgcDwmxz7cc86BCGXTExAo7/
6693hrkGsXDsVPGpv+84SB3a3BHSTAPbx7uZGoNceCiauxO9+DBie/iGWPNRar5
670U5OctTxU/Hxm7b2ah1sLhKqDC7iIcTnKZG3gYWJPf6lVDhcek4ueBBA8DJsZ
671spdncLFANLgn7AQPHfaHHsQ/4cJa3/NCagQPYr8+6Zzz56L71sZ77QIOXnvv
6726mhFcMEzbKjZXiTglGL1mtIaDgzv8S0U9vwFJ8FvTq+ZjV3Dpj0GtkJEY2sl
673hfKehZG1hTuYE8KEZDcpzu9jwH82bMOHa6LEPpGMjBub6JCQGT1joyNOSNgX
674z4o+oEK8QXzXwo/ziCdHKxRTj02BbMz2euQjScRHnDfvezGOIdscRRWVBUSv
6752qSymcUfbA29cP5L9kLCt0V5R+aWEcTyi+Zvd5Qm1nd9vJm4YwinlCv2dzIW
676EUFy1p9pCQOQKtOd0Di6hOgrSvLrJ/vgvimZdUJPhojW9SuYDO2F3/Urh9VY
677MkSMd+a6p/HduD0W3drYuJRosev6IbemE/t1FmdKxS8jJoYLnJyX/kZktlHZ
678fmdZIj0QVTfW/ULdkZRZXxM54n6BnIv6gTaUNXjf0xOVJ4pDpIqFcr4j9+xN
679or5LnpCV+enusqgVKvtgfCF/OUFcNHyYHNuM7XN2IUkBCkQgv/HuVasmuLV9
680ohcdVSQyR0Uz/pFuhMXN4AJnNSVigUK07/6Wr3jkTXsvNaJEbJqaFGuvrkV/
681UNpwUukKQvPm5mM6+TUYdy92K7+rTCi1NmuoDFWBen6pRIPzSqIx38xJf3El
682cvZ8nfVYq0KEM668E/Etx7CngZEoS4W4F7tu9jOnDEpZv6PvNqgSIj7+3yQn
683ShHidDG5YZ8akS38qbPP8gPYs4qR+4rViItbXQ9PPiiG9vvHT+s01YlFmnIh
684XYvfYZNrlZVMmDoxtyZJeWVnPsoS5BTqWeqEx7yv7VHxudAukws/eEqD6Of+
685r/5XwlscEJ9Y2VKqQYwkpsTX384GtWOwolaHQpSXmFobvXsF74TIZWEPKATb
6860ZcQP5GOemHN6b0PKYSt7tIDDnvToXO6pE4qmkLwIx+9LjFLx6DhyM2oOAoR
687utXTJlAlHcdrCOrjRAohPlS4W2cwDdvojPr0LApx3j6wR/2fNMjvPnmnsoZC
6885Px033gzPBX/ZlOd79RSiBD+q7BtAaloWnrXfPdXChE20CMjcSEVEV15zK+N
689FCJq1dV3Tw+lQuhfadfWHxTi+ZMu8yGFVIwllqF/gEKMVzp6yWamYJeo7YrU
690IQrhVFcRIhmfglTPyRn3EQpxwuTFp7mIFDhuUMr5M0YhzCzXvWR7p+D7l3+V
691aTSB3xO5dCnjFBjqL+DkMijEo8oBWSWdFNyPftHqy6IQYkXeNjrKKdjj0BDO
6924VCIol2LtG2EUpBe4epRwqMQFCP7kvP0ZMG/iLc1YJZCuB284RE+mAzn+1Er
693LfgU4lZwtO7rtmSUMrS4c3OC+GSLJRu+JOP/AET8iq0=
694 "]]},
695 {RGBColor[1, 0, 0], Thickness[0.007], Opacity[1.],
696 LineBox[CompressedData["
6971:eJwV13k4VG8bB/Cxz9iSLakkM5E1imw59xMRJVnak0LWEClUshTREIVWUUlC
698oaJ+tNiTPUW2SFnHmGEW+/qe969zfa5zzn225/ne59nkcs7ejZdAIDzlIRD+
699v00LcxHUOROHRSgdEXb4sg3SjzOMjih6AYHmMl+xhoJ17aeeV1S8BITuoXgO
700hYJt0//+XLjzGhDy73yc0qFgwXuOiQso3gRCOmWXIVCwz0cGQlY8EoFw6H69
701oTUF4yn6wF7sSMKPr85GxyiYRTVynNn4EAiZWTVFgRTMszH6zqTZYyDInudC
702JAWLa6uvYXs8AULhn6q0BHz/+Vy56Y4MiJjYmvg6h4LlXdO9ztqYAxFTNPlv
703fylYqWDHhom3uYDs8udyxylYC/VSMdPsNZT7tPt9WqRgnKRSJt2jAE4LDFK6
7045DZjj+0orzkd7+CvQ+Wcsv1m7J9zvixzYwmU/6rng9rNGP35iiuDVgKKTtoc
705z47NGGfI9u3Y24/wdEf17wfDmzF+b+4+utlnKI++wNASUMaUzxtEjniUQfnA
70611g/M2Vsx65/U6yOSoigdT8eqVLGrtidPT22sQ5YBmku0e0q2PL1HWv74uvg
707zY4oMzG6Chbxgefnz7k6aKHWBhQsqWBR6x6YfWytB1av2b7Dm7dgCUPVyjdj
708GuFN/Yla1aAt2NNLCkzlie8QsVITqKqgig200HbqnGoFOU/zEGWqGkbxtln7
7096m4rhIxpSaEMNcydr2iK0tgKxdJlSVEf1TCaXni+nGEb/H18YPzumBrGeCSj
710SJD6BRH7TbqaD6hj02dM+b7XtEOn8gZZ7U0aGGkutc5HqxuIe1rIDWOamEFM
7111+W9zt1AqJOUcyJqYZ4yazS2pHSDQb1X+JbNWliNTlLCwFw3eO490XLmlBYW
7125R3rcPzrb0D+GTnx7VoYoedC7x7HXsg+gnZZtGzFtL3fJWxO7IWI3HNr0llb
713sVOzE8BX2QvomFD8Y6I2Vip9NqNU5Q90tkvvSVPVxq7sd/bQ4/6BN0ELOWa+
714uPuyQlab/wXdUpJt4oI2lpRlbhfh9BfWr55NFRbXwXJ9B1Ungv9C/CDbuUBR
715B+te2PS7MfcvpLeLHQ+20MEM5NJMYiX+QUv1+YDVKTrYtG0y78rvfxB0NuA/
716XoNtWEBleDzj/AB4urw4pZe9HZtdnZL3O24Atmh7UivLt2NhztnN9ZkD4FNr
717eOx213YsnvBDIqd9AOJ3ekpwRXSxbEzprpvRIGhc+ajDDdTF/n6sTvvDMwSi
718+kuf5uz0MA/hrtIm+SGQczTaqHxODxs/xuz7vH0IGqU012XH62GLszJKqW5D
719EHs3+nhRrR4mp++RdaRuCNqVDC6uN9+B2RaSClpuDwNvhfiuLlt9rINXoaUs
720ZxhqYiWuogv6mJP9NnZ+5TDQqc19Gx7oYz7s49tvTQ6D7rWY5N3/9LHYra//
721szo6ApfHMyVvXzLAVoWXdxoEjEB6ICRxnxpg95rb5lSoI3D4Tv38QK0Blum7
722ZCz4eQTkztbcCZE3xMpe2ZRXbqRBu2T77l/VhpjFgsu/twY0cLEdesXLNsQa
7239wbzPrOjwetLj0a6Nxhh3aNPdodfp4H1wSvdjy8ZYdMq7FrjERr4tCjyMAyN
724Ma3M5B9F+aMQKmnac71/Jyb9QHumvG4UsAZM9aOiCbYQ17S+aXAUGF2Pr6qe
725NsFqA4U8h+TpwHktcfVPvwnmYnZlWSaGDrxfxDnjsxhmqS9HUcqgg9Z512l9
726U8C2qr+30vpCh/a7MQcVbwG2KDmRYsGlw0MHYR2iNMLu9ruoB58aA+M4So7+
727R4SFtq/YXr+MO4pYdmQYYS71j4MS745BFrXG+r7ULkzrXXvFy4YxsH9u+zMn
728YBcmnRU4Ujg8Bmsf5BU+zNiFLTyUECvnYUCk0zS9v20XVhu592inPgP2vSD5
729fjMxxfIvjlwdtGfAkORbqZsXTLG7XlHPWb4MMJS0XM9+bYq52JWOEzMZYNeW
730YCxFNsMWFbdFG0owoe/wVE2hym6sX/p7rrk6E+z3pUkV+u3G6og+LXYWTHC/
731kKJzrHg3do/1Yp13KBNo05/OOR00x0IHTXcF3WeCFtWlVfOlOeba2ed+7R0T
732HibXHr2xZI5pl69994jGhKJzzIeCHyww2aIPHVl845BtlHqkX24PtvTSYemd
733wjgo9PAfKozYgw2mspTKDMfhrVNMwwxzD1afeMuy4eA4nJRMMzF1tsTeXFfz
7346zg3DvJYgTH22xK7F/wteYA6DlMaexM+OFphrqd4+hbKx+HXBXgid3kvttch
735nZ/YMw6Pio4OJ8rtw7T3GKtJz4yDF/fl4a9V+zBZ484DipITwE+185u+ao0t
736al28qKE5ATdpXtYSe/dj/UqSqQaWE2Duah7Op2GD1ckWlO92nQCaLaHXXvUA
7379kbYetg2bALiJ2qqRDfbYveWaSInH07AQ9MPBQlNtlgoJ1rHq2gChNXX7LN7
738aIe5Disdufh9AgYll58YPLHH9naXhUbSJ0BLnkPdsOkgJueh9aOGlwX+sZob
739+mpkQOTf4oC1BAtGI7PlkvQdYPl4w/TPDSxw4ss9EvTYAzhtD0nH1FlAVKz0
740sKVegCEbz/V9BiyoJEWaHMsKA+kaH0qYOQsM+vjWu96OAlOTAI0N9izwNmk2
741e2ZChafql3eeOMsCVsRlHR7HZPieEbZ7PpgFd9RuJmMl92B57XXrh1EsEFHd
742rQrGj8CRGO/YkcaCzS/VtSpbnkJc+O0zQbks2DJi8PJgeQZ8nE7xkfmPBQPt
743JS5yXzJhzVBaqEMLC0pEMwK8urPhZ0XB4++8bJiMy34t8O0N8BgWZfqtYsNb
744veAMRdpb0H5T/FpsPRt0gkqTx0QL4VZ6xed9emzoK/Fcm3z6PVheae355sEG
745XTkCVVjtI5Tqzqwvb2TD+ckydflVlcB8tUA51cWG9we20G68rYT1ZILm8hAb
746JLOUJS4erIJLq0kmO1fYYP8rOPBZajXojsufLNbhgFNq5F+m5jfIfYmlvbnH
747gTt3hq3ijjXCffkbG56d5sLt0+GmX61bYXqg+aWNHxf2F7X1mmW2wsG8NdsW
748r3DBOZxTELPQCpIox+LIfS7Q/S51HM5pg3i3xnNizVywWVvv2sfTDhFvJCsv
749GU/CLVOFtdiLTvC0eOJuLzsFJV+8El7m9ULNKhprhTwFiq8y+AwXemFzl/aV
750PJ0p+MvRfe5n+Qf6z1YmEvdPweLgsMbXf3/A8c5Qcen1KbBuYBqJEv+CbY+6
751iDp7Clp8PZYfav4Dw/PFBXyN0yCvH1OZcGgAWlaMnQK6pmHbgpvf6MUBcL9V
752Jto3PA3K+6e+rrk3AEnZNV4feWYgqMjy78SvAaD/aSMH6M/AH7+vzbcdBuHx
753Pvb9PxkzENVglfvGYgiWKWoRJZdm4dXaRB8XsRFIeZenpRIzC0H3KqrObxkB
754NaTTm5IyC3zmKpYnzPDcP2Fg5F8wC/VPP1x/HzICBXcsJpWHZiE7xi0s+d8I
755nF528UyxnYPQ5Pyyda9pUNWRantOZR4ogofikzfTIcXl0OTU9nlQsTPmXDWi
756gztT/EEomgfdoLtX9h6ggzDftb6bx+bh9cXqGGoIHWy1PP0y4+ahnnrfJ7eO
757Dn+idOO7Jubhv4RnLrHuYzCv0/TNrHgBsLoNHm/iGND4+cbZ+uoF2BEcu4Gc
758xoD0PWiV3Y8FeCOlaRmaz4BdJwsPO9EX4IKK7dX+FgbExj4cClm/CB9ig6Yj
759pZkg2+fGlx+xCIIHfxqo4rmoE7+MyVktQZFf5jwHz6ltXotn8g4vQX//ce+c
760R+OgazFPNT2zBLqSTY4WueOwgzDd7hO+BII31znq1o3DzgtMv4r3S6AR+Lxk
761UGACLB170r2VlqEwQYHnw+UJOK3xcfnzwjL4Nf/uj1JlgQupmGJPWoHjdbGz
762o1tZ4Dr8fu+I7AoET9r67N7BAvenb++t3rYCUx69r7pMWeAjnaPl7rkCrJO1
763ejEnWBC8eN9p1a8VUCwVi16gsmDPsFGf9hEC4ubkQF4/fn5rGyPmJAG9zpJI
764vzbCgqhyv/k/rgTEMTxnastgQcWjDJlb/gT05s7QjbYpFhgfELYevUlAF8BG
7658RqRDVuLu4qffSYgwUmRwMsabFhDDUmSVOJBMfsM35HPsfH3LvnUawsPqk+P
766JcoEsuHgmdd55Vo8KPbFSudKEBvuYH9r/Yx5UKLVFZHKMDaIcPes1B/kQS9s
767UnLmbrFh5cQan+sxPIjHgGZo8ooNI5ofzCcZPMg67UW5zT82KF31dVPn8qDG
768/qNB5wbZ4NhIiXaZ40GzYs591BE2tHgnV7cI8CJlH6WRt0w2fHzpb5anwIvy
769fbfdqphjQ/wm9V3utrwoAhGkmBIc0JF5urOzkBedln5CyTDmgM+ZI46rPvIi
770h7BlgjLGgaxC8VCLcl403MByfIE4IG9/9VNRIy9S6ujIvWfOAf7E40Z3hngR
771038Sdh/gQDtRxmDvGj40fr4BWpw5cGXx5vbPl/lQcKZ43I/rHGi+4JpyOZIP
772wUYty4VoDigyd04ZxPKhohq364qxHKjunfjw/i4fur5IvnUyngOiZYeMCt7w
773ISML/tSMFA6kR27alTHMhxTXMsZOZnKANTf/7DSTDyXNhrmbZnHA9Hwb78ZJ
774PtRSpFWmlM2BEZeY6lQefvSFXbSp4xUHtHcz99xdz4/MNhlZrSrkQIVgiU2s
775PT8yjdCfrijngHR4UoHFMX7kem+K6V7JAfeZsxICp/nRPYVT64jVHBCmKfyM
7769OVHkQt8GvCNA/Z1UYeuxPKj3NcPiyKaODAYZ+voV8qPYg9+qz/UxQGh1TSv
777g2oCSO6sWKvXOAemYxzNn2gLoOQ1g4HUCQ4ML7co0ncIoBeEL9bZLA7UMEo6
778ws0EUD7zdtFvDgdu1MaZv3IUQBU6l0o3zXBAMGLrJt5EAWR1/k+J5gpeb/r5
779ovVdATT4wj+ETODCsK9c5/1UAXSK6PhClocLNSd4EjWzBZDaM/0jU7xcuKHf
780uni0QgC5uvZfSBHkguBEUGcBVwA9GtU65ijGhWm3scL5OQH0K77qkpo4Xq/n
781VKI5QRBJJucbTeOuqbe0+C0qiDItQnJuSOD1suSLBJUFEWP5zq04KbyeU2ni
782yaOCaKflzKzKWrxe27az2U6CiOO/4eoP3MP7XlpwzwgivYvp30Pk8XqGt5di
783AwQRsaqAXr4OryfjcraIKojmU03M9RW4INAksEfkiyB6oEH/V6rEBVHfx669
784VYJot92/bjsyF6TFtkcU1AsiQvBCQD9uyv7TJQ6dgkj+59WYRQoXdjd9VH/M
785FUSz6jw50ipcsPa1s/Sbx+9nPIiRgvugGO0M4hFC6zTcRiS3cMF1v0z6oLgQ
786os3wSBBVuXCt6ZyEppoQchB7HdmhxgWqr6DmirYQsokKbDdX50KSWJrVD30h
7875K7AmX+LO2N//bWL5kKoSn2w9LoGFyqaKFNfTguhv2tcosS0uFDr+2n1bQ8h
788FGJdk+2Nu0XMXsvFTwjxZsgWfcX9d3+4h2CoEPokUk+9uJULhOauLpv7Qogc
789/vXGZ20uEP38pxXThVCiIUubpMMFCXEhKW6mELL/h3U64Fa00bW+/04IuVmv
790Ux3AvWW83tOrRAhdO03qVNnGBe0E52jjciHEEe9J8MYNzQmlfU1CiKH3TYGO
79128Jv8++3bULoYpzSkvJ2vO+Lf565/lsIeSMa0xm3k82o9pZRIST1Q2L1T9xh
792zWbP/fmJaHv3sxepuvj38+suMxUhIp8a3VN1uBPEA3qkJYlovUcSTOFOs0mX
793KdlIRLrTqWF79LiQOa67LU6ZiHpCd/T74n6d0GBzUpOIqjkhQUm4PzfPxvAY
794E9GBoTyjdtzVfomZrbuIyE/nwrkp3I3iyhUvLInogwz1j+QOLrTlf+4NPkBE
7951mZ2VC3cPTYO81aHiUhRfctFS9yD46Oy608S0Siv97PTuBkJEdvHXYloos5v
796dTDuSa01tuXeRNS1P+5bHO6F5jyfpAAiur91dU06boUfzqm7Q4hIu9G6sgC3
797aatM/XQYEfXd2r2uDLf7r7rZ7GgiGrLc1NqIm9pxVeVEPBGNTRAZnbjzu3QO
798iyUTkekDBc8B3D9+D0WVPSQiubBrVoz/X7/3YWHAUyJ6QrRP4uKW+7u/n/yS
799iIyaX+6ew72zn2d1ex4RpT5IdVnCfXrwPcQWEdGgp+n4Cu6oYS8/o09E9OlK
800/ihBnwsvaRvSGBX49fZPHP6/6+k/GtJrcaetNljGjx9nRM/bficigcCNifO4
801JScMVfnaiejcJkWnKdw72Mwj73vw59sr93Ic93HusxseA0SkMETyGcZ9derQ
802+7V0IrI1mczvwf10hjTYwCKimoXWgB+4q+e+SIbNEBFd5fmHaty0hYBd2stE
803NK9+LPwDbtHlzf79/CQ00UlvysKtTehOTxEhIRPvvZl3cTvwJjRZSJJQ9E0P
804/uu4g/hNF2flSMjffivLD/cjwWm1VxtJyPRwvNcx3P3CTrGrNEnowIfnomq4
805BcUk/6vYTkJJGcpGErhVV9UMBRqREJH9fXESHz/+UlpmnXtIaGuSiNVH3Cky
806/QFUGxL6Vmjf/gj3f2vuPd15CD+/R5VwGffyuuWlpy4k5GXcoa2LW0nhnYaD
807FwllsWyMV+G2UHQ/IeBPQrvfPRyl4eP9FqW52OsqCYXs+2HwAPcb5Wsj66JI
808aLzcutcXd9uWHbLNVBI6FF2sYYp7vWZ64LYHJMT6cqZ1GJ9fuXp+WgvvSEgk
809ItdfEXezvtLJvBISSjV2SBvD5yvHsD3uVDkJQU/xtfe4DTFstKqJhHhfBYWZ
8104661EM+Mp5HQjbNunofxPBg6kr9WQUEYkRZsLpjg+ZJ1dKnSkSKM8s99/jOH
81154/nMWufVDVhpNHFb/YeN/04vVROXxiZx2ovb8HNOql8RspWGMVlDzrza3Jh
8120TU9n3hNGHULerPj8HwsPcM8sidWGLmkpd4ywB3utpPnRoIwckUU/UE8T3k9
813uh34UoXRK2zkgwFuorfs3FKhMOLTS7/ZjuexlH+CGXdIGBWuZFwexvO7zb+X
814ocMQRtJ6WRejcN8L0LjnzxFGB4Olb2/CLRdYT2MuCyNadqzKMTz/FYIEE2hr
815RNB/T4eWv2ziglpoWGevlQga3rZkfArvJ7ti/Xxr80TQbHyDlNAaLsi/6zuS
816UCSClMIPBkXI4vPvt63pwU8i6MLFzulZGfz9bN2+5m+tCLKdvXd4RBofrx0z
8175TMDIoidQ3hXIsmF9s2R0iryoijNdWePHt4fz1Ylf4q+IYq4kmUtyfxcuLtc
818TDI7JYbSZLPcFPF+L6ry1e+umxiinLgxfxH/H4g68KN15KwYulZVyNfA5MD5
819p6Np8SFiSFav8WIggwM2pvLb2u+IoX3+zxhfRvH+f+PKca9q3OtzywwHORAi
820hr1KVBVHw4c/Z//o5MCJ9VXWPVxxtMHnH/UF/j8jWq7OUDokgYguzmNbYzjg
821ppcxdUxjNQr/fFzmpxUHgsNC7BWnVqO2uytuGWIciKYntzY3SyKqQn6kaz0b
822rNVWZYs+kkKZTJ2cZCobbuXtKLd2lkYu8kNnX+5jQ73D88ULhjIoVDnO+KoQ
823G8qbzsVr8MkiUbO2TIdaFrzzjkSNvbJI8WvxUja+DlfYBwZ+RWvQP4XSQ8iM
824BWYrjtefhMqh5lVcmf1CLDjTXsYpPrQW+Vl3ua9LnAAs8tp7Z0V5JBuVwkiV
825n4Ckc+xPoiPySFw74EIXvt7oj3gx/KR0Hfq36FvlpDsOY24lZypj1iNx00Md
826wbVMYPlKCjU5b0Daqs3lpw4zId+qYdFdUwGRpGObosYZMOypvYNvSgFleSmU
827aeHrJ/lX3ckxTRtR4ueQEDUlBlw/fT6jaZ8i8r8bP5FbOQYzi2tv7StRRJft
828eY/9PjkGWz7df1hP2YQiqqhT0Ut00HP9emD1zU3oUg8Rm3xBh/LHMnKNU5tQ
82988VvC35WdNhSLkO1OaGECKrLTPOpUdgvwNjws1QJhXomeNdmjgLr92BVnRoZ
830pZhMfcg8MArnHt+SuplIRjTeWnlt3lFo5KFM7L1DRsLqFtHdhFFQ8/hYL5pM
831Rk9fd0lHr9BgUGck8vY9MrKnqT/vXqTB0W+IdT+NjCSTxq7EzNDAlMNtzHpF
832Rrw9+9bSGDSQtTx+o/obGVnfs+6r7qBBYB7L+UYdGSX3e/YHttOgRTLGxLKB
833jB71T5LIv2gQ11s42dBMRod99tRE/qQBIVDMtfUXGbXVWnBREw3oaeXQP0BG
834jVd05GsqabCH78i6zCEyslj1zzm4ggaZnsxptxEysrXJb9pSToNT2+XzR+lk
835tHLq1ur4LzRoqw1cz2aTUcNIs9XBYhroaAnPvuOS0YPRnreC/9EgIflp64Up
836MlL71mdS8p4GVk5N1NlZMjpdXFChUEiDrCpX94/zZPQu/XzJj7c04Fed3xW6
837SEZIUPZX1BsaOCfc3oAtk1FtV4q0QQENSrnKcysrZETlpweP5dHgf0PAZgc=
838
839 "]]}}, {}},
840 AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
841 Axes->{True, True},
842 AxesLabel->{None, None},
843 AxesOrigin->{0, 0},
844 DisplayFunction->Identity,
845 Frame->{{False, False}, {False, False}},
846 FrameLabel->{{None, None}, {None, None}},
847 FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
848 GridLines->{None, None},
849 GridLinesStyle->Directive[
850 GrayLevel[0.5, 0.4]],
851 ImagePadding->All,
852 Method->{
853 "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
854 AbsolutePointSize[6], "ScalingFunctions" -> None},
855 PlotRange->{{0, 10}, {0., 1.7384634940975814`}},
856 PlotRangeClipping->True,
857 PlotRangePadding->{{
858 Scaled[0.02],
859 Scaled[0.02]}, {
860 Scaled[0.05],
861 Scaled[0.05]}},
862 Ticks->{Automatic, Automatic}], TraditionalForm]], "Output",
863 CellChangeTimes->{
864 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
865 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
866 3.69259928561417*^9, 3.692601000884819*^9}]
867}, Open ]],
868
869Cell["\<\
870Plot of the real and imaginary part of 3*I(a) as defined in the notes (I use \
8713*I(a) so that the function goes to 1 as a->0.)\
872\>", "Text"]
873}, Open ]],
874
875Cell[CellGroupData[{
876
877Cell[TextData[{
878 "Function to be integrated to get the LO cross section. In general, we use \
879the convention that all functions to be numerically integrated in the \
880hypercubes ",
881 Cell[BoxData[
882 FormBox[
883 SuperscriptBox[
884 RowBox[{"[",
885 RowBox[{"0", ",", "1"}], "]"}], "d"], TraditionalForm]]],
886 ", where d is the dimension of the integration space. dsigma depends on the \
887Higgs mass (mh), the total collider energy (sqrtS) and from the arbitrary \
888normalization and factorization scales (mur,muf)."
889}], "Subsubsection"],
890
891Cell["\<\
892dsigmaLO[zz_,mh_,sqrtS_,muf_,mur_]:=Module[
893{y,x1,x2,gg0,qg0,qq0,s0,ymin,ymax,JAC,v,S,tau0},
894Muf=muf*1.;
895v=246.;
896S=sqrtS^2;
897tau0=mh^2/S;
898ymax=-Log[Sqrt[tau0]];
899ymin=-ymax;
900y=ymin+(ymax-ymin)*zz;
901JAC=ymax-ymin;
902x1=Sqrt[tau0] Exp[y];
903x2=Sqrt[tau0] Exp[-y];
904{gg0,qg0,qq0}=pdfCTEQLO[x1,x2,Muf];
905s0=asLO[mur,5]^2/576/Pi/v^2*tau0;
906s0=s0*gg0;
907s0=s0*389379660; (*to picobarns*)
908s0=s0*JAC;
909Return[s0];
910];\
911\>", "Input"],
912
913Cell[CellGroupData[{
914
915Cell["sLO=NIntegrate[dsigmaLO[xx,100,14000,100,100],{xx,0,1}]", "Input"],
916
917Cell[BoxData[
918 FormBox["32.22522904747175`", TraditionalForm]], "Output",
919 CellChangeTimes->{3.692597362173498*^9, 3.692597627791092*^9,
920 3.692599370554532*^9, 3.6926010013707323`*^9}]
921}, Open ]]
922}, Open ]],
923
924Cell[CellGroupData[{
925
926Cell["\<\
927Get the cross section for various Higgs masses and including the form factor \
928of the loop.
929I first build a table with the results of the cross section in picobarns, and \
930then plot it.\
931\>", "Subsection"],
932
933Cell["\<\
934resEFT=Table[{i,NIntegrate[dsigmaLO[x,i*1.,14000.,i*1.,i*1.],{x,0,1}]},{i,20,\
935600,10}];\
936\>", "Input"],
937
938Cell["\<\
939resFULL=Table[{resEFT[[i]][[1]],Abs[inte[resEFT[[i]][[1]]^2/175^2/4]]^2*\
940resEFT[[i]][[2]]},{i,1,Length[resEFT]}];\
941\>", "Input"],
942
943Cell[CellGroupData[{
944
945Cell[BoxData[
946 RowBox[{"ListLogPlot", "[",
947 RowBox[{
948 RowBox[{"{",
949 RowBox[{"resEFT", ",", " ", "resFULL"}], "}"}], ",", " ",
950 RowBox[{"Joined", "\[Rule]", "True"}], ",", " ",
951 RowBox[{"PlotLabels", "\[Rule]",
952 RowBox[{"{",
953 RowBox[{"EFT", ",", " ", "FULL"}], "}"}]}]}], "]"}]], "Input",
954 CellChangeTimes->{{3.6925995130057592`*^9, 3.692599673664235*^9}, {
955 3.6925997070262327`*^9, 3.692599793542263*^9}}],
956
957Cell[BoxData[
958 FormBox[
959 GraphicsBox[{{}, {{}, {},
960 {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
961 AbsoluteThickness[1.6], LineBox[CompressedData["
9621:eJwtz3lIk3EYwPFpqamYKWaiKVoNypT2Ryrl9UwSmYo2FaXD2GRz6srpUucx
963d5natbL+sBlikivBJRGbZYJNuqaRMFJnojkvbGZJeLQ8mBm/54WXlw/P7/l9
964eYNyBGlcewqFErnz/v+S5yRs9iZ/WVT5AHEMVIdOKvPp3ugzYGx6NG8WeqEZ
9650Nni2HXU6olOgRLpIa8YrQexjAkK33ZB24N9OM8A4xzr1Okwd5xnQsSTpbB4
966vhvOz4FpwviX1u+K8wsQGn1zLSreBeeXgKUfsaZ820MMLDgobzAIbzvheTb4
967vWzKqk91JO7LAW1sXabTEQfc58CGN80y47Qb97kQSRUrOOv2uJ8LPUPp0f5W
968O9znQQ4nBEzbFNzPh+xRlaHWEw0FcC9pVay8aIsl+3xgKwuK1eot4r7LUJCX
969+nR1c4OYUgguz7zpyex1YhAAr9bZ0DxkRRdBkNU2uMb8QzxVBAFlnWrZ+Cre
970XwyKurZesWCFOFAI9k5NXVFuy9gTwuf2JNNh3W9i1lX41Jq+lWBYwn4J0Nyz
971dKLwn8StJcBspn/8oVvAfincvy6iDtC/Y78U0iUTyuSJOeyXwfsxd9Wbmhns
972i8DRp3KvKGIK+yLwU/St6H6NY78cRqTU7heKUexXAM92ljoWMoT9CjBZpgu5
973pkHsV0J2Vba5s+ID9itB4/88+FVND/arIHzSuJ/fpca+GK5tP5SUBDfqSV8M
974jruWGx1OdBGzqqE5I6rtTuJbYooEAjQBMx3mAeJWCWjFnjabxkgMUmBY0npT
975zg8TT0khMPfr44TNUZzLIJETx+PeHSdukEH5jTh3/wNmPC+DllC+tpAxTUyT
976Q9jx/u56u1limRz0zFt5rro5YqMcXlOveBxjzxMHKoCpWutwc7YQF+3Yd2xr
977VrOA/6cA43rQu2HGov4fQF8saQ==
978 "]]},
979 {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668],
980 AbsoluteThickness[1.6], LineBox[CompressedData["
9811:eJw1z3lIk3EYB/B55U2HszTEFAcloXYp6Ui/pLlKMM0jTFzTtG3p8kin89zm
982MMNAs2FgieJRoYVliRP/aLIRlKGZ/qGIOo9KTM0ybXl08T698PLy4fl93+/z
983c09KP59iymKxuH/ff1/mOYaO0rlHBbVOYByIuYMjwUshu8khOJKwOeohY5PP
984oCy29pyR5UAOR7+hKVXUu5OxPBJhupXF9dYdNI/GyJvtKcvC7TSPhX6u+Lem
985zZ7mcWge/Ljh4WRH83hwFjm9RQ9saM5HaIKVeU+kNWMIMOEnaDY6WtH5RMgu
986O7p7Lm9jrE2CSLxROD5uQflkeIvtLu0bN6d8Cs5yeZLYBTPKX0FRZvtxXxuy
987Vohb1fWSNl9TyovxvNVpYExiQvmrSLPQWDt2sCifCnbrQ/1bE7I2DZuzSz7+
9883b+CmPw1iPg+FQrVFmOkw7vrXuXhlE1yBjxbItjR8RuMDRmIrDazDROuM5Zn
989glVfHTJz8ydjtyw4xKldpHojY20WJHVmEx7OZMF1OEvvtwdW/KD+bLzyqUxw
990dyM3ZGMwqUXFmVqj/hwgRuV3978NOYiwDT+hEdJ5uRR1uhqRsYb+75YLz7rG
991rVP+tI82F/Y8Dfd9KlmQh+EwkSGCR2bJUMqtP+o6SfkGGaQzPeV7T5KRj8b5
992p3eeFVCfIR9eAbzKTjXtIy8AZ0iktFCvUn8h+lzmPliWfKf+QjRY7mkyv7hC
993/UVYy2IlCw98o/5i6MvKR5YXlqm/GJ2yUH5X1BfqL4Enf8r/a+8C9ZegO93k
994yY398zSXI38s7MLnsk+Mq+Rwbqvecp2epfNyRCXGr/YFTDM+pMBWU9WLZs4k
9957a+A164Mq8dDo4zfKZD3snPxtmqY7qNETKkgbiCzn3GGEsEer71WZnR0PyXU
996zuzTYl1H0B9RsCB4
997 "]]}}, {{{},
998 {GrayLevel[0.4], AbsoluteThickness[0.5],
999 StyleBox[{
1000 LineBox[{
1001 Scaled[{0.02, 0}, {600., -0.8527625857530499}],
1002 Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.8527625857530499}]],
1003 Offset[{7, 0}, Scaled[{0.02, 0}, {600., -0.8527964031541225}]],
1004 Offset[{12, 0}, Scaled[{0.02, 0}, {600., -0.8527964031541225}]]}],
1005 LineBox[{
1006 Scaled[{0.02, 0}, {600., 0.07329423913697602}],
1007 Offset[{3, 0}, Scaled[{0.02, 0}, {600., 0.07329423913697602}]],
1008 Offset[{7, 0}, Scaled[{0.02, 0}, {600., 0.07332816341223422}]],
1009 Offset[{12, 0}, Scaled[{0.02, 0}, {600., 0.07332816341223422}]]}]},
1010
1011 FontColor->GrayLevel[0.4]]}, {
1012 InsetBox["EFT", Offset[{15, 0},
1013 Scaled[{0.02, 0}, {600., -0.8527964031541225}]],
1014 ImageScaled[{0, 0.5}]],
1015 InsetBox["FULL", Offset[{15, 0},
1016 Scaled[{0.02, 0}, {600., 0.07332816341223422}]],
1017 ImageScaled[{0, 0.5}]]},
1018 {GrayLevel[0.4], AbsoluteThickness[0.5],
1019 StyleBox[{{}, {}},
1020 FontColor->GrayLevel[0.4]]}}, {}}},
1021 AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
1022 Axes->{True, True},
1023 AxesLabel->{None, None},
1024 AxesOrigin->{0, -1.3610902020354156`},
1025 DisplayFunction->Identity,
1026 Frame->{{False, False}, {False, False}},
1027 FrameLabel->{{None, None}, {None, None}},
1028 FrameTicks->{{{{-0.6931471805599453,
1029 FormBox[
1030 TagBox[
1031 InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True],
1032 NumberForm[#, {
1033 DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
1034 AbsoluteThickness[0.1]}}, {0.,
1035 FormBox["1", TraditionalForm], {0.01, 0.}, {
1036 AbsoluteThickness[0.1]}}, {1.6094379124341003`,
1037 FormBox["5", TraditionalForm], {0.01, 0.}, {
1038 AbsoluteThickness[0.1]}}, {2.302585092994046,
1039 FormBox["10", TraditionalForm], {0.01, 0.}, {
1040 AbsoluteThickness[0.1]}}, {3.912023005428146,
1041 FormBox["50", TraditionalForm], {0.01, 0.}, {
1042 AbsoluteThickness[0.1]}}, {4.605170185988092,
1043 FormBox["100", TraditionalForm], {0.01, 0.}, {
1044 AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
1045 FormBox[
1046 InterpretationBox[
1047 StyleBox[
1048 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1049 "CacheGraphics" -> False],
1050 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1051 AbsoluteThickness[0.1]}}, {-1.6094379124341003`,
1052 FormBox[
1053 InterpretationBox[
1054 StyleBox[
1055 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1056 "CacheGraphics" -> False],
1057 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1058 AbsoluteThickness[0.1]}}, {-1.2039728043259361`,
1059 FormBox[
1060 InterpretationBox[
1061 StyleBox[
1062 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1063 "CacheGraphics" -> False],
1064 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1065 AbsoluteThickness[0.1]}}, {-0.916290731874155,
1066 FormBox[
1067 InterpretationBox[
1068 StyleBox[
1069 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1070 "CacheGraphics" -> False],
1071 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1072 AbsoluteThickness[0.1]}}, {-0.5108256237659907,
1073 FormBox[
1074 InterpretationBox[
1075 StyleBox[
1076 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1077 "CacheGraphics" -> False],
1078 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1079 AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
1080 FormBox[
1081 InterpretationBox[
1082 StyleBox[
1083 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1084 "CacheGraphics" -> False],
1085 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1086 AbsoluteThickness[0.1]}}, {-0.2231435513142097,
1087 FormBox[
1088 InterpretationBox[
1089 StyleBox[
1090 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1091 "CacheGraphics" -> False],
1092 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1093 AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
1094 FormBox[
1095 InterpretationBox[
1096 StyleBox[
1097 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1098 "CacheGraphics" -> False],
1099 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1100 AbsoluteThickness[0.1]}}, {0.6931471805599453,
1101 FormBox[
1102 InterpretationBox[
1103 StyleBox[
1104 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1105 "CacheGraphics" -> False],
1106 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1107 AbsoluteThickness[0.1]}}, {1.0986122886681098`,
1108 FormBox[
1109 InterpretationBox[
1110 StyleBox[
1111 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1112 "CacheGraphics" -> False],
1113 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1114 AbsoluteThickness[0.1]}}, {1.3862943611198906`,
1115 FormBox[
1116 InterpretationBox[
1117 StyleBox[
1118 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1119 "CacheGraphics" -> False],
1120 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1121 AbsoluteThickness[0.1]}}, {1.791759469228055,
1122 FormBox[
1123 InterpretationBox[
1124 StyleBox[
1125 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1126 "CacheGraphics" -> False],
1127 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1128 AbsoluteThickness[0.1]}}, {1.9459101490553132`,
1129 FormBox[
1130 InterpretationBox[
1131 StyleBox[
1132 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1133 "CacheGraphics" -> False],
1134 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1135 AbsoluteThickness[0.1]}}, {2.0794415416798357`,
1136 FormBox[
1137 InterpretationBox[
1138 StyleBox[
1139 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1140 "CacheGraphics" -> False],
1141 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1142 AbsoluteThickness[0.1]}}, {2.1972245773362196`,
1143 FormBox[
1144 InterpretationBox[
1145 StyleBox[
1146 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1147 "CacheGraphics" -> False],
1148 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1149 AbsoluteThickness[0.1]}}, {2.995732273553991,
1150 FormBox[
1151 InterpretationBox[
1152 StyleBox[
1153 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1154 "CacheGraphics" -> False],
1155 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1156 AbsoluteThickness[0.1]}}, {3.4011973816621555`,
1157 FormBox[
1158 InterpretationBox[
1159 StyleBox[
1160 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1161 "CacheGraphics" -> False],
1162 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1163 AbsoluteThickness[0.1]}}, {3.6888794541139363`,
1164 FormBox[
1165 InterpretationBox[
1166 StyleBox[
1167 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1168 "CacheGraphics" -> False],
1169 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1170 AbsoluteThickness[0.1]}}, {4.0943445622221,
1171 FormBox[
1172 InterpretationBox[
1173 StyleBox[
1174 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1175 "CacheGraphics" -> False],
1176 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1177 AbsoluteThickness[0.1]}}, {4.248495242049359,
1178 FormBox[
1179 InterpretationBox[
1180 StyleBox[
1181 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1182 "CacheGraphics" -> False],
1183 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1184 AbsoluteThickness[0.1]}}, {4.382026634673881,
1185 FormBox[
1186 InterpretationBox[
1187 StyleBox[
1188 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1189 "CacheGraphics" -> False],
1190 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1191 AbsoluteThickness[0.1]}}, {4.499809670330265,
1192 FormBox[
1193 InterpretationBox[
1194 StyleBox[
1195 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1196 "CacheGraphics" -> False],
1197 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1198 AbsoluteThickness[0.1]}}, {5.298317366548036,
1199 FormBox[
1200 InterpretationBox[
1201 StyleBox[
1202 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1203 "CacheGraphics" -> False],
1204 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1205 AbsoluteThickness[0.1]}}, {5.703782474656201,
1206 FormBox[
1207 InterpretationBox[
1208 StyleBox[
1209 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1210 "CacheGraphics" -> False],
1211 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1212 AbsoluteThickness[0.1]}}, {5.991464547107982,
1213 FormBox[
1214 InterpretationBox[
1215 StyleBox[
1216 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1217 "CacheGraphics" -> False],
1218 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1219 AbsoluteThickness[0.1]}}, {6.214608098422191,
1220 FormBox[
1221 InterpretationBox[
1222 StyleBox[
1223 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1224 "CacheGraphics" -> False],
1225 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1226 AbsoluteThickness[0.1]}}, {6.396929655216146,
1227 FormBox[
1228 InterpretationBox[
1229 StyleBox[
1230 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1231 "CacheGraphics" -> False],
1232 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1233 AbsoluteThickness[0.1]}}, {6.551080335043404,
1234 FormBox[
1235 InterpretationBox[
1236 StyleBox[
1237 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1238 "CacheGraphics" -> False],
1239 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1240 AbsoluteThickness[0.1]}}, {6.684611727667927,
1241 FormBox[
1242 InterpretationBox[
1243 StyleBox[
1244 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1245 "CacheGraphics" -> False],
1246 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1247 AbsoluteThickness[0.1]}}, {6.802394763324311,
1248 FormBox[
1249 InterpretationBox[
1250 StyleBox[
1251 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1252 "CacheGraphics" -> False],
1253 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1254 AbsoluteThickness[0.1]}}, {6.907755278982137,
1255 FormBox[
1256 InterpretationBox[
1257 StyleBox[
1258 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1259 "CacheGraphics" -> False],
1260 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1261 AbsoluteThickness[0.1]}}, {7.313220387090301,
1262 FormBox[
1263 InterpretationBox[
1264 StyleBox[
1265 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1266 "CacheGraphics" -> False],
1267 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1268 AbsoluteThickness[0.1]}}, {7.600902459542082,
1269 FormBox[
1270 InterpretationBox[
1271 StyleBox[
1272 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1273 "CacheGraphics" -> False],
1274 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1275 AbsoluteThickness[0.1]}}, {7.824046010856292,
1276 FormBox[
1277 InterpretationBox[
1278 StyleBox[
1279 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1280 "CacheGraphics" -> False],
1281 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1282 AbsoluteThickness[0.1]}}}, Automatic}, {Automatic, Automatic}},
1283 GridLines->{None, None},
1284 GridLinesStyle->Directive[
1285 GrayLevel[0.5, 0.4]],
1286 ImagePadding->{{All, 50.2}, {All, All}},
1287 Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
1288 (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
1289 Part[#, 1]],
1290 (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
1291 Part[#, 2]]}& ), "CopiedValueFunction" -> ({
1292 (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
1293 Part[#, 1]],
1294 (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
1295 Part[#, 2]]}& )}},
1296 PlotRange->{{0, 600.}, {-1.24185285994449, 6.150862349692874}},
1297 PlotRangeClipping->False,
1298 PlotRangePadding->{{
1299 Scaled[0.02],
1300 Scaled[0.02]}, {
1301 Scaled[0.02],
1302 Scaled[0.05]}},
1303 Ticks->{Automatic, {{-0.6931471805599453,
1304 FormBox[
1305 TagBox[
1306 InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True], NumberForm[#, {
1307 DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
1308 AbsoluteThickness[0.1]}}, {0.,
1309 FormBox["1", TraditionalForm], {0.01, 0.}, {
1310 AbsoluteThickness[0.1]}}, {1.6094379124341003`,
1311 FormBox["5", TraditionalForm], {0.01, 0.}, {
1312 AbsoluteThickness[0.1]}}, {2.302585092994046,
1313 FormBox["10", TraditionalForm], {0.01, 0.}, {
1314 AbsoluteThickness[0.1]}}, {3.912023005428146,
1315 FormBox["50", TraditionalForm], {0.01, 0.}, {
1316 AbsoluteThickness[0.1]}}, {4.605170185988092,
1317 FormBox["100", TraditionalForm], {0.01, 0.}, {
1318 AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
1319 FormBox[
1320 InterpretationBox[
1321 StyleBox[
1322 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1323 "CacheGraphics" -> False],
1324 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1325 AbsoluteThickness[0.1]}}, {-1.6094379124341003`,
1326 FormBox[
1327 InterpretationBox[
1328 StyleBox[
1329 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1330 "CacheGraphics" -> False],
1331 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1332 AbsoluteThickness[0.1]}}, {-1.2039728043259361`,
1333 FormBox[
1334 InterpretationBox[
1335 StyleBox[
1336 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1337 "CacheGraphics" -> False],
1338 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1339 AbsoluteThickness[0.1]}}, {-0.916290731874155,
1340 FormBox[
1341 InterpretationBox[
1342 StyleBox[
1343 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1344 "CacheGraphics" -> False],
1345 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1346 AbsoluteThickness[0.1]}}, {-0.5108256237659907,
1347 FormBox[
1348 InterpretationBox[
1349 StyleBox[
1350 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1351 "CacheGraphics" -> False],
1352 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1353 AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
1354 FormBox[
1355 InterpretationBox[
1356 StyleBox[
1357 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1358 "CacheGraphics" -> False],
1359 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1360 AbsoluteThickness[0.1]}}, {-0.2231435513142097,
1361 FormBox[
1362 InterpretationBox[
1363 StyleBox[
1364 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1365 "CacheGraphics" -> False],
1366 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1367 AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
1368 FormBox[
1369 InterpretationBox[
1370 StyleBox[
1371 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1372 "CacheGraphics" -> False],
1373 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1374 AbsoluteThickness[0.1]}}, {0.6931471805599453,
1375 FormBox[
1376 InterpretationBox[
1377 StyleBox[
1378 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1379 "CacheGraphics" -> False],
1380 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1381 AbsoluteThickness[0.1]}}, {1.0986122886681098`,
1382 FormBox[
1383 InterpretationBox[
1384 StyleBox[
1385 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1386 "CacheGraphics" -> False],
1387 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1388 AbsoluteThickness[0.1]}}, {1.3862943611198906`,
1389 FormBox[
1390 InterpretationBox[
1391 StyleBox[
1392 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1393 "CacheGraphics" -> False],
1394 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1395 AbsoluteThickness[0.1]}}, {1.791759469228055,
1396 FormBox[
1397 InterpretationBox[
1398 StyleBox[
1399 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1400 "CacheGraphics" -> False],
1401 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1402 AbsoluteThickness[0.1]}}, {1.9459101490553132`,
1403 FormBox[
1404 InterpretationBox[
1405 StyleBox[
1406 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1407 "CacheGraphics" -> False],
1408 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1409 AbsoluteThickness[0.1]}}, {2.0794415416798357`,
1410 FormBox[
1411 InterpretationBox[
1412 StyleBox[
1413 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1414 "CacheGraphics" -> False],
1415 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1416 AbsoluteThickness[0.1]}}, {2.1972245773362196`,
1417 FormBox[
1418 InterpretationBox[
1419 StyleBox[
1420 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1421 "CacheGraphics" -> False],
1422 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1423 AbsoluteThickness[0.1]}}, {2.995732273553991,
1424 FormBox[
1425 InterpretationBox[
1426 StyleBox[
1427 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1428 "CacheGraphics" -> False],
1429 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1430 AbsoluteThickness[0.1]}}, {3.4011973816621555`,
1431 FormBox[
1432 InterpretationBox[
1433 StyleBox[
1434 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1435 "CacheGraphics" -> False],
1436 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1437 AbsoluteThickness[0.1]}}, {3.6888794541139363`,
1438 FormBox[
1439 InterpretationBox[
1440 StyleBox[
1441 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1442 "CacheGraphics" -> False],
1443 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1444 AbsoluteThickness[0.1]}}, {4.0943445622221,
1445 FormBox[
1446 InterpretationBox[
1447 StyleBox[
1448 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1449 "CacheGraphics" -> False],
1450 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1451 AbsoluteThickness[0.1]}}, {4.248495242049359,
1452 FormBox[
1453 InterpretationBox[
1454 StyleBox[
1455 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1456 "CacheGraphics" -> False],
1457 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1458 AbsoluteThickness[0.1]}}, {4.382026634673881,
1459 FormBox[
1460 InterpretationBox[
1461 StyleBox[
1462 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1463 "CacheGraphics" -> False],
1464 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1465 AbsoluteThickness[0.1]}}, {4.499809670330265,
1466 FormBox[
1467 InterpretationBox[
1468 StyleBox[
1469 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1470 "CacheGraphics" -> False],
1471 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1472 AbsoluteThickness[0.1]}}, {5.298317366548036,
1473 FormBox[
1474 InterpretationBox[
1475 StyleBox[
1476 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1477 "CacheGraphics" -> False],
1478 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1479 AbsoluteThickness[0.1]}}, {5.703782474656201,
1480 FormBox[
1481 InterpretationBox[
1482 StyleBox[
1483 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1484 "CacheGraphics" -> False],
1485 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1486 AbsoluteThickness[0.1]}}, {5.991464547107982,
1487 FormBox[
1488 InterpretationBox[
1489 StyleBox[
1490 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1491 "CacheGraphics" -> False],
1492 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1493 AbsoluteThickness[0.1]}}, {6.214608098422191,
1494 FormBox[
1495 InterpretationBox[
1496 StyleBox[
1497 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1498 "CacheGraphics" -> False],
1499 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1500 AbsoluteThickness[0.1]}}, {6.396929655216146,
1501 FormBox[
1502 InterpretationBox[
1503 StyleBox[
1504 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1505 "CacheGraphics" -> False],
1506 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1507 AbsoluteThickness[0.1]}}, {6.551080335043404,
1508 FormBox[
1509 InterpretationBox[
1510 StyleBox[
1511 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1512 "CacheGraphics" -> False],
1513 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1514 AbsoluteThickness[0.1]}}, {6.684611727667927,
1515 FormBox[
1516 InterpretationBox[
1517 StyleBox[
1518 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1519 "CacheGraphics" -> False],
1520 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1521 AbsoluteThickness[0.1]}}, {6.802394763324311,
1522 FormBox[
1523 InterpretationBox[
1524 StyleBox[
1525 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1526 "CacheGraphics" -> False],
1527 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1528 AbsoluteThickness[0.1]}}, {6.907755278982137,
1529 FormBox[
1530 InterpretationBox[
1531 StyleBox[
1532 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1533 "CacheGraphics" -> False],
1534 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1535 AbsoluteThickness[0.1]}}, {7.313220387090301,
1536 FormBox[
1537 InterpretationBox[
1538 StyleBox[
1539 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1540 "CacheGraphics" -> False],
1541 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1542 AbsoluteThickness[0.1]}}, {7.600902459542082,
1543 FormBox[
1544 InterpretationBox[
1545 StyleBox[
1546 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1547 "CacheGraphics" -> False],
1548 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1549 AbsoluteThickness[0.1]}}, {7.824046010856292,
1550 FormBox[
1551 InterpretationBox[
1552 StyleBox[
1553 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
1554 "CacheGraphics" -> False],
1555 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
1556 AbsoluteThickness[0.1]}}}}], TraditionalForm]], "Output",
1557 CellChangeTimes->{
1558 3.692599645527886*^9, 3.692599721491393*^9, {3.6925997870283203`*^9,
1559 3.692599794342276*^9}, 3.692601005643268*^9}]
1560}, Open ]],
1561
1562Cell["\<\
1563Cross section (pb) as a function of the Higgs mass. This plot shows how well \
1564the EFT does. For a Higgs<200 GeV the approximation is very good.\
1565\>", "Text"]
1566}, Open ]],
1567
1568Cell[CellGroupData[{
1569
1570Cell["Various ways to do the integration over the x1 and x2.", "Subsection"],
1571
1572Cell[CellGroupData[{
1573
1574Cell["\<\
1575
1576uno=Integrate[x1*x2,{x1,t0,1},{x2,t0/x1,1}]//Expand
1577due=Integrate[ta,{ta,t0,1},{y,Log[Sqrt[ta]],-Log[Sqrt[ta]]}]//PowerExpand//\
1578Expand
1579tre=Integrate[t0/z \
1580t0/z^2,{z,t0,1},{y,Log[Sqrt[t0/z]],-Log[Sqrt[t0/z]]}]//PowerExpand//Expand\
1581\>", "Input"],
1582
1583Cell[BoxData[
1584 FormBox[
1585 RowBox[{"ConditionalExpression", "[",
1586 RowBox[{
1587 RowBox[{
1588 RowBox[{"-",
1589 FractionBox[
1590 SuperscriptBox["t0", "2"], "4"]}], "+",
1591 RowBox[{
1592 FractionBox["1", "2"], " ",
1593 SuperscriptBox["t0", "2"], " ",
1594 RowBox[{"log", "(", "t0", ")"}]}], "+",
1595 FractionBox["1", "4"]}], ",",
1596 RowBox[{
1597 RowBox[{"(",
1598 RowBox[{
1599 RowBox[{"(",
1600 RowBox[{
1601 RowBox[{
1602 RowBox[{"Re", "(",
1603 FractionBox["t0",
1604 RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
1605 "\[And]",
1606 RowBox[{
1607 FractionBox["t0",
1608 RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
1609
1610 RowBox[{
1611 FractionBox["t0",
1612 RowBox[{"1", "-", "t0"}]], "\[NotElement]",
1613 TagBox["\[DoubleStruckCapitalR]",
1614 Function[{}, Reals]]}], "\[Or]",
1615 RowBox[{
1616 RowBox[{"Re", "(",
1617 FractionBox["t0",
1618 RowBox[{"1", "-", "t0"}]], ")"}], "<",
1619 RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
1620 RowBox[{"(",
1621 RowBox[{
1622 RowBox[{"t0", "\[NotElement]",
1623 TagBox["\[DoubleStruckCapitalR]",
1624 Function[{}, Reals]]}], "\[Or]",
1625 RowBox[{
1626 RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
1627 RowBox[{"0", "<",
1628 RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
1629 TraditionalForm]], "Output",
1630 CellChangeTimes->{3.692599859998564*^9, 3.6926010108109922`*^9}],
1631
1632Cell[BoxData[
1633 FormBox[
1634 RowBox[{"ConditionalExpression", "[",
1635 RowBox[{
1636 RowBox[{
1637 RowBox[{"-",
1638 FractionBox[
1639 SuperscriptBox["t0", "2"], "4"]}], "+",
1640 RowBox[{
1641 FractionBox["1", "2"], " ",
1642 SuperscriptBox["t0", "2"], " ",
1643 RowBox[{"log", "(", "t0", ")"}]}], "+",
1644 FractionBox["1", "4"]}], ",",
1645 RowBox[{
1646 RowBox[{"(",
1647 RowBox[{
1648 RowBox[{"(",
1649 RowBox[{
1650 RowBox[{
1651 RowBox[{"Re", "(",
1652 FractionBox["t0",
1653 RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
1654 "\[And]",
1655 RowBox[{
1656 FractionBox["t0",
1657 RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
1658
1659 RowBox[{
1660 FractionBox["t0",
1661 RowBox[{"1", "-", "t0"}]], "\[NotElement]",
1662 TagBox["\[DoubleStruckCapitalR]",
1663 Function[{}, Reals]]}], "\[Or]",
1664 RowBox[{
1665 RowBox[{"Re", "(",
1666 FractionBox["t0",
1667 RowBox[{"1", "-", "t0"}]], ")"}], "<",
1668 RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
1669 RowBox[{"(",
1670 RowBox[{
1671 RowBox[{"t0", "\[NotElement]",
1672 TagBox["\[DoubleStruckCapitalR]",
1673 Function[{}, Reals]]}], "\[Or]",
1674 RowBox[{
1675 RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
1676 RowBox[{"0", "<",
1677 RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
1678 TraditionalForm]], "Output",
1679 CellChangeTimes->{3.692599859998564*^9, 3.69260101499305*^9}],
1680
1681Cell[BoxData[
1682 FormBox[
1683 RowBox[{"ConditionalExpression", "[",
1684 RowBox[{
1685 RowBox[{
1686 RowBox[{"-",
1687 FractionBox[
1688 SuperscriptBox["t0", "2"], "4"]}], "+",
1689 RowBox[{
1690 FractionBox["1", "2"], " ",
1691 SuperscriptBox["t0", "2"], " ",
1692 RowBox[{"log", "(", "t0", ")"}]}], "+",
1693 FractionBox["1", "4"]}], ",",
1694 RowBox[{
1695 RowBox[{"(",
1696 RowBox[{
1697 RowBox[{"(",
1698 RowBox[{
1699 RowBox[{
1700 RowBox[{"Re", "(",
1701 FractionBox["t0",
1702 RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
1703 "\[And]",
1704 RowBox[{
1705 FractionBox["t0",
1706 RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
1707
1708 RowBox[{
1709 FractionBox["t0",
1710 RowBox[{"1", "-", "t0"}]], "\[NotElement]",
1711 TagBox["\[DoubleStruckCapitalR]",
1712 Function[{}, Reals]]}], "\[Or]",
1713 RowBox[{
1714 RowBox[{"Re", "(",
1715 FractionBox["t0",
1716 RowBox[{"1", "-", "t0"}]], ")"}], "<",
1717 RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
1718 RowBox[{"(",
1719 RowBox[{
1720 RowBox[{"t0", "\[NotElement]",
1721 TagBox["\[DoubleStruckCapitalR]",
1722 Function[{}, Reals]]}], "\[Or]",
1723 RowBox[{
1724 RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
1725 RowBox[{"0", "<",
1726 RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
1727 TraditionalForm]], "Output",
1728 CellChangeTimes->{3.692599859998564*^9, 3.692601019133106*^9}]
1729}, Open ]]
1730}, Open ]]
1731}, Open ]],
1732
1733Cell[CellGroupData[{
1734
1735Cell["NLO cross section", "Section"],
1736
1737Cell["\<\
1738We have integrated over the angular variables, so we are only left with two \
1739integrations. One is over z (=mh/S/x1/x2) and the other over the rapidity y \
1740of the partonic cms. For every point in the phase space we have to calculate \
1741an event and a corresponding counter-event with z=1 to implement the + \
1742distributions in the gg channel. Various contributions add to the final result:
1743
1744virtual: gg>h at 1-loop + corrections to the effective lagrangian (UV and IR \
1745divergent)
1746real: qq~ >h g (finite)
1747 qg > qh (collinear divergent)
1748 gg>gh (soft and collinear divergent)
1749\
1750\>", "Text",
1751 CellChangeTimes->{3.6925999095314913`*^9},
1752 FontSize->16],
1753
1754Cell[CellGroupData[{
1755
1756Cell["Born+Virtual ", "Subsection"],
1757
1758Cell[TextData[{
1759 "dsigmaBV[yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
1760 StyleBox["(* local variables *)",
1761 FontColor->RGBColor[0, 1, 0]],
1762 "\n{y0,x10,x20,sig0,ymax0,JAC0,v,S,tau0,beta,gg0,qg0,qq0},\nMuf=muf 1.;\n\
1763Mur=mur 1.;\nv=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nbeta=Sqrt[1-tau0];\n\n",
1764 StyleBox["(* calculate quantities for z=1 *)",
1765 FontColor->RGBColor[1, 0, 0]],
1766 "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\nJAC0=2*ymax0;\n\
1767x10=Sqrt[tau0] Exp[y0];\nx20=Sqrt[tau0] Exp[-y0];\n\
1768{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
1769 StyleBox["(* sigma0 *)",
1770 FontColor->RGBColor[1, 0, 0]],
1771 "\nsig0=asNLO[Mur,5]^2/576/Pi/v^2*tau0;\nsig0=sig0+sig0*asNLO[Mur,5]/2/Pi*\n\
1772(11/3 CA+ 2 Pi^2 - 2 b0 2 Log[Muf/Mur]+\n16 CA Log[beta] Log[mh/Muf]+16 CA \
1773Log[beta]^2);\nsig0=sig0*gg0;\nsig0=sig0*389379660; (*to picobarns*)\n\
1774sig0=sig0*JAC0;\n\n\
1775(*Print[{muf,mur,v,S,tau0,beta,ymax0,y0,JAC0,x10,x20,gg0,qg0,qq0,sig0}];*)\n\
1776Return[sig0];\n];"
1777}], "Input"]
1778}, Open ]],
1779
1780Cell[CellGroupData[{
1781
1782Cell["Real contributions", "Subsection"],
1783
1784Cell[TextData[{
1785 "dsigmaR[xx_,yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
1786 StyleBox["(* local variables *)",
1787 FontColor->RGBColor[0, 1, 0]],
1788 "\n{v,S,tau0,\n y,y0,z,tau,\n x1,x2,x10,x20,\n ymax0,ymax,\n JAC,JAC0,\n \
1789gg,qg,qq,gg0,qg0,qq0,\n qqterm,qgterm,ggterm,ggterm0,\n sig,sig0,\n Muf},\n\n\
1790v=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nMuf=muf*1.0;\n\n",
1791 StyleBox["(* calculate quantities for an event *)",
1792 FontColor->RGBColor[1, 0, 0]],
1793 "\nz=tau0+(1-tau0)*xx;\ntau=tau0/z;\nymax =-Log[Sqrt[tau]];\n\
1794y=-ymax+2*ymax*yy;\nJAC =2*ymax*(1-tau0)*tau0/z^2;\nx1=Sqrt[tau] Exp[y];\n\
1795x2=tau/x1;\n",
1796 StyleBox["(* call the pdf *)\n",
1797 FontColor->RGBColor[1, 0, 0]],
1798 "\n{gg,qg,qq}=pdfcall[x1,x2,Muf];\n\n",
1799 StyleBox["(* calculate quantities for counter-event *)",
1800 FontColor->RGBColor[1, 0, 0]],
1801 "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\n\
1802JAC0=2*ymax0*(1-tau0)*tau0;\nx10=Sqrt[tau0] Exp[y0];\nx20=tau0/x10;\n",
1803 StyleBox["(* call the pdf at z=1 *)",
1804 FontColor->RGBColor[1, 0, 0]],
1805 "\n{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
1806 StyleBox["(* sigma0 *)",
1807 FontColor->RGBColor[1, 0, 0]],
1808 "\nsig0=asNLO[mur,5]^2/576/Pi/v^2;\nsig0=sig0*asNLO[mur,5]/2/Pi;\n\n",
1809 StyleBox["(* qq channnel : no counter event *)",
1810 FontColor->RGBColor[1, 0, 0]],
1811 "\nqqterm=64/27*(1-z)^3;\nqqterm=qqterm*sig0*JAC*qq;\n\n",
1812 StyleBox["(* qg channnel : no counter event *)",
1813 FontColor->RGBColor[1, 0, 0]],
1814 "\nqgterm=CF*( (1+(1-z)^2)/z (2*Log[mh/muf]+2 Log[1-z]-Log[z])\n \
1815+(z^2-3/2(1-z)^2)/z )*z;\nqgterm=qgterm*sig0*JAC*qg;\n\n",
1816 StyleBox["(* gg channnel *)",
1817 FontColor->RGBColor[1, 0, 0]],
1818 "\nggterm=CA*(2 (2 (z/(1-z)+(1-z)/z+z (1-z) )) * (2*Log[mh/muf])-\n \
181911/3 (1-z)^3/z -\n 4 (1-z+z^2)^2/z/(1-z) Log[z]+\n 8 \
1820(1-z+z^2)^2/z Log[1-z]/(1-z) )*z;\nggterm=ggterm*sig0*JAC*gg;\n",
1821 StyleBox["(* gg counter-event *)",
1822 FontColor->RGBColor[1, 0, 0]],
1823 "\nggterm0=CA*(-4/(1-z) 2*Log[mh/muf] - 8*Log[1-z]/(1-z) );\n\
1824ggterm0=ggterm0*sig0*JAC0*gg0;\n\n\n",
1825 StyleBox["(* total *)",
1826 FontColor->RGBColor[1, 0, 0]],
1827 "\nsig=0;\nsig=sig+qqterm;\nsig=sig+qgterm;\nsig=sig+ggterm+ggterm0;\n\
1828sig=sig*389379660; (*to picobarns*)\n\nReturn[sig];\n\n];\n"
1829}], "Input"],
1830
1831Cell[CellGroupData[{
1832
1833Cell["\<\
1834virt=NIntegrate[dsigmaBV[xvar,100,14000,100,100],{xvar,0,1}];
1835virt\
1836\>", "Input"],
1837
1838Cell[BoxData[
1839 FormBox["33.568776025755255`", TraditionalForm]], "Output",
1840 CellChangeTimes->{3.69259998438443*^9, 3.6926010194034967`*^9}]
1841}, Open ]],
1842
1843Cell["\<\
1844eps=0.0000000001;
1845(* real=Vegas[dsigmaR[xvar,yvar,100,14000,100,100],{xvar,eps,1-eps},{yvar,eps,\
18461-eps},Compiled->False,NStart->1000,MaxPoints->10000]*)\
1847\>", "Input",
1848 CellChangeTimes->{{3.692600210806891*^9, 3.692600216702009*^9}}],
1849
1850Cell[CellGroupData[{
1851
1852Cell[BoxData[
1853 RowBox[{"real", "=",
1854 RowBox[{"NIntegrate", "[",
1855 RowBox[{
1856 RowBox[{"dsigmaR", "[",
1857 RowBox[{
1858 "xvar", ",", "yvar", ",", "100", ",", "14000", ",", "100", ",", "100"}],
1859 "]"}], ",",
1860 RowBox[{"{",
1861 RowBox[{"xvar", ",", "eps", ",",
1862 RowBox[{"1", "-", "eps"}]}], "}"}], ",",
1863 RowBox[{"{",
1864 RowBox[{"yvar", ",", "eps", ",",
1865 RowBox[{"1", "-", "eps"}]}], "}"}], ",",
1866 RowBox[{"Compiled", "->", "False"}], ",",
1867 RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}]], "Input",
1868 CellChangeTimes->{{3.692600166376462*^9, 3.692600177417946*^9}, {
1869 3.692600360649798*^9, 3.6926003615777073`*^9}}],
1870
1871Cell[BoxData[
1872 FormBox[
1873 RowBox[{
1874 StyleBox[
1875 RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
1876 RowBox[{
1877 ":", " "}], "\<\"The integral failed to converge after \
1878\[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
1879integrand evaluations. NIntegrate obtained \
1880\[NoBreak]\\!\\(\\*FormBox[\\\"16.66201077391391`\\\", TraditionalForm]\\)\
1881\[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.000022383172924215294`\\\", \
1882TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
1883\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
1884ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
1885\\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
1886 CellChangeTimes->{3.6926010228788767`*^9}],
1887
1888Cell[BoxData[
1889 FormBox["16.66201077391391`", TraditionalForm]], "Output",
1890 CellChangeTimes->{3.692599984614505*^9, 3.692601022882782*^9}]
1891}, Open ]],
1892
1893Cell[CellGroupData[{
1894
1895Cell["asNLO[100,5]", "Input"],
1896
1897Cell[BoxData[
1898 FormBox["0.11636176382460801`", TraditionalForm]], "Output",
1899 CellChangeTimes->{3.69259998466387*^9, 3.692601022979712*^9}]
1900}, Open ]]
1901}, Open ]],
1902
1903Cell[CellGroupData[{
1904
1905Cell["Do a mass-scan for a couple of points and plot LO vs NLO", "Subsection",
1906 CellChangeTimes->{{3.692600821201602*^9, 3.692600848006814*^9}}],
1907
1908Cell[CellGroupData[{
1909
1910Cell[BoxData[
1911 RowBox[{
1912 RowBox[{"RealList", " ", "=", " ",
1913 RowBox[{"Table", "[",
1914 RowBox[{
1915 RowBox[{"{",
1916 RowBox[{"i", ",",
1917 RowBox[{"NIntegrate", "[",
1918 RowBox[{
1919 RowBox[{"dsigmaR", "[",
1920 RowBox[{"xvar", ",", " ", "yvar", ",",
1921 RowBox[{"i", "*", "1."}], ",", "14000.", ",",
1922 RowBox[{"i", "*", "1."}], ",",
1923 RowBox[{"i", "*", "1."}]}], "]"}], ",",
1924 RowBox[{"{",
1925 RowBox[{"xvar", ",", "eps", ",",
1926 RowBox[{"1", "-", "eps"}]}], "}"}], ",",
1927 RowBox[{"{",
1928 RowBox[{"yvar", ",", "eps", ",",
1929 RowBox[{"1", "-", "eps"}]}], "}"}], ",",
1930 RowBox[{"Compiled", "->", "False"}], ",",
1931 RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}], "}"}], ",",
1932 RowBox[{"{",
1933 RowBox[{"i", ",", "20", ",", "600", ",", "10"}], "}"}]}], "]"}]}],
1934 ";"}]], "Input",
1935 CellChangeTimes->{{3.6926002896875057`*^9, 3.692600331110671*^9},
1936 3.692600365642234*^9, 3.692600613795476*^9}],
1937
1938Cell[BoxData[
1939 FormBox[
1940 RowBox[{
1941 StyleBox[
1942 RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
1943 RowBox[{
1944 ":", " "}], "\<\"The integral failed to converge after \
1945\[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
1946integrand evaluations. NIntegrate obtained \
1947\[NoBreak]\\!\\(\\*FormBox[\\\"249.53858371108677`\\\", TraditionalForm]\\)\
1948\[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.00046671005854989264`\\\", \
1949TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
1950\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
1951ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
1952\\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
1953 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
1954 3.692601026809997*^9}],
1955
1956Cell[BoxData[
1957 FormBox[
1958 RowBox[{
1959 StyleBox[
1960 RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
1961 RowBox[{
1962 ":", " "}], "\<\"The integral failed to converge after \
1963\[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
1964integrand evaluations. NIntegrate obtained \
1965\[NoBreak]\\!\\(\\*FormBox[\\\"136.30122409849506`\\\", TraditionalForm]\\)\
1966\[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.00021920270660652564`\\\", \
1967TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
1968\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
1969ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
1970\\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
1971 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
1972 3.692601030482253*^9}],
1973
1974Cell[BoxData[
1975 FormBox[
1976 RowBox[{
1977 StyleBox[
1978 RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
1979 RowBox[{
1980 ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
1981of the following: singularity, value of the integration is 0, highly \
1982oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
1983\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
1984ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
1985\\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
1986 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
1987 3.692601032828919*^9}],
1988
1989Cell[BoxData[
1990 FormBox[
1991 RowBox[{
1992 StyleBox[
1993 RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
1994 RowBox[{
1995 ":", " "}], "\<\"The integral failed to converge after \
1996\[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
1997integrand evaluations. NIntegrate obtained \
1998\[NoBreak]\\!\\(\\*FormBox[\\\"86.01964094871275`\\\", TraditionalForm]\\)\
1999\[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.0004496982081794881`\\\", \
2000TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
2001\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
2002ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
2003\\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
2004 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
2005 3.69260103462813*^9}],
2006
2007Cell[BoxData[
2008 FormBox[
2009 RowBox[{
2010 StyleBox[
2011 RowBox[{"General", "::", "stop"}], "MessageName"],
2012 RowBox[{
2013 ":", " "}], "\<\"Further output of \
2014\[NoBreak]\\!\\(\\*FormBox[StyleBox[RowBox[{\\\"NIntegrate\\\", \\\"::\\\", \
2015\\\"maxp\\\"}], \\\"MessageName\\\"], TraditionalForm]\\)\[NoBreak] will be \
2016suppressed during this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\
2017\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
2018ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \
2019\\\"General::stop\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
2020 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
2021 3.6926010346650553`*^9}],
2022
2023Cell[BoxData[
2024 FormBox[
2025 RowBox[{
2026 StyleBox[
2027 RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
2028 RowBox[{
2029 ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
2030of the following: singularity, value of the integration is 0, highly \
2031oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
2032\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
2033ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
2034\\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
2035 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
2036 3.69260104075222*^9}],
2037
2038Cell[BoxData[
2039 FormBox[
2040 RowBox[{
2041 StyleBox[
2042 RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
2043 RowBox[{
2044 ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
2045of the following: singularity, value of the integration is 0, highly \
2046oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
2047\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
2048ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
2049\\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
2050 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
2051 3.692601137065007*^9}],
2052
2053Cell[BoxData[
2054 FormBox[
2055 RowBox[{
2056 StyleBox[
2057 RowBox[{"General", "::", "stop"}], "MessageName"],
2058 RowBox[{
2059 ":", " "}], "\<\"Further output of \
2060\[NoBreak]\\!\\(\\*FormBox[StyleBox[RowBox[{\\\"NIntegrate\\\", \\\"::\\\", \
2061\\\"slwcon\\\"}], \\\"MessageName\\\"], TraditionalForm]\\)\[NoBreak] will be \
2062suppressed during this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\
2063\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
2064ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \
2065\\\"General::stop\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
2066 CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
2067 3.6926011371117573`*^9}]
2068}, Open ]],
2069
2070Cell[BoxData[
2071 RowBox[{
2072 RowBox[{"BVirtList", " ", "=", " ",
2073 RowBox[{"Table", "[",
2074 RowBox[{
2075 RowBox[{"{",
2076 RowBox[{"i", ",",
2077 RowBox[{"NIntegrate", "[",
2078 RowBox[{
2079 RowBox[{"dsigmaBV", "[",
2080 RowBox[{"xvar", ",", " ",
2081 RowBox[{"i", "*", "1."}], ",", "14000.", ",",
2082 RowBox[{"i", "*", "1."}], ",",
2083 RowBox[{"i", "*", "1."}]}], "]"}], ",",
2084 RowBox[{"{",
2085 RowBox[{"xvar", ",", "eps", ",",
2086 RowBox[{"1", "-", "eps"}]}], "}"}], ",",
2087 RowBox[{"Compiled", "->", "False"}], ",",
2088 RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}], "}"}], ",",
2089 RowBox[{"{",
2090 RowBox[{"i", ",", "20", ",", "600", ",", "10"}], "}"}]}], "]"}]}],
2091 ";"}]], "Input",
2092 CellChangeTimes->{{3.692600478345191*^9, 3.692600492712871*^9}, {
2093 3.692600599484334*^9, 3.6926006178505993`*^9}, {3.6926007853172293`*^9,
2094 3.692600799250576*^9}}],
2095
2096Cell[BoxData[
2097 RowBox[{
2098 RowBox[{"NLOList", "=",
2099 RowBox[{"Table", "[",
2100 RowBox[{
2101 RowBox[{"{",
2102 RowBox[{
2103 RowBox[{
2104 RowBox[{"RealList", "[",
2105 RowBox[{"[", "i", "]"}], "]"}], "[",
2106 RowBox[{"[", "1", "]"}], "]"}], ",",
2107 RowBox[{
2108 RowBox[{
2109 RowBox[{"RealList", "[",
2110 RowBox[{"[", "i", "]"}], "]"}], "[",
2111 RowBox[{"[", "2", "]"}], "]"}], "+",
2112 RowBox[{
2113 RowBox[{"BVirtList", "[",
2114 RowBox[{"[", "i", "]"}], "]"}], "[",
2115 RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",",
2116 RowBox[{"{",
2117 RowBox[{"i", ",", "1", ",",
2118 RowBox[{"Length", "[", "RealList", "]"}]}], "}"}]}], "]"}]}],
2119 ";"}]], "Input",
2120 CellChangeTimes->{{3.692600623114683*^9, 3.692600630569345*^9}, {
2121 3.6926006758401203`*^9, 3.692600712764638*^9}, {3.692600749786141*^9,
2122 3.692600774211691*^9}, 3.692600858174468*^9}],
2123
2124Cell[CellGroupData[{
2125
2126Cell[BoxData[
2127 RowBox[{"ListLogPlot", "[",
2128 RowBox[{
2129 RowBox[{"{",
2130 RowBox[{"resEFT", ",", " ", "NLOList"}], "}"}], ",", " ",
2131 RowBox[{"Joined", "\[Rule]", "True"}], ",", " ",
2132 RowBox[{"PlotLabels", "\[Rule]",
2133 RowBox[{"{",
2134 RowBox[{
2135 RowBox[{"EFT", " ", "LO"}], ",", " ",
2136 RowBox[{"EFT", " ", "NLO"}]}], "}"}]}]}], "]"}]], "Input",
2137 CellChangeTimes->{{3.6926008857897587`*^9, 3.692600898076047*^9}}],
2138
2139Cell[BoxData[
2140 FormBox[
2141 GraphicsBox[{{}, {{}, {},
2142 {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
2143 AbsoluteThickness[1.6], LineBox[CompressedData["
21441:eJwtz3lIk3EYwPFpqamYKWaiKVoNypT2Ryrl9UwSmYo2FaXD2GRz6srpUucx
2145d5natbL+sBlikivBJRGbZYJNuqaRMFJnojkvbGZJeLQ8mBm/54WXlw/P7/l9
2146eYNyBGlcewqFErnz/v+S5yRs9iZ/WVT5AHEMVIdOKvPp3ugzYGx6NG8WeqEZ
21470Nni2HXU6olOgRLpIa8YrQexjAkK33ZB24N9OM8A4xzr1Okwd5xnQsSTpbB4
2148vhvOz4FpwviX1u+K8wsQGn1zLSreBeeXgKUfsaZ820MMLDgobzAIbzvheTb4
2149vWzKqk91JO7LAW1sXabTEQfc58CGN80y47Qb97kQSRUrOOv2uJ8LPUPp0f5W
2150O9znQQ4nBEzbFNzPh+xRlaHWEw0FcC9pVay8aIsl+3xgKwuK1eot4r7LUJCX
2151+nR1c4OYUgguz7zpyex1YhAAr9bZ0DxkRRdBkNU2uMb8QzxVBAFlnWrZ+Cre
2152XwyKurZesWCFOFAI9k5NXVFuy9gTwuf2JNNh3W9i1lX41Jq+lWBYwn4J0Nyz
2153dKLwn8StJcBspn/8oVvAfincvy6iDtC/Y78U0iUTyuSJOeyXwfsxd9Wbmhns
2154i8DRp3KvKGIK+yLwU/St6H6NY78cRqTU7heKUexXAM92ljoWMoT9CjBZpgu5
2155pkHsV0J2Vba5s+ID9itB4/88+FVND/arIHzSuJ/fpca+GK5tP5SUBDfqSV8M
2156jruWGx1OdBGzqqE5I6rtTuJbYooEAjQBMx3mAeJWCWjFnjabxkgMUmBY0npT
2157zg8TT0khMPfr44TNUZzLIJETx+PeHSdukEH5jTh3/wNmPC+DllC+tpAxTUyT
2158Q9jx/u56u1limRz0zFt5rro5YqMcXlOveBxjzxMHKoCpWutwc7YQF+3Yd2xr
2159VrOA/6cA43rQu2HGov4fQF8saQ==
2160 "]]},
2161 {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668],
2162 AbsoluteThickness[1.6], LineBox[CompressedData["
21631:eJwtzn8s1HEcx/Hr/LjkR8dpYbudhiV/cNO1kuLdZDcmyY6Rau7kQs6d8+M4
2164zp1LTGuYTaVJZKOSdZqKortlfkaR22qzIceJmB9XiTSVz/u73b577P197XkH
2165BOLIRCqFQvH/9/v/Jg8HpK657z/edwbiALjtvlA2n70ffRq8Phif8wb3oUOg
2166eJo9GpfsiA4HgV15hMKfQaw6B0nCkoQ6Xwe880CcXtw3HWyP92gA2/ZvoWI6
21673mPBjm1knYrai/c4SGneTqqat8X7JRjoaJ0x3LIhhng40hq3XBprjd/zIcLE
2168L2/03kOsE0CVRdu9OYYV7i+DsaEhUUjbjftEqK5xbi6n0XAvhBINv5/OsMT9
2169FZg93tI06GmB+2QIdzvT1cc1x30KsJpkARyxGe6vQnhMtWdMLRX3qSCjlt2s
21701O/CfRqMMuuHo+zRIIbJo3X17jwKWgLTLu/8WX7bgTuekoD+jZtYqP9DrEoH
2171pxsTJ1Nzt4hdpdBrcuouP/ibWCcF79gpfuDEBnF8BnjI7U+s1/wipmRCkT6J
2172HpiwTlyXCY8NaT6P2D+JIQtS73IOjZr/wH4WmDS0F+cnTdjPBmW/1GpVu4Z9
2173GShaKoeCG1exLwNt/LqGXrmC/RxI04T5MC2XsZ8LKz2Hr1PXFrGfC16fH9y5
2174OLeAfTl06iIlb2e/Yl8OXNHZpKFFI/bzgBtiGcTcmsF+PkwNO4xfYBiwnw+l
21759E7FMd8v2FdA9DWjeY9mAvsFkNeh7nOzHsd+AdQuhTw0y/iEfSVkLIu8DXNj
21762FeCY21oLzd5BO8qsAnjt+UtDRBXqCC9uHrzKasbv1eBVQUz6NVIOzG7EOSi
2177BP6mSxP+/0LQVYkmuzpztDseKQTN6nyR5cYTYlc1jPnpxzeCXxNL1OAhUK+9
2178/N5NrFMDQ/mMZ80Z1P4FZ18hFw==
2179 "]]}}, {{{},
2180 {GrayLevel[0.4], AbsoluteThickness[0.5],
2181 StyleBox[{
2182 LineBox[{
2183 Scaled[{0.02, 0}, {600., -0.8527625857530499}],
2184 Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.8527625857530499}]],
2185 Offset[{7, 0}, Scaled[{0.02, 0}, {600., -1.0023245080873902`}]],
2186 Offset[{12, 0}, Scaled[{0.02, 0}, {600., -1.0023245080873902`}]]}],
2187 LineBox[{
2188 Scaled[{0.02, 0}, {600., -0.20471326480491622`}],
2189 Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.20471326480491622`}]],
2190 Offset[{7, 0}, Scaled[{0.02, 0}, {600., -0.05515117037456525}]],
2191 Offset[{12, 0}, Scaled[{0.02, 0}, {600., -0.05515117037456525}]]}]},
2192 FontColor->GrayLevel[0.4]]}, {InsetBox[
2193 RowBox[{"EFT", " ", "LO"}], Offset[{15, 0},
2194 Scaled[{0.02, 0}, {600., -1.0023245080873902`}]],
2195 ImageScaled[{0, 0.5}]], InsetBox[
2196 RowBox[{"EFT", " ", "NLO"}], Offset[{15, 0},
2197 Scaled[{0.02, 0}, {600., -0.05515117037456525}]],
2198 ImageScaled[{0, 0.5}]]},
2199 {GrayLevel[0.4], AbsoluteThickness[0.5],
2200 StyleBox[{{}, {}},
2201 FontColor->GrayLevel[0.4]]}}, {}}},
2202 AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
2203 Axes->{True, True},
2204 AxesLabel->{None, None},
2205 AxesOrigin->{0, -1.3796138896023795`},
2206 DisplayFunction->Identity,
2207 Frame->{{False, False}, {False, False}},
2208 FrameLabel->{{None, None}, {None, None}},
2209 FrameTicks->{{{{-0.6931471805599453,
2210 FormBox[
2211 TagBox[
2212 InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True],
2213 NumberForm[#, {
2214 DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
2215 AbsoluteThickness[0.1]}}, {0.,
2216 FormBox["1", TraditionalForm], {0.01, 0.}, {
2217 AbsoluteThickness[0.1]}}, {1.6094379124341003`,
2218 FormBox["5", TraditionalForm], {0.01, 0.}, {
2219 AbsoluteThickness[0.1]}}, {2.302585092994046,
2220 FormBox["10", TraditionalForm], {0.01, 0.}, {
2221 AbsoluteThickness[0.1]}}, {3.912023005428146,
2222 FormBox["50", TraditionalForm], {0.01, 0.}, {
2223 AbsoluteThickness[0.1]}}, {4.605170185988092,
2224 FormBox["100", TraditionalForm], {0.01, 0.}, {
2225 AbsoluteThickness[0.1]}}, {6.214608098422191,
2226 FormBox["500", TraditionalForm], {0.01, 0.}, {
2227 AbsoluteThickness[0.1]}}, {-0.5108256237659907,
2228 FormBox[
2229 InterpretationBox[
2230 StyleBox[
2231 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2232 "CacheGraphics" -> False],
2233 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2234 AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
2235 FormBox[
2236 InterpretationBox[
2237 StyleBox[
2238 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2239 "CacheGraphics" -> False],
2240 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2241 AbsoluteThickness[0.1]}}, {-0.2231435513142097,
2242 FormBox[
2243 InterpretationBox[
2244 StyleBox[
2245 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2246 "CacheGraphics" -> False],
2247 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2248 AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
2249 FormBox[
2250 InterpretationBox[
2251 StyleBox[
2252 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2253 "CacheGraphics" -> False],
2254 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2255 AbsoluteThickness[0.1]}}, {0.6931471805599453,
2256 FormBox[
2257 InterpretationBox[
2258 StyleBox[
2259 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2260 "CacheGraphics" -> False],
2261 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2262 AbsoluteThickness[0.1]}}, {1.0986122886681098`,
2263 FormBox[
2264 InterpretationBox[
2265 StyleBox[
2266 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2267 "CacheGraphics" -> False],
2268 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2269 AbsoluteThickness[0.1]}}, {1.3862943611198906`,
2270 FormBox[
2271 InterpretationBox[
2272 StyleBox[
2273 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2274 "CacheGraphics" -> False],
2275 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2276 AbsoluteThickness[0.1]}}, {1.791759469228055,
2277 FormBox[
2278 InterpretationBox[
2279 StyleBox[
2280 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2281 "CacheGraphics" -> False],
2282 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2283 AbsoluteThickness[0.1]}}, {1.9459101490553132`,
2284 FormBox[
2285 InterpretationBox[
2286 StyleBox[
2287 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2288 "CacheGraphics" -> False],
2289 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2290 AbsoluteThickness[0.1]}}, {2.0794415416798357`,
2291 FormBox[
2292 InterpretationBox[
2293 StyleBox[
2294 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2295 "CacheGraphics" -> False],
2296 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2297 AbsoluteThickness[0.1]}}, {2.1972245773362196`,
2298 FormBox[
2299 InterpretationBox[
2300 StyleBox[
2301 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2302 "CacheGraphics" -> False],
2303 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2304 AbsoluteThickness[0.1]}}, {2.995732273553991,
2305 FormBox[
2306 InterpretationBox[
2307 StyleBox[
2308 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2309 "CacheGraphics" -> False],
2310 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2311 AbsoluteThickness[0.1]}}, {3.4011973816621555`,
2312 FormBox[
2313 InterpretationBox[
2314 StyleBox[
2315 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2316 "CacheGraphics" -> False],
2317 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2318 AbsoluteThickness[0.1]}}, {3.6888794541139363`,
2319 FormBox[
2320 InterpretationBox[
2321 StyleBox[
2322 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2323 "CacheGraphics" -> False],
2324 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2325 AbsoluteThickness[0.1]}}, {4.0943445622221,
2326 FormBox[
2327 InterpretationBox[
2328 StyleBox[
2329 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2330 "CacheGraphics" -> False],
2331 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2332 AbsoluteThickness[0.1]}}, {4.248495242049359,
2333 FormBox[
2334 InterpretationBox[
2335 StyleBox[
2336 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2337 "CacheGraphics" -> False],
2338 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2339 AbsoluteThickness[0.1]}}, {4.382026634673881,
2340 FormBox[
2341 InterpretationBox[
2342 StyleBox[
2343 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2344 "CacheGraphics" -> False],
2345 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2346 AbsoluteThickness[0.1]}}, {4.499809670330265,
2347 FormBox[
2348 InterpretationBox[
2349 StyleBox[
2350 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2351 "CacheGraphics" -> False],
2352 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2353 AbsoluteThickness[0.1]}}, {5.298317366548036,
2354 FormBox[
2355 InterpretationBox[
2356 StyleBox[
2357 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2358 "CacheGraphics" -> False],
2359 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2360 AbsoluteThickness[0.1]}}, {5.703782474656201,
2361 FormBox[
2362 InterpretationBox[
2363 StyleBox[
2364 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2365 "CacheGraphics" -> False],
2366 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2367 AbsoluteThickness[0.1]}}, {5.991464547107982,
2368 FormBox[
2369 InterpretationBox[
2370 StyleBox[
2371 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2372 "CacheGraphics" -> False],
2373 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2374 AbsoluteThickness[0.1]}}, {6.396929655216146,
2375 FormBox[
2376 InterpretationBox[
2377 StyleBox[
2378 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2379 "CacheGraphics" -> False],
2380 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2381 AbsoluteThickness[0.1]}}, {6.551080335043404,
2382 FormBox[
2383 InterpretationBox[
2384 StyleBox[
2385 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2386 "CacheGraphics" -> False],
2387 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2388 AbsoluteThickness[0.1]}}, {6.684611727667927,
2389 FormBox[
2390 InterpretationBox[
2391 StyleBox[
2392 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2393 "CacheGraphics" -> False],
2394 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2395 AbsoluteThickness[0.1]}}, {6.802394763324311,
2396 FormBox[
2397 InterpretationBox[
2398 StyleBox[
2399 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2400 "CacheGraphics" -> False],
2401 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2402 AbsoluteThickness[0.1]}}, {6.907755278982137,
2403 FormBox[
2404 InterpretationBox[
2405 StyleBox[
2406 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2407 "CacheGraphics" -> False],
2408 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2409 AbsoluteThickness[0.1]}}, {7.003065458786462,
2410 FormBox[
2411 InterpretationBox[
2412 StyleBox[
2413 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2414 "CacheGraphics" -> False],
2415 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2416 AbsoluteThickness[0.1]}}, {7.090076835776092,
2417 FormBox[
2418 InterpretationBox[
2419 StyleBox[
2420 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2421 "CacheGraphics" -> False],
2422 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2423 AbsoluteThickness[0.1]}}, {7.170119543449628,
2424 FormBox[
2425 InterpretationBox[
2426 StyleBox[
2427 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2428 "CacheGraphics" -> False],
2429 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2430 AbsoluteThickness[0.1]}}, {7.24422751560335,
2431 FormBox[
2432 InterpretationBox[
2433 StyleBox[
2434 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2435 "CacheGraphics" -> False],
2436 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2437 AbsoluteThickness[0.1]}}, {7.313220387090301,
2438 FormBox[
2439 InterpretationBox[
2440 StyleBox[
2441 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2442 "CacheGraphics" -> False],
2443 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2444 AbsoluteThickness[0.1]}}, {7.3777589082278725`,
2445 FormBox[
2446 InterpretationBox[
2447 StyleBox[
2448 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2449 "CacheGraphics" -> False],
2450 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2451 AbsoluteThickness[0.1]}}}, Automatic}, {Automatic, Automatic}},
2452 GridLines->{None, None},
2453 GridLinesStyle->Directive[
2454 GrayLevel[0.5, 0.4]],
2455 ImagePadding->{{All, 67.2}, {All, All}},
2456 Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
2457 (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
2458 Part[#, 1]],
2459 (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
2460 Part[#, 2]]}& ), "CopiedValueFunction" -> ({
2461 (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
2462 Part[#, 1]],
2463 (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
2464 Part[#, 2]]}& )}},
2465 PlotRange->{{0, 600.}, {-1.2560314849957466`, 6.406077600615491}},
2466 PlotRangeClipping->False,
2467 PlotRangePadding->{{
2468 Scaled[0.02],
2469 Scaled[0.02]}, {
2470 Scaled[0.02],
2471 Scaled[0.05]}},
2472 Ticks->{Automatic, {{-0.6931471805599453,
2473 FormBox[
2474 TagBox[
2475 InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True], NumberForm[#, {
2476 DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
2477 AbsoluteThickness[0.1]}}, {0.,
2478 FormBox["1", TraditionalForm], {0.01, 0.}, {
2479 AbsoluteThickness[0.1]}}, {1.6094379124341003`,
2480 FormBox["5", TraditionalForm], {0.01, 0.}, {
2481 AbsoluteThickness[0.1]}}, {2.302585092994046,
2482 FormBox["10", TraditionalForm], {0.01, 0.}, {
2483 AbsoluteThickness[0.1]}}, {3.912023005428146,
2484 FormBox["50", TraditionalForm], {0.01, 0.}, {
2485 AbsoluteThickness[0.1]}}, {4.605170185988092,
2486 FormBox["100", TraditionalForm], {0.01, 0.}, {
2487 AbsoluteThickness[0.1]}}, {6.214608098422191,
2488 FormBox["500", TraditionalForm], {0.01, 0.}, {
2489 AbsoluteThickness[0.1]}}, {-0.5108256237659907,
2490 FormBox[
2491 InterpretationBox[
2492 StyleBox[
2493 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2494 "CacheGraphics" -> False],
2495 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2496 AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
2497 FormBox[
2498 InterpretationBox[
2499 StyleBox[
2500 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2501 "CacheGraphics" -> False],
2502 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2503 AbsoluteThickness[0.1]}}, {-0.2231435513142097,
2504 FormBox[
2505 InterpretationBox[
2506 StyleBox[
2507 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2508 "CacheGraphics" -> False],
2509 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2510 AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
2511 FormBox[
2512 InterpretationBox[
2513 StyleBox[
2514 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2515 "CacheGraphics" -> False],
2516 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2517 AbsoluteThickness[0.1]}}, {0.6931471805599453,
2518 FormBox[
2519 InterpretationBox[
2520 StyleBox[
2521 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2522 "CacheGraphics" -> False],
2523 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2524 AbsoluteThickness[0.1]}}, {1.0986122886681098`,
2525 FormBox[
2526 InterpretationBox[
2527 StyleBox[
2528 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2529 "CacheGraphics" -> False],
2530 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2531 AbsoluteThickness[0.1]}}, {1.3862943611198906`,
2532 FormBox[
2533 InterpretationBox[
2534 StyleBox[
2535 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2536 "CacheGraphics" -> False],
2537 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2538 AbsoluteThickness[0.1]}}, {1.791759469228055,
2539 FormBox[
2540 InterpretationBox[
2541 StyleBox[
2542 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2543 "CacheGraphics" -> False],
2544 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2545 AbsoluteThickness[0.1]}}, {1.9459101490553132`,
2546 FormBox[
2547 InterpretationBox[
2548 StyleBox[
2549 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2550 "CacheGraphics" -> False],
2551 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2552 AbsoluteThickness[0.1]}}, {2.0794415416798357`,
2553 FormBox[
2554 InterpretationBox[
2555 StyleBox[
2556 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2557 "CacheGraphics" -> False],
2558 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2559 AbsoluteThickness[0.1]}}, {2.1972245773362196`,
2560 FormBox[
2561 InterpretationBox[
2562 StyleBox[
2563 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2564 "CacheGraphics" -> False],
2565 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2566 AbsoluteThickness[0.1]}}, {2.995732273553991,
2567 FormBox[
2568 InterpretationBox[
2569 StyleBox[
2570 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2571 "CacheGraphics" -> False],
2572 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2573 AbsoluteThickness[0.1]}}, {3.4011973816621555`,
2574 FormBox[
2575 InterpretationBox[
2576 StyleBox[
2577 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2578 "CacheGraphics" -> False],
2579 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2580 AbsoluteThickness[0.1]}}, {3.6888794541139363`,
2581 FormBox[
2582 InterpretationBox[
2583 StyleBox[
2584 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2585 "CacheGraphics" -> False],
2586 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2587 AbsoluteThickness[0.1]}}, {4.0943445622221,
2588 FormBox[
2589 InterpretationBox[
2590 StyleBox[
2591 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2592 "CacheGraphics" -> False],
2593 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2594 AbsoluteThickness[0.1]}}, {4.248495242049359,
2595 FormBox[
2596 InterpretationBox[
2597 StyleBox[
2598 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2599 "CacheGraphics" -> False],
2600 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2601 AbsoluteThickness[0.1]}}, {4.382026634673881,
2602 FormBox[
2603 InterpretationBox[
2604 StyleBox[
2605 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2606 "CacheGraphics" -> False],
2607 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2608 AbsoluteThickness[0.1]}}, {4.499809670330265,
2609 FormBox[
2610 InterpretationBox[
2611 StyleBox[
2612 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2613 "CacheGraphics" -> False],
2614 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2615 AbsoluteThickness[0.1]}}, {5.298317366548036,
2616 FormBox[
2617 InterpretationBox[
2618 StyleBox[
2619 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2620 "CacheGraphics" -> False],
2621 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2622 AbsoluteThickness[0.1]}}, {5.703782474656201,
2623 FormBox[
2624 InterpretationBox[
2625 StyleBox[
2626 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2627 "CacheGraphics" -> False],
2628 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2629 AbsoluteThickness[0.1]}}, {5.991464547107982,
2630 FormBox[
2631 InterpretationBox[
2632 StyleBox[
2633 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2634 "CacheGraphics" -> False],
2635 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2636 AbsoluteThickness[0.1]}}, {6.396929655216146,
2637 FormBox[
2638 InterpretationBox[
2639 StyleBox[
2640 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2641 "CacheGraphics" -> False],
2642 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2643 AbsoluteThickness[0.1]}}, {6.551080335043404,
2644 FormBox[
2645 InterpretationBox[
2646 StyleBox[
2647 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2648 "CacheGraphics" -> False],
2649 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2650 AbsoluteThickness[0.1]}}, {6.684611727667927,
2651 FormBox[
2652 InterpretationBox[
2653 StyleBox[
2654 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2655 "CacheGraphics" -> False],
2656 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2657 AbsoluteThickness[0.1]}}, {6.802394763324311,
2658 FormBox[
2659 InterpretationBox[
2660 StyleBox[
2661 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2662 "CacheGraphics" -> False],
2663 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2664 AbsoluteThickness[0.1]}}, {6.907755278982137,
2665 FormBox[
2666 InterpretationBox[
2667 StyleBox[
2668 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2669 "CacheGraphics" -> False],
2670 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2671 AbsoluteThickness[0.1]}}, {7.003065458786462,
2672 FormBox[
2673 InterpretationBox[
2674 StyleBox[
2675 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2676 "CacheGraphics" -> False],
2677 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2678 AbsoluteThickness[0.1]}}, {7.090076835776092,
2679 FormBox[
2680 InterpretationBox[
2681 StyleBox[
2682 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2683 "CacheGraphics" -> False],
2684 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2685 AbsoluteThickness[0.1]}}, {7.170119543449628,
2686 FormBox[
2687 InterpretationBox[
2688 StyleBox[
2689 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2690 "CacheGraphics" -> False],
2691 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2692 AbsoluteThickness[0.1]}}, {7.24422751560335,
2693 FormBox[
2694 InterpretationBox[
2695 StyleBox[
2696 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2697 "CacheGraphics" -> False],
2698 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2699 AbsoluteThickness[0.1]}}, {7.313220387090301,
2700 FormBox[
2701 InterpretationBox[
2702 StyleBox[
2703 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2704 "CacheGraphics" -> False],
2705 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2706 AbsoluteThickness[0.1]}}, {7.3777589082278725`,
2707 FormBox[
2708 InterpretationBox[
2709 StyleBox[
2710 GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
2711 "CacheGraphics" -> False],
2712 Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
2713 AbsoluteThickness[0.1]}}}}], TraditionalForm]], "Output",
2714 CellChangeTimes->{3.6926008986771097`*^9, 3.692601225779516*^9}]
2715}, Open ]]
2716}, Open ]]
2717}, Open ]]
2718}, Open ]]
2719},
2720WindowSize->{872, 573},
2721WindowMargins->{{131, Automatic}, {106, Automatic}},
2722PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
2723FrontEndVersion->"10.4 for Mac OS X x86 (32-bit, 64-bit Kernel) (February 25, \
27242016)",
2725StyleDefinitions->"Default.nb"
2726]
2727(* End of Notebook Content *)
2728
2729(* Internal cache information *)
2730(*CellTagsOutline
2731CellTagsIndex->{}
2732*)
2733(*CellTagsIndex
2734CellTagsIndex->{}
2735*)
2736(*NotebookFileOutline
2737Notebook[{
2738Cell[CellGroupData[{
2739Cell[580, 22, 53, 0, 92, "Title"],
2740Cell[CellGroupData[{
2741Cell[658, 26, 31, 0, 64, "Section"],
2742Cell[692, 28, 676, 14, 143, "Text"]
2743}, Open ]],
2744Cell[CellGroupData[{
2745Cell[1405, 47, 32, 0, 64, "Section"],
2746Cell[1440, 49, 88, 4, 59, "Input"],
2747Cell[CellGroupData[{
2748Cell[1553, 57, 35, 0, 44, "Subsection"],
2749Cell[1591, 59, 157, 3, 49, "Text"],
2750Cell[CellGroupData[{
2751Cell[1773, 66, 230, 7, 46, "Input"],
2752Cell[2006, 75, 611, 13, 24, "Message"],
2753Cell[2620, 90, 611, 13, 24, "Message"],
2754Cell[3234, 105, 196, 4, 33, "Output"]
2755}, Open ]]
2756}, Open ]],
2757Cell[CellGroupData[{
2758Cell[3479, 115, 52, 0, 44, "Subsection"],
2759Cell[CellGroupData[{
2760Cell[3556, 119, 68, 3, 44, "Input"],
2761Cell[3627, 124, 595, 13, 24, "Message"],
2762Cell[4225, 139, 597, 13, 24, "Message"]
2763}, Open ]]
2764}, Open ]],
2765Cell[CellGroupData[{
2766Cell[4871, 158, 73, 0, 44, "Subsection"],
2767Cell[CellGroupData[{
2768Cell[4969, 162, 247, 4, 46, "Input"],
2769Cell[5219, 168, 268, 5, 28, "Output"],
2770Cell[5490, 175, 663, 14, 24, "Message"],
2771Cell[6156, 191, 222, 4, 30, "Output"]
2772}, Open ]],
2773Cell[CellGroupData[{
2774Cell[6415, 200, 44, 3, 44, "Input"],
2775Cell[CellGroupData[{
2776Cell[6484, 207, 173, 3, 20, "Print"],
2777Cell[6660, 212, 169, 3, 20, "Print"],
2778Cell[6832, 217, 183, 3, 20, "Print"],
2779Cell[7018, 222, 194, 4, 20, "Print"],
2780Cell[7215, 228, 201, 4, 20, "Print"],
2781Cell[7419, 234, 223, 4, 20, "Print"],
2782Cell[7645, 240, 154, 3, 20, "Print"],
2783Cell[7802, 245, 182, 3, 20, "Print"],
2784Cell[7987, 250, 198, 4, 20, "Print"]
2785}, Open ]]
2786}, Open ]],
2787Cell[CellGroupData[{
2788Cell[8234, 260, 349, 6, 107, "Subsubsection"],
2789Cell[8586, 268, 945, 37, 524, "Input"],
2790Cell[9534, 307, 37, 3, 44, "Input"],
2791Cell[9574, 312, 1739, 64, 899, "Input"]
2792}, Open ]],
2793Cell[CellGroupData[{
2794Cell[11350, 381, 58, 0, 35, "Subsubsection"],
2795Cell[11411, 383, 43, 0, 29, "Input"]
2796}, Open ]]
2797}, Open ]],
2798Cell[CellGroupData[{
2799Cell[11503, 389, 267, 6, 119, "Subsection"],
2800Cell[11773, 397, 2107, 72, 165, "Input"],
2801Cell[CellGroupData[{
2802Cell[13905, 473, 68, 0, 35, "Subsubsection"],
2803Cell[CellGroupData[{
2804Cell[13998, 477, 32, 0, 29, "Input"],
2805Cell[14033, 479, 188, 3, 28, "Output"]
2806}, Open ]]
2807}, Open ]]
2808}, Open ]],
2809Cell[CellGroupData[{
2810Cell[14282, 489, 36, 0, 44, "Subsection"],
2811Cell[14321, 491, 76, 7, 104, "Input"]
2812}, Open ]]
2813}, Open ]],
2814Cell[CellGroupData[{
2815Cell[14446, 504, 35, 0, 64, "Section"],
2816Cell[CellGroupData[{
2817Cell[14506, 508, 205, 4, 83, "Subsubsection"],
2818Cell[14714, 514, 18, 0, 29, "Input"],
2819Cell[CellGroupData[{
2820Cell[14757, 518, 901, 17, 89, "Input"],
2821Cell[15661, 537, 1162, 34, 55, "Output"],
2822Cell[16826, 573, 1056, 32, 55, "Output"],
2823Cell[17885, 607, 14813, 258, 237, "Output"]
2824}, Open ]],
2825Cell[32713, 868, 150, 3, 30, "Text"]
2826}, Open ]],
2827Cell[CellGroupData[{
2828Cell[32900, 876, 532, 12, 108, "Subsubsection"],
2829Cell[33435, 890, 420, 20, 299, "Input"],
2830Cell[CellGroupData[{
2831Cell[33880, 914, 72, 0, 29, "Input"],
2832Cell[33955, 916, 186, 3, 28, "Output"]
2833}, Open ]]
2834}, Open ]],
2835Cell[CellGroupData[{
2836Cell[34190, 925, 215, 5, 69, "Subsection"],
2837Cell[34408, 932, 113, 3, 29, "Input"],
2838Cell[34524, 937, 139, 3, 29, "Input"],
2839Cell[CellGroupData[{
2840Cell[34688, 944, 429, 10, 28, "Input"],
2841Cell[35120, 956, 26458, 602, 214, "Output"]
2842}, Open ]],
2843Cell[61593, 1561, 168, 3, 49, "Text"]
2844}, Open ]],
2845Cell[CellGroupData[{
2846Cell[61798, 1569, 76, 0, 44, "Subsection"],
2847Cell[CellGroupData[{
2848Cell[61899, 1573, 257, 7, 74, "Input"],
2849Cell[62159, 1582, 1522, 47, 89, "Output"],
2850Cell[63684, 1631, 1519, 47, 89, "Output"],
2851Cell[65206, 1680, 1520, 47, 89, "Output"]
2852}, Open ]]
2853}, Open ]]
2854}, Open ]],
2855Cell[CellGroupData[{
2856Cell[66787, 1734, 36, 0, 64, "Section"],
2857Cell[66826, 1736, 678, 15, 231, "Text"],
2858Cell[CellGroupData[{
2859Cell[67529, 1755, 35, 0, 44, "Subsection"],
2860Cell[67567, 1757, 945, 19, 464, "Input"]
2861}, Open ]],
2862Cell[CellGroupData[{
2863Cell[68549, 1781, 40, 0, 44, "Subsection"],
2864Cell[68592, 1783, 2174, 45, 1109, "Input"],
2865Cell[CellGroupData[{
2866Cell[70791, 1832, 91, 3, 44, "Input"],
2867Cell[70885, 1837, 139, 2, 28, "Output"]
2868}, Open ]],
2869Cell[71039, 1842, 244, 5, 44, "Input"],
2870Cell[CellGroupData[{
2871Cell[71308, 1851, 655, 17, 46, "Input"],
2872Cell[71966, 1870, 791, 15, 42, "Message"],
2873Cell[72760, 1887, 137, 2, 28, "Output"]
2874}, Open ]],
2875Cell[CellGroupData[{
2876Cell[72934, 1894, 29, 0, 29, "Input"],
2877Cell[72966, 1896, 138, 2, 28, "Output"]
2878}, Open ]]
2879}, Open ]],
2880Cell[CellGroupData[{
2881Cell[73153, 1904, 144, 1, 44, "Subsection"],
2882Cell[CellGroupData[{
2883Cell[73322, 1909, 1024, 26, 63, "Input"],
2884Cell[74349, 1937, 838, 16, 42, "Message"],
2885Cell[75190, 1955, 838, 16, 42, "Message"],
2886Cell[76031, 1973, 660, 13, 42, "Message"],
2887Cell[76694, 1988, 835, 16, 42, "Message"],
2888Cell[77532, 2006, 675, 14, 24, "Message"],
2889Cell[78210, 2022, 659, 13, 42, "Message"],
2890Cell[78872, 2037, 660, 13, 42, "Message"],
2891Cell[79535, 2052, 677, 14, 24, "Message"]
2892}, Open ]],
2893Cell[80227, 2069, 945, 24, 63, "Input"],
2894Cell[81175, 2095, 921, 26, 46, "Input"],
2895Cell[CellGroupData[{
2896Cell[82121, 2125, 434, 11, 28, "Input"],
2897Cell[82558, 2138, 25459, 575, 204, "Output"]
2898}, Open ]]
2899}, Open ]]
2900}, Open ]]
2901}, Open ]]
2902}
2903]
2904*)
2905