1 | (* Content-type: application/vnd.wolfram.mathematica *)
|
---|
2 |
|
---|
3 | (*** Wolfram Notebook File ***)
|
---|
4 | (* http://www.wolfram.com/nb *)
|
---|
5 |
|
---|
6 | (* CreatedBy='Mathematica 10.0' *)
|
---|
7 |
|
---|
8 | (*CacheID: 234*)
|
---|
9 | (* Internal cache information:
|
---|
10 | NotebookFileLineBreakTest
|
---|
11 | NotebookFileLineBreakTest
|
---|
12 | NotebookDataPosition[ 158, 7]
|
---|
13 | NotebookDataLength[ 113358, 2897]
|
---|
14 | NotebookOptionsPosition[ 108069, 2719]
|
---|
15 | NotebookOutlinePosition[ 108507, 2736]
|
---|
16 | CellTagsIndexPosition[ 108464, 2733]
|
---|
17 | WindowFrame->Normal*)
|
---|
18 |
|
---|
19 | (* Beginning of Notebook Content *)
|
---|
20 | Notebook[{
|
---|
21 |
|
---|
22 | Cell[CellGroupData[{
|
---|
23 | Cell["Phenomenology of pp\[Rule]H+X at NLO", "Title"],
|
---|
24 |
|
---|
25 | Cell[CellGroupData[{
|
---|
26 |
|
---|
27 | Cell["Introduction", "Section"],
|
---|
28 |
|
---|
29 | Cell[TextData[{
|
---|
30 | StyleBox["In this notebook we calculate the inclusive cross section for \
|
---|
31 | Higgs production at hadron colliders, at NLO in the strong coupling. We use \
|
---|
32 | the analytic results obtained in a previous notebook corresponding to the \
|
---|
33 | original calculation by Sally Dawson (Nuclear Physics B (1991) 283). To get \
|
---|
34 | useful numbers we use a modern set of PDF, i.e. the MRST as implemented in ",
|
---|
35 | FontSize->16],
|
---|
36 | StyleBox["Mathematica",
|
---|
37 | FontSize->16,
|
---|
38 | FontSlant->"Italic"],
|
---|
39 | StyleBox[" by J.Andersen (many thanks!). A description of the calculation, \
|
---|
40 | including the formulas used here for the numerical results, is given in the \
|
---|
41 | notes.",
|
---|
42 | FontSize->16]
|
---|
43 | }], "Text"]
|
---|
44 | }, Open ]],
|
---|
45 |
|
---|
46 | Cell[CellGroupData[{
|
---|
47 |
|
---|
48 | Cell["Preliminaries", "Section"],
|
---|
49 |
|
---|
50 | Cell["\<\
|
---|
51 | Off[General::spell];
|
---|
52 | Off[General::spell1];
|
---|
53 | Clear[\"Global`*\"];\
|
---|
54 | \>", "Input"],
|
---|
55 |
|
---|
56 | Cell[CellGroupData[{
|
---|
57 |
|
---|
58 | Cell["Install Vegas", "Subsection"],
|
---|
59 |
|
---|
60 | Cell["\<\
|
---|
61 | I use the Vegas package of CUBA library of T. Hahn (hep-ph/0404043). If you \
|
---|
62 | do not want to use it, use NIntegrate instead of Vegas\
|
---|
63 | \>", "Text"],
|
---|
64 |
|
---|
65 | Cell[CellGroupData[{
|
---|
66 |
|
---|
67 | Cell[BoxData[
|
---|
68 | RowBox[{
|
---|
69 | RowBox[{
|
---|
70 | "Install", "[", "\"\</Users/fabiomaltoni/Physics/Codes/CUBA/VegasX\>\"",
|
---|
71 | "]"}],
|
---|
72 | RowBox[{
|
---|
73 | "Install", "[", "\"\</Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX\>\"",
|
---|
74 | "]"}]}]], "Input"],
|
---|
75 |
|
---|
76 | Cell[BoxData[
|
---|
77 | FormBox[
|
---|
78 | RowBox[{
|
---|
79 | StyleBox[
|
---|
80 | RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
|
---|
81 | RowBox[{
|
---|
82 | ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
|
---|
83 | MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
|
---|
84 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
85 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
|
---|
86 | ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
|
---|
87 | "MSG",
|
---|
88 | CellChangeTimes->{3.692597281046434*^9, 3.6925973706453047`*^9,
|
---|
89 | 3.692598560178931*^9, 3.692600928086647*^9}],
|
---|
90 |
|
---|
91 | Cell[BoxData[
|
---|
92 | FormBox[
|
---|
93 | RowBox[{
|
---|
94 | StyleBox[
|
---|
95 | RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
|
---|
96 | RowBox[{
|
---|
97 | ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
|
---|
98 | MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
|
---|
99 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
100 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
|
---|
101 | ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
|
---|
102 | "MSG",
|
---|
103 | CellChangeTimes->{3.692597281046434*^9, 3.6925973706453047`*^9,
|
---|
104 | 3.692598560178931*^9, 3.692600928130375*^9}],
|
---|
105 |
|
---|
106 | Cell[BoxData[
|
---|
107 | FormBox[
|
---|
108 | SuperscriptBox["$Failed", "2"], TraditionalForm]], "Output",
|
---|
109 | CellChangeTimes->{3.692597281097068*^9, 3.69259737067906*^9,
|
---|
110 | 3.692598560229701*^9, 3.692600928162171*^9}]
|
---|
111 | }, Open ]]
|
---|
112 | }, Open ]],
|
---|
113 |
|
---|
114 | Cell[CellGroupData[{
|
---|
115 |
|
---|
116 | Cell["Call special graphics routines", "Subsection"],
|
---|
117 |
|
---|
118 | Cell[CellGroupData[{
|
---|
119 |
|
---|
120 | Cell["\<\
|
---|
121 | << Graphics`Colors`;
|
---|
122 | << Graphics`Graphics`;\
|
---|
123 | \>", "Input"],
|
---|
124 |
|
---|
125 | Cell[BoxData[
|
---|
126 | FormBox[
|
---|
127 | RowBox[{
|
---|
128 | StyleBox[
|
---|
129 | RowBox[{"Get", "::", "noopen"}], "MessageName"],
|
---|
130 | RowBox[{
|
---|
131 | ":", " "}], "\<\"Cannot open \
|
---|
132 | \[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Graphics`Colors`\\\\\\\"\\\", \
|
---|
133 | TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
|
---|
134 | ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
135 | ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
|
---|
136 | \\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
137 | CellChangeTimes->{3.692597281174869*^9, 3.692597370755665*^9,
|
---|
138 | 3.692598560342369*^9, 3.692600928264494*^9}],
|
---|
139 |
|
---|
140 | Cell[BoxData[
|
---|
141 | FormBox[
|
---|
142 | RowBox[{
|
---|
143 | StyleBox[
|
---|
144 | RowBox[{"Get", "::", "noopen"}], "MessageName"],
|
---|
145 | RowBox[{
|
---|
146 | ":", " "}], "\<\"Cannot open \
|
---|
147 | \[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Graphics`Graphics`\\\\\\\"\\\", \
|
---|
148 | TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
|
---|
149 | ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
150 | ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
|
---|
151 | \\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
152 | CellChangeTimes->{3.692597281174869*^9, 3.692597370755665*^9,
|
---|
153 | 3.692598560342369*^9, 3.692600928322658*^9}]
|
---|
154 | }, Open ]]
|
---|
155 | }, Open ]],
|
---|
156 |
|
---|
157 | Cell[CellGroupData[{
|
---|
158 |
|
---|
159 | Cell["Install PDF'S: for help read the PDF-HOWTO document", "Subsection"],
|
---|
160 |
|
---|
161 | Cell[CellGroupData[{
|
---|
162 |
|
---|
163 | Cell[BoxData[{
|
---|
164 | RowBox[{"SetDirectory", "[", "\"\<~/DropBox/GGI/GGHiggs/Jeppe\>\"",
|
---|
165 | "]"}], "\[IndentingNewLine]",
|
---|
166 | RowBox[{"Install", "[", "\"\<pdf.exe\>\"", "]"}]}], "Input",
|
---|
167 | CellChangeTimes->{{3.6925973632884817`*^9, 3.692597419539439*^9}}],
|
---|
168 |
|
---|
169 | Cell[BoxData[
|
---|
170 | FormBox["\<\"/Users/marcozaro/Dropbox/GGI/GGHiggs/Jeppe\"\>",
|
---|
171 | TraditionalForm]], "Output",
|
---|
172 | CellChangeTimes->{
|
---|
173 | 3.6925972813152027`*^9, {3.692597370915719*^9, 3.692597375754075*^9},
|
---|
174 | 3.69259742117518*^9, 3.6925985604805*^9, 3.692600928383765*^9}],
|
---|
175 |
|
---|
176 | Cell[BoxData[
|
---|
177 | FormBox[
|
---|
178 | RowBox[{
|
---|
179 | StyleBox[
|
---|
180 | RowBox[{"LinkOpen", "::", "linke"}], "MessageName"],
|
---|
181 | RowBox[{
|
---|
182 | ":", " "}], "\<\"\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"Could not find \
|
---|
183 | MathLink executable\\\\\\\"\\\", TraditionalForm]\\)\[NoBreak]. \
|
---|
184 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
185 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/LinkOpen/linke\\\", \
|
---|
186 | ButtonNote -> \\\"LinkOpen::linke\\\"]\\)\"\>"}], TraditionalForm]], "Message",\
|
---|
187 | "MSG",
|
---|
188 | CellChangeTimes->{
|
---|
189 | 3.6925972813085747`*^9, {3.692597370911001*^9, 3.692597375749536*^9},
|
---|
190 | 3.6925974212093563`*^9, 3.692598560484562*^9, 3.692600928387562*^9}],
|
---|
191 |
|
---|
192 | Cell[BoxData[
|
---|
193 | FormBox["$Failed", TraditionalForm]], "Output",
|
---|
194 | CellChangeTimes->{
|
---|
195 | 3.6925972813152027`*^9, {3.692597370915719*^9, 3.692597375754075*^9},
|
---|
196 | 3.69259742117518*^9, 3.6925985604805*^9, 3.692600928390266*^9}]
|
---|
197 | }, Open ]],
|
---|
198 |
|
---|
199 | Cell[CellGroupData[{
|
---|
200 |
|
---|
201 | Cell["\<\
|
---|
202 |
|
---|
203 | <<\"loadCTEQ5.m\";\
|
---|
204 | \>", "Input"],
|
---|
205 |
|
---|
206 | Cell[CellGroupData[{
|
---|
207 |
|
---|
208 | Cell[BoxData[
|
---|
209 | FormBox["\<\"Loading Package: PDF\"\>", TraditionalForm]], "Print",
|
---|
210 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
211 | 3.692600928429875*^9}],
|
---|
212 |
|
---|
213 | Cell[BoxData[
|
---|
214 | FormBox["\<\"PDF's from CTEQ5\"\>", TraditionalForm]], "Print",
|
---|
215 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
216 | 3.692600928434042*^9}],
|
---|
217 |
|
---|
218 | Cell[BoxData[
|
---|
219 | FormBox["\<\"Eur.Phys.J.C12:375-392,2000 \"\>", TraditionalForm]], "Print",
|
---|
220 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
221 | 3.6926009284386387`*^9}],
|
---|
222 |
|
---|
223 | Cell[BoxData[
|
---|
224 | FormBox["\<\"*** Warning *** Unofficial release. \"\>",
|
---|
225 | TraditionalForm]], "Print",
|
---|
226 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
227 | 3.6926009284427223`*^9}],
|
---|
228 |
|
---|
229 | Cell[BoxData[
|
---|
230 | FormBox["\<\"*** Cross-check with official Fortran code.\"\>",
|
---|
231 | TraditionalForm]], "Print",
|
---|
232 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
233 | 3.6926009284466553`*^9}],
|
---|
234 |
|
---|
235 | Cell[BoxData[
|
---|
236 | FormBox["\<\" Version 1.0: Written by Tamara Trout & Fred Olness, October 1, \
|
---|
237 | 2000\"\>", TraditionalForm]], "Print",
|
---|
238 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
239 | 3.692600928450611*^9}],
|
---|
240 |
|
---|
241 | Cell[BoxData[
|
---|
242 | FormBox["\<\" \"\>", TraditionalForm]], "Print",
|
---|
243 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
244 | 3.692600928454577*^9}],
|
---|
245 |
|
---|
246 | Cell[BoxData[
|
---|
247 | FormBox["\<\"In case of problems, contact:\"\>", TraditionalForm]], "Print",
|
---|
248 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
249 | 3.692600928458466*^9}],
|
---|
250 |
|
---|
251 | Cell[BoxData[
|
---|
252 | FormBox["\<\"Fred Olness: olness@mail.physics.smu.edu\"\>",
|
---|
253 | TraditionalForm]], "Print",
|
---|
254 | CellChangeTimes->{3.692597444321074*^9, 3.6925985605638103`*^9,
|
---|
255 | 3.6926009284624033`*^9}]
|
---|
256 | }, Open ]]
|
---|
257 | }, Open ]],
|
---|
258 |
|
---|
259 | Cell[CellGroupData[{
|
---|
260 |
|
---|
261 | Cell["\<\
|
---|
262 | Wrapper to call the pdf. Notation is self-explanatory. Just notice that all \
|
---|
263 | parton distribution codes usually return x f(x). To avoid confusion, at \
|
---|
264 | expense of a couple more floating point operations, I divide all the values \
|
---|
265 | by the corresponding x. pdfcall calculates the parton-parton luminoties, gg \
|
---|
266 | qg, qq~\
|
---|
267 | \>", "Subsubsection"],
|
---|
268 |
|
---|
269 | Cell["\<\
|
---|
270 | (* MRST *)
|
---|
271 |
|
---|
272 | pdfMRST[X1_,X2_,q_]:=Module[
|
---|
273 | {Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
|
---|
274 | Q=q*1.;
|
---|
275 | xgDF =f[3,X1,Q]/X1;
|
---|
276 | xdbDF=f[8,X1,Q]/X1;
|
---|
277 | xdDF =f[2,X1,Q]/X1+xdbDF;
|
---|
278 | xubDF=f[4,X1,Q]/X1;
|
---|
279 | xuDF =f[1,X1,Q]/X1+xubDF;
|
---|
280 | xsDF =f[6,X1,Q]/X1;
|
---|
281 | xcDF =f[5,X1,Q]/X1;
|
---|
282 | xbDF =f[7,X1,Q]/X1;
|
---|
283 |
|
---|
284 | pd1={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
|
---|
285 | xgDF =f[3,X2,Q]/X2;
|
---|
286 | xdbDF=f[8,X2,Q]/X2;
|
---|
287 | xdDF =f[2,X2,Q]/X2+xdbDF;
|
---|
288 | xubDF=f[4,X2,Q]/X2;
|
---|
289 | xuDF =f[1,X2,Q]/X2+xubDF;
|
---|
290 | xsDF =f[6,X2,Q]/X2;
|
---|
291 | xcDF =f[5,X2,Q]/X2;
|
---|
292 | xbDF =f[7,X2,Q]/X2;
|
---|
293 | pd2={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
|
---|
294 |
|
---|
295 |
|
---|
296 | xgg=pd1[[1]]*pd2[[1]];
|
---|
297 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
298 | ))+
|
---|
299 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
300 | );
|
---|
301 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
302 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
303 |
|
---|
304 | Return[{xgg,xqg,xqq}];
|
---|
305 | ];\
|
---|
306 | \>", "Input"],
|
---|
307 |
|
---|
308 | Cell["\<\
|
---|
309 |
|
---|
310 | (* cteq5 *)\
|
---|
311 | \>", "Input"],
|
---|
312 |
|
---|
313 | Cell["\<\
|
---|
314 | pdfCTEQ[X1_,X2_,q_]:=Module[
|
---|
315 | {Q,pd1,pd2,xgg,xqg,xqq},
|
---|
316 | Q=q*1.;
|
---|
317 |
|
---|
318 | pd1={cteq5pdf[1,0,X1,Q],
|
---|
319 | cteq5pdf[1,2,X1,Q],
|
---|
320 | cteq5pdf[1,-2,X1,Q],
|
---|
321 | cteq5pdf[1,1,X1,Q],
|
---|
322 | cteq5pdf[1,-1,X1,Q],
|
---|
323 | cteq5pdf[1,3,X1,Q],
|
---|
324 | cteq5pdf[1,4,X1,Q],
|
---|
325 | cteq5pdf[1,5,X1,Q]};
|
---|
326 | pd2={cteq5pdf[1,0,X2,Q],
|
---|
327 | cteq5pdf[1,2,X2,Q],
|
---|
328 | cteq5pdf[1,-2,X2,Q],
|
---|
329 | cteq5pdf[1,1,X2,Q],
|
---|
330 | cteq5pdf[1,-1,X2,Q],
|
---|
331 | cteq5pdf[1,3,X2,Q],
|
---|
332 | cteq5pdf[1,4,X2,Q],
|
---|
333 | cteq5pdf[1,5,X2,Q]};
|
---|
334 |
|
---|
335 | xgg=pd1[[1]]*pd2[[1]];
|
---|
336 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
337 | ))+
|
---|
338 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
339 | );
|
---|
340 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
341 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
342 |
|
---|
343 | Return[{xgg,xqg,xqq}];
|
---|
344 | ];
|
---|
345 |
|
---|
346 | pdfCTEQLO[X1_,X2_,q_]:=Module[
|
---|
347 | {Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
|
---|
348 | Q=q*1.;
|
---|
349 |
|
---|
350 | pd1={cteq5pdf[3,0,X1,Q],
|
---|
351 | cteq5pdf[3,2,X1,Q],
|
---|
352 | cteq5pdf[3,-2,X1,Q],
|
---|
353 | cteq5pdf[3,1,X1,Q],
|
---|
354 | cteq5pdf[3,-1,X1,Q],
|
---|
355 | cteq5pdf[3,3,X1,Q],
|
---|
356 | cteq5pdf[3,4,X1,Q],
|
---|
357 | cteq5pdf[3,5,X1,Q]};
|
---|
358 | pd2={cteq5pdf[3,0,X2,Q],
|
---|
359 | cteq5pdf[3,2,X2,Q],
|
---|
360 | cteq5pdf[3,-2,X2,Q],
|
---|
361 | cteq5pdf[3,1,X2,Q],
|
---|
362 | cteq5pdf[3,-1,X2,Q],
|
---|
363 | cteq5pdf[3,3,X2,Q],
|
---|
364 | cteq5pdf[3,4,X2,Q],
|
---|
365 | cteq5pdf[3,5,X2,Q]};
|
---|
366 |
|
---|
367 | xgg=pd1[[1]]*pd2[[1]];
|
---|
368 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
369 | ))+
|
---|
370 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
371 | );
|
---|
372 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
373 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
374 |
|
---|
375 | Return[{xgg,xqg,xqq}];
|
---|
376 | ];\
|
---|
377 | \>", "Input"]
|
---|
378 | }, Open ]],
|
---|
379 |
|
---|
380 | Cell[CellGroupData[{
|
---|
381 |
|
---|
382 | Cell["Decide the pdf family to be used ", "Subsubsection"],
|
---|
383 |
|
---|
384 | Cell["pdfcall[x__] = pdfCTEQ[x];", "Input"]
|
---|
385 | }, Open ]]
|
---|
386 | }, Open ]],
|
---|
387 |
|
---|
388 | Cell[CellGroupData[{
|
---|
389 |
|
---|
390 | Cell["\<\
|
---|
391 | Alpha_S: Very basic implementation of Alpha_S.
|
---|
392 | Check that the value of Lamda_4 or Lambda_5 is consistent with that of the \
|
---|
393 | PDF.
|
---|
394 | One simple, but indirect way to do it is to compare the value of alphas(MZ) \
|
---|
395 | with the one quoted by MRST.\
|
---|
396 | \>", "Subsection"],
|
---|
397 |
|
---|
398 | Cell[BoxData[{
|
---|
399 | RowBox[{
|
---|
400 | RowBox[{
|
---|
401 | RowBox[{
|
---|
402 | RowBox[{"b", "[", "nf_", "]"}], ":=",
|
---|
403 | RowBox[{
|
---|
404 | RowBox[{
|
---|
405 | RowBox[{"(",
|
---|
406 | RowBox[{"33", "-",
|
---|
407 | RowBox[{"2", " ", "nf"}]}], ")"}], "/", "12"}], "/", "Pi"}]}], ";"}],
|
---|
408 | " "}], "\[IndentingNewLine]",
|
---|
409 | RowBox[{
|
---|
410 | RowBox[{
|
---|
411 | RowBox[{"bp", "[", "nf_", "]"}], ":=",
|
---|
412 | RowBox[{
|
---|
413 | RowBox[{
|
---|
414 | RowBox[{
|
---|
415 | RowBox[{"(",
|
---|
416 | RowBox[{"153", "-",
|
---|
417 | RowBox[{"19", " ", "nf"}]}], ")"}], "/", "2"}], "/", "Pi"}], "/",
|
---|
418 | RowBox[{"(",
|
---|
419 | RowBox[{"33", "-",
|
---|
420 | RowBox[{"2", " ", "nf"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
|
---|
421 | RowBox[{
|
---|
422 | RowBox[{
|
---|
423 | RowBox[{"t", "[", "nf", "]"}], ":=",
|
---|
424 | RowBox[{"Log", "[",
|
---|
425 | RowBox[{
|
---|
426 | RowBox[{"q", "^", "2"}], "/",
|
---|
427 | RowBox[{
|
---|
428 | RowBox[{"\[CapitalLambda]", "[", "nf", "]"}], "^", "2"}]}], "]"}]}],
|
---|
429 | ";"}], "\[IndentingNewLine]",
|
---|
430 | RowBox[{
|
---|
431 | RowBox[{
|
---|
432 | RowBox[{"mb", "=", "4.75"}], ";"}],
|
---|
433 | "\[IndentingNewLine]"}], "\[IndentingNewLine]",
|
---|
434 | RowBox[{
|
---|
435 | RowBox[{
|
---|
436 | RowBox[{"\[CapitalLambda]", "[", "5", "]"}], "=", "0.146"}],
|
---|
437 | ";"}], "\[IndentingNewLine]",
|
---|
438 | RowBox[{
|
---|
439 | RowBox[{
|
---|
440 | RowBox[{"asLO", "[",
|
---|
441 | RowBox[{"q_", ",", "nf_"}], "]"}], "=",
|
---|
442 | RowBox[{"1", "/",
|
---|
443 | RowBox[{"(",
|
---|
444 | RowBox[{
|
---|
445 | RowBox[{"b", "[", "nf", "]"}], " ",
|
---|
446 | RowBox[{"t", "[", "nf", "]"}]}], ")"}]}]}], ";"}], "\n",
|
---|
447 | RowBox[{
|
---|
448 | RowBox[{
|
---|
449 | RowBox[{"\[CapitalLambda]", "[", "5", "]"}], "=", "0.226"}],
|
---|
450 | ";"}], "\[IndentingNewLine]",
|
---|
451 | RowBox[{
|
---|
452 | RowBox[{
|
---|
453 | RowBox[{"asNLO", "[",
|
---|
454 | RowBox[{"q_", ",", "nf_"}], "]"}], "=",
|
---|
455 | RowBox[{
|
---|
456 | RowBox[{"1", "/",
|
---|
457 | RowBox[{"(",
|
---|
458 | RowBox[{
|
---|
459 | RowBox[{"b", "[", "nf", "]"}], " ",
|
---|
460 | RowBox[{"t", "[", "nf", "]"}]}], ")"}]}],
|
---|
461 | RowBox[{"(",
|
---|
462 | RowBox[{"1", "-",
|
---|
463 | RowBox[{
|
---|
464 | RowBox[{
|
---|
465 | RowBox[{"bp", "[", "nf", "]"}], "/",
|
---|
466 | RowBox[{"b", "[", "nf", "]"}]}], " ",
|
---|
467 | RowBox[{
|
---|
468 | RowBox[{"Log", "[",
|
---|
469 | RowBox[{"t", "[", "nf", "]"}], "]"}], "/",
|
---|
470 | RowBox[{"t", "[", "nf", "]"}]}]}]}], ")"}]}]}], ";"}]}], "Input"],
|
---|
471 |
|
---|
472 | Cell[CellGroupData[{
|
---|
473 |
|
---|
474 | Cell["Check the values of alpha_S at the scale MZ", "Subsubsection"],
|
---|
475 |
|
---|
476 | Cell[CellGroupData[{
|
---|
477 |
|
---|
478 | Cell["asNLO[91.118,5]", "Input"],
|
---|
479 |
|
---|
480 | Cell[BoxData[
|
---|
481 | FormBox["0.11799518835498904`", TraditionalForm]], "Output",
|
---|
482 | CellChangeTimes->{3.692597281533689*^9, 3.692597537385448*^9,
|
---|
483 | 3.692598560867756*^9, 3.6926009285672293`*^9}]
|
---|
484 | }, Open ]]
|
---|
485 | }, Open ]]
|
---|
486 | }, Open ]],
|
---|
487 |
|
---|
488 | Cell[CellGroupData[{
|
---|
489 |
|
---|
490 | Cell["Color factors ", "Subsection"],
|
---|
491 |
|
---|
492 | Cell["\<\
|
---|
493 | CF=4/3;
|
---|
494 | CA=3;
|
---|
495 | nf=5;
|
---|
496 | TF=1/2;
|
---|
497 | b0=11/6 CA -2 nf TF/3;
|
---|
498 | \
|
---|
499 | \>", "Input"]
|
---|
500 | }, Open ]]
|
---|
501 | }, Open ]],
|
---|
502 |
|
---|
503 | Cell[CellGroupData[{
|
---|
504 |
|
---|
505 | Cell["LO cross section", "Section"],
|
---|
506 |
|
---|
507 | Cell[CellGroupData[{
|
---|
508 |
|
---|
509 | Cell["\<\
|
---|
510 | Integral of the LO loop. The sign of the Imaginary part is given by the usual \
|
---|
511 | prescription mt^2-i eps which is equivalent to t+i eps in the notation below.
|
---|
512 | t=mh^2/4/mt^2;\
|
---|
513 | \>", "Subsubsection"],
|
---|
514 |
|
---|
515 | Cell[" ", "Input"],
|
---|
516 |
|
---|
517 | Cell[CellGroupData[{
|
---|
518 |
|
---|
519 | Cell["\<\
|
---|
520 | eps=0.00000001;
|
---|
521 | inte01[t_]=Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}, \
|
---|
522 | Assumptions->{t>0, t<1}]//Simplify
|
---|
523 | integt1[t_]=Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}, \
|
---|
524 | Assumptions->{Im[t]>0, Re[t]>1}]//Simplify
|
---|
525 | inte[t_]:=3*If[ Re[t]<1, inte01[t], integt1[t]]
|
---|
526 | Plot[{Re[inte[t+I eps]],Im[inte[t+I \
|
---|
527 | eps]]},{t,0,10},PlotStyle\[Rule]{{Blue,Thickness[0.007]},{Red,Thickness[0.007]\
|
---|
528 | }}]\
|
---|
529 | \>", "Input",
|
---|
530 | CellChangeTimes->{{3.692598014632957*^9, 3.692598098844996*^9}, {
|
---|
531 | 3.692598128904375*^9, 3.6925981341662483`*^9}, {3.692598281716309*^9,
|
---|
532 | 3.6925982901939507`*^9}, 3.692598627050342*^9, 3.692598666202496*^9,
|
---|
533 | 3.692598717354951*^9, {3.69259877873766*^9, 3.6925987812311983`*^9}, {
|
---|
534 | 3.69259881448775*^9, 3.692598872665801*^9}, {3.692598907681793*^9,
|
---|
535 | 3.692598969264979*^9}, {3.692599025202613*^9, 3.692599123951459*^9}, {
|
---|
536 | 3.6925992374042807`*^9, 3.692599269005123*^9}}],
|
---|
537 |
|
---|
538 | Cell[BoxData[
|
---|
539 | FormBox[
|
---|
540 | FractionBox[
|
---|
541 | RowBox[{
|
---|
542 | RowBox[{
|
---|
543 | RowBox[{"(",
|
---|
544 | RowBox[{"t", "-", "1"}], ")"}], " ",
|
---|
545 | TemplateBox[{"2",RowBox[{
|
---|
546 | RowBox[{"2", " ", "t"}], "-",
|
---|
547 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
548 | SqrtBox[
|
---|
549 | RowBox[{
|
---|
550 | RowBox[{"-",
|
---|
551 | RowBox[{"(",
|
---|
552 | RowBox[{"t", "-", "1"}], ")"}]}], " ", "t"}]]}]}]},
|
---|
553 | "PolyLog"]}], "+",
|
---|
554 | RowBox[{
|
---|
555 | RowBox[{"(",
|
---|
556 | RowBox[{"t", "-", "1"}], ")"}], " ",
|
---|
557 | TemplateBox[{"2",RowBox[{
|
---|
558 | RowBox[{"2", " ", "t"}], "+",
|
---|
559 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
560 | SqrtBox[
|
---|
561 | RowBox[{
|
---|
562 | RowBox[{"-",
|
---|
563 | RowBox[{"(",
|
---|
564 | RowBox[{"t", "-", "1"}], ")"}]}], " ", "t"}]]}]}]},
|
---|
565 | "PolyLog"]}], "+",
|
---|
566 | RowBox[{"2", " ", "t"}]}],
|
---|
567 | RowBox[{"4", " ",
|
---|
568 | SuperscriptBox["t", "2"]}]], TraditionalForm]], "Output",
|
---|
569 | CellChangeTimes->{
|
---|
570 | 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
|
---|
571 | 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
|
---|
572 | 3.69259928561417*^9, 3.6926009513029757`*^9}],
|
---|
573 |
|
---|
574 | Cell[BoxData[
|
---|
575 | FormBox[
|
---|
576 | FractionBox[
|
---|
577 | RowBox[{
|
---|
578 | RowBox[{
|
---|
579 | RowBox[{"(",
|
---|
580 | RowBox[{"t", "-", "1"}], ")"}], " ",
|
---|
581 | TemplateBox[{"2",RowBox[{
|
---|
582 | RowBox[{"2", " ", "t"}], "-",
|
---|
583 | RowBox[{"2", " ",
|
---|
584 | SqrtBox[
|
---|
585 | RowBox[{
|
---|
586 | RowBox[{"(",
|
---|
587 | RowBox[{"t", "-", "1"}], ")"}], " ", "t"}]]}]}]},
|
---|
588 | "PolyLog"]}], "+",
|
---|
589 | RowBox[{
|
---|
590 | RowBox[{"(",
|
---|
591 | RowBox[{"t", "-", "1"}], ")"}], " ",
|
---|
592 | TemplateBox[{"2",RowBox[{"2", " ",
|
---|
593 | RowBox[{"(",
|
---|
594 | RowBox[{"t", "+",
|
---|
595 | SqrtBox[
|
---|
596 | RowBox[{
|
---|
597 | RowBox[{"(",
|
---|
598 | RowBox[{"t", "-", "1"}], ")"}], " ", "t"}]]}], ")"}]}]},
|
---|
599 | "PolyLog"]}], "+",
|
---|
600 | RowBox[{"2", " ", "t"}]}],
|
---|
601 | RowBox[{"4", " ",
|
---|
602 | SuperscriptBox["t", "2"]}]], TraditionalForm]], "Output",
|
---|
603 | CellChangeTimes->{
|
---|
604 | 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
|
---|
605 | 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
|
---|
606 | 3.69259928561417*^9, 3.6926010000319*^9}],
|
---|
607 |
|
---|
608 | Cell[BoxData[
|
---|
609 | FormBox[
|
---|
610 | GraphicsBox[{{{}, {},
|
---|
611 | {RGBColor[0, 0, 1], Thickness[0.007], Opacity[1.],
|
---|
612 | LineBox[CompressedData["
|
---|
613 | 1:eJwVlnc81t3/x82oqBRCsi5JSDRkxOtTaQ8qpWGvVMqtW6lQomGklFGJlF1u
|
---|
614 | 6muFSjIjZJSSvWVe0zU+uvyu3x/ncR6vf855v97jeY66i/dhdxEhIaEJwfr/
|
---|
615 | PfG6yzxDtwgLh+gy0Oem8fzkhKmt2hl0Cl1xnhahov1A+EU1tavY2Xz2aa84
|
---|
616 | FX67TiwSVwvDlgqvD18WUrGzkrBjqz6F12MVmbfLqcgO3hhCVX2FQmFD+a51
|
---|
617 | VPQ558hPqhZjyz6xJ+XOVPgfOuc0rlqLUuH1ug71VPBDjBR77tXi5/+oFqub
|
---|
618 | qAgqFG5p4dbilLXLeUYrFbdWPNle0lqHtAOH9WM7qLg/VKkVdrceHZSmRv4Y
|
---|
619 | FS+uqkxqTX+Dw+5kbe8FNAw0jW4xdGyFncsT9Yl9NGiePaiYFdsKy9A6E4o1
|
---|
620 | DR6i+SzN+lYsMEhY7WBDw+imGzkKJt9RnvArqceOhol4OTWhZT9gwV5VK3OB
|
---|
621 | hhm3baLfqtsg3jp+2eQhDfO5z2q99H/jP0vNwsbfNBjfbb+21/k3aOfiqi16
|
---|
622 | aPCUW66nHfMbdnHi8nkDNFQbPro/wP0NcbmCR5kTNNw6G3rkZFUHgn90TdXw
|
---|
623 | aRDq9O3aZdcFEbPLwz0UOvx70q/I7OiFsMKW2CIfOh6l7zgU5NALyW07wsov
|
---|
624 | 0/H6/OCaab9eGPVbzjb70/GbVO+of92LTr3MKOE7dBgrJJqHLukDX9/jZ2o8
|
---|
625 | HTPW0SJzHX2YdlR9LlFFh0/5jXsTFwdg+a7QMUOFAY5MTHZHxACEyquSHTUZ
|
---|
626 | uO6c2ViXOgCJiKeLVXUYuCfUvORV2wBsnT/k5m1iINNCI9bddBBn+/x2Gh1g
|
---|
627 | oLekMrFbeAh+59iSeYEMWOfNf9MUNQzza/60DUMM/BRRafr0ahgShq8y/o4z
|
---|
628 | 4HB4PS2nfBhaLXkFzXQGvGgnN0Qyh0GEPXN7KsRE6Lr/3u05PgJH9V6JLGUm
|
---|
629 | PmUdLCtXHcWth6z5vGNM6KdGN+fn/MHDy+EBMT+YkH1iwC6r/YPxXxFxhd1M
|
---|
630 | kBENyg2Df6Bz+OiViREmvvwr4TmkNIa3pWmrY3lMuGz358vdHYNpqNKiYTUW
|
---|
631 | YvtddP0cx+Hmf7aB7sNCQNucdci1cbQlFJ0MC2DBpS7h8oPYcaTE3V+45S4L
|
---|
632 | +rltnzO+jqPodFYlJ4GFLzf3Hv+1eQJmzuNSw7UszKqtv22yZBLDzzXfn9GZ
|
---|
633 | Qb/st9c7dCfxt6l7m+HmGdRKejUd2jkJy4bGI1qWM4ijpq04GzAJ/T96Si8c
|
---|
634 | ZmBQppgbPzoJC+ZrYmHcDOTzC3+mi07B5cGyIL/UGfzNOPI3V2UK/ky/cEre
|
---|
635 | DOoeRO7+ajOFDDHjC7ubZ+DqKNxDlk1Ba11SgYkMG3uPPBeT7JzCLCFybbkG
|
---|
636 | Gwa7zHRk2VOoVQXdbgMbs/qXLumtnYZrWaDndls2+jWWPjPePY2zekt1yTNs
|
---|
637 | 1Mq/KbN0ncb+rLjAPYFsxPFHF9o/FXAiu+41P42NAPptwzP50xA5YW+c+p4N
|
---|
638 | 12EN20vfprHZuS3wXAsbCqf1m6sFHEmO1hVTnMfB0EFP5R5jKj5+o9dc9eNA
|
---|
639 | ttpL8/oOKvKNzAwDozjYZu6jt/IwFeFft3RwMzl4oXtty6lzVBDFwtGnf3Fg
|
---|
640 | J3nP7mciFU0zXiMHDbmIuBHldvm1gAvMYfqxnVyUzMR4yb2jov+0UdToSS6W
|
---|
641 | DyUGHBFwZfChqvDbYC5aPr9J+CZCw+zi3ddEGrgQNslPvbCYBq+h2kXh3VwY
|
---|
642 | vC36T1qZBpcVE6dfTXMR+fzzh32baOi1FaIXLOFht39rZ81pGqyXjKauP8iD
|
---|
643 | H/3noIcvDTrUc82pdjykn+mcEL9JA7fMdNX7szyIHh+a3R5PQ4sTn9N+m4fS
|
---|
644 | jWzlsnoaxNb8+TuviIfJLFLTsZ2GlCUV5p8reFCmCK3lD9EQpK95VecbD1dl
|
---|
645 | 5ptvmaNBNbK4f9EQD5mh0js6FtJh4yN26940D21zMgeuKdARFLBRopTLw8Yp
|
---|
646 | JfsiQzpmPTVctkqTcHVXdbe1oONz3YbbsfIkHnVSzs/speOqOl8tWZXEdJ1e
|
---|
647 | 4EY3OqZbZ1f9MSDxOsMi8W2c4DzFPo391iTaVbanWaXQsVej+c9NWxKScbuy
|
---|
648 | p97Q4fkl8PoVBxLut6w/6tXScWLF3YmscyRiSJuqrz/o2JfS+2rMh0T5xRMN
|
---|
649 | Z/vp6Hy+7O+kHwk1Z5euTJKOrrwHojtDSFj98hjaJclAym7JwIRQEtetzk0O
|
---|
650 | yzKgUtSu8D6SRKe5719NfQby1+xZafOYxMKCK+KVpgzcibM2aHpGwlQvUNp1
|
---|
651 | FwMBOS9Llr8g8VjpzsqXTgy87aK7S2WSmBlozDh4gYH7lJcVEv+RsMlevn7W
|
---|
652 | nwH+0WP6tW9I5F12+vAqTMClBR/iD+WRWEq82mn7mIFHBR7cl4Uk/plPbxJL
|
---|
653 | Y6CSNWr0vpjEtxbTU7m5DMhdHjZ7/oHEPfd6b+lGBlZVpulWfSYxpi/HK+lg
|
---|
654 | QLs68/uCShJ7OPa3PP8IOBdd/3llNYnMz+mL5NkMWKgr1PJrSMyLmH5SIcbE
|
---|
655 | yJjUx5xaEm42xhSfpUxY7X3npf+VRMXKm9kqakx0+pemXK8noTFSu7l+LRNe
|
---|
656 | Vr46LxpIBL1dWn7VjAmH0MGq6EYS3VdP7V+9h4l/pgY2n/xGwnx7att3ATc3
|
---|
657 | yqiCKdAJUpNOwW5MtH3SfuzSRIL3Y9P4uotMcIxCOWkCfTzp+qWuG0xozatR
|
---|
658 | +CTQ7zxr5sIjmYjLuf46R6Dl1y8JN37GRNmsu/0lgfYlj8sOZzJhreLQvUyg
|
---|
659 | WypfPo8uFPi5dONnuOA+w/tj2lsrmdiqr0X9LYgvynZD3lQzE38j+fViAj2l
|
---|
660 | FmCe0CPgvrTMkvkCP/vHKmv2TAriN2g8Pirwn5UnfZgt4HY6RckypY7EgsBj
|
---|
661 | namSLESoH/cyFeTLc2eSx2F5FoITL53JEeSzevEodY7CgpAxq2muisSqdgP/
|
---|
662 | bEMWiADupnWCevSfK38geYAFjaorJjplJIhNC5UKT7KQtLWQPvORRBL/SKqr
|
---|
663 | JwtRZ2R6Ut6TsHs4VFQawoKT3/kLLwT9UHJSf7vXQxb2hlQq0QT9oqjp16CY
|
---|
664 | xILWCo6U5v9ItBVK9vuWsKDDnvdpfRYJ607dhbo0Fu547WwSek4iJ8039hef
|
---|
665 | hflplwx84klIe39UvSM1A5GRqISaOBJ1wlYb+1bPYH/Xs+PaD0hYrr5o/1jw
|
---|
666 | LugM+hJV10mYXCx6I1o/Azb3eGD1CRJNc2YOPu0zEM5RMOi1IeER+UmqZ3gG
|
---|
667 | 2gfKR4etBPOeWX2mRJiNUSa78MMOQX92f6f4bGbD/E1Q1CPBvCfsoz3uTmaj
|
---|
668 | TluzYI0oCb6mTlDxVQ607IeO9CfyEJObrb/6LgcDwmxz7cc86BCGXTExAo7/
|
---|
669 | 3hrkGsXDsVPGpv+84SB3a3BHSTAPbx7uZGoNceCiauxO9+DBie/iGWPNRar5
|
---|
670 | U5OctTxU/Hxm7b2ah1sLhKqDC7iIcTnKZG3gYWJPf6lVDhcek4ueBBA8DJsZ
|
---|
671 | spdncLFANLgn7AQPHfaHHsQ/4cJa3/NCagQPYr8+6Zzz56L71sZ77QIOXnvv
|
---|
672 | 6mhFcMEzbKjZXiTglGL1mtIaDgzv8S0U9vwFJ8FvTq+ZjV3Dpj0GtkJEY2sl
|
---|
673 | hfKehZG1hTuYE8KEZDcpzu9jwH82bMOHa6LEPpGMjBub6JCQGT1joyNOSNgX
|
---|
674 | z4o+oEK8QXzXwo/ziCdHKxRTj02BbMz2euQjScRHnDfvezGOIdscRRWVBUSv
|
---|
675 | 2qSymcUfbA29cP5L9kLCt0V5R+aWEcTyi+Zvd5Qm1nd9vJm4YwinlCv2dzIW
|
---|
676 | EUFy1p9pCQOQKtOd0Di6hOgrSvLrJ/vgvimZdUJPhojW9SuYDO2F3/Urh9VY
|
---|
677 | MkSMd+a6p/HduD0W3drYuJRosev6IbemE/t1FmdKxS8jJoYLnJyX/kZktlHZ
|
---|
678 | fmdZIj0QVTfW/ULdkZRZXxM54n6BnIv6gTaUNXjf0xOVJ4pDpIqFcr4j9+xN
|
---|
679 | or5LnpCV+enusqgVKvtgfCF/OUFcNHyYHNuM7XN2IUkBCkQgv/HuVasmuLV9
|
---|
680 | ohcdVSQyR0Uz/pFuhMXN4AJnNSVigUK07/6Wr3jkTXsvNaJEbJqaFGuvrkV/
|
---|
681 | UNpwUukKQvPm5mM6+TUYdy92K7+rTCi1NmuoDFWBen6pRIPzSqIx38xJf3El
|
---|
682 | cvZ8nfVYq0KEM668E/Etx7CngZEoS4W4F7tu9jOnDEpZv6PvNqgSIj7+3yQn
|
---|
683 | ShHidDG5YZ8akS38qbPP8gPYs4qR+4rViItbXQ9PPiiG9vvHT+s01YlFmnIh
|
---|
684 | XYvfYZNrlZVMmDoxtyZJeWVnPsoS5BTqWeqEx7yv7VHxudAukws/eEqD6Of+
|
---|
685 | r/5XwlscEJ9Y2VKqQYwkpsTX384GtWOwolaHQpSXmFobvXsF74TIZWEPKATb
|
---|
686 | 0ZcQP5GOemHN6b0PKYSt7tIDDnvToXO6pE4qmkLwIx+9LjFLx6DhyM2oOAoR
|
---|
687 | utXTJlAlHcdrCOrjRAohPlS4W2cwDdvojPr0LApx3j6wR/2fNMjvPnmnsoZC
|
---|
688 | 5Px033gzPBX/ZlOd79RSiBD+q7BtAaloWnrXfPdXChE20CMjcSEVEV15zK+N
|
---|
689 | FCJq1dV3Tw+lQuhfadfWHxTi+ZMu8yGFVIwllqF/gEKMVzp6yWamYJeo7YrU
|
---|
690 | IQrhVFcRIhmfglTPyRn3EQpxwuTFp7mIFDhuUMr5M0YhzCzXvWR7p+D7l3+V
|
---|
691 | aTSB3xO5dCnjFBjqL+DkMijEo8oBWSWdFNyPftHqy6IQYkXeNjrKKdjj0BDO
|
---|
692 | 4VCIol2LtG2EUpBe4epRwqMQFCP7kvP0ZMG/iLc1YJZCuB284RE+mAzn+1Er
|
---|
693 | LfgU4lZwtO7rtmSUMrS4c3OC+GSLJRu+JOP/AET8iq0=
|
---|
694 | "]]},
|
---|
695 | {RGBColor[1, 0, 0], Thickness[0.007], Opacity[1.],
|
---|
696 | LineBox[CompressedData["
|
---|
697 | 1:eJwV13k4VG8bB/Cxz9iSLakkM5E1imw59xMRJVnak0LWEClUshTREIVWUUlC
|
---|
698 | oaJ+tNiTPUW2SFnHmGEW+/qe969zfa5zzn225/ne59nkcs7ejZdAIDzlIRD+
|
---|
699 | v00LcxHUOROHRSgdEXb4sg3SjzOMjih6AYHmMl+xhoJ17aeeV1S8BITuoXgO
|
---|
700 | hYJt0//+XLjzGhDy73yc0qFgwXuOiQso3gRCOmWXIVCwz0cGQlY8EoFw6H69
|
---|
701 | oTUF4yn6wF7sSMKPr85GxyiYRTVynNn4EAiZWTVFgRTMszH6zqTZYyDInudC
|
---|
702 | JAWLa6uvYXs8AULhn6q0BHz/+Vy56Y4MiJjYmvg6h4LlXdO9ztqYAxFTNPlv
|
---|
703 | fylYqWDHhom3uYDs8udyxylYC/VSMdPsNZT7tPt9WqRgnKRSJt2jAE4LDFK6
|
---|
704 | 5DZjj+0orzkd7+CvQ+Wcsv1m7J9zvixzYwmU/6rng9rNGP35iiuDVgKKTtoc
|
---|
705 | z47NGGfI9u3Y24/wdEf17wfDmzF+b+4+utlnKI++wNASUMaUzxtEjniUQfnA
|
---|
706 | 11g/M2Vsx65/U6yOSoigdT8eqVLGrtidPT22sQ5YBmku0e0q2PL1HWv74uvg
|
---|
707 | zY4oMzG6Chbxgefnz7k6aKHWBhQsqWBR6x6YfWytB1av2b7Dm7dgCUPVyjdj
|
---|
708 | GuFN/Yla1aAt2NNLCkzlie8QsVITqKqgig200HbqnGoFOU/zEGWqGkbxtln7
|
---|
709 | 6m4rhIxpSaEMNcydr2iK0tgKxdJlSVEf1TCaXni+nGEb/H18YPzumBrGeCSj
|
---|
710 | SJD6BRH7TbqaD6hj02dM+b7XtEOn8gZZ7U0aGGkutc5HqxuIe1rIDWOamEFM
|
---|
711 | 1+W9zt1AqJOUcyJqYZ4yazS2pHSDQb1X+JbNWliNTlLCwFw3eO490XLmlBYW
|
---|
712 | 5R3rcPzrb0D+GTnx7VoYoedC7x7HXsg+gnZZtGzFtL3fJWxO7IWI3HNr0llb
|
---|
713 | sVOzE8BX2QvomFD8Y6I2Vip9NqNU5Q90tkvvSVPVxq7sd/bQ4/6BN0ELOWa+
|
---|
714 | uPuyQlab/wXdUpJt4oI2lpRlbhfh9BfWr55NFRbXwXJ9B1Ungv9C/CDbuUBR
|
---|
715 | B+te2PS7MfcvpLeLHQ+20MEM5NJMYiX+QUv1+YDVKTrYtG0y78rvfxB0NuA/
|
---|
716 | XoNtWEBleDzj/AB4urw4pZe9HZtdnZL3O24Atmh7UivLt2NhztnN9ZkD4FNr
|
---|
717 | eOx213YsnvBDIqd9AOJ3ekpwRXSxbEzprpvRIGhc+ajDDdTF/n6sTvvDMwSi
|
---|
718 | +kuf5uz0MA/hrtIm+SGQczTaqHxODxs/xuz7vH0IGqU012XH62GLszJKqW5D
|
---|
719 | EHs3+nhRrR4mp++RdaRuCNqVDC6uN9+B2RaSClpuDwNvhfiuLlt9rINXoaUs
|
---|
720 | ZxhqYiWuogv6mJP9NnZ+5TDQqc19Gx7oYz7s49tvTQ6D7rWY5N3/9LHYra//
|
---|
721 | szo6ApfHMyVvXzLAVoWXdxoEjEB6ICRxnxpg95rb5lSoI3D4Tv38QK0Blum7
|
---|
722 | ZCz4eQTkztbcCZE3xMpe2ZRXbqRBu2T77l/VhpjFgsu/twY0cLEdesXLNsQa
|
---|
723 | 9wbzPrOjwetLj0a6Nxhh3aNPdodfp4H1wSvdjy8ZYdMq7FrjERr4tCjyMAyN
|
---|
724 | Ma3M5B9F+aMQKmnac71/Jyb9QHumvG4UsAZM9aOiCbYQ17S+aXAUGF2Pr6qe
|
---|
725 | NsFqA4U8h+TpwHktcfVPvwnmYnZlWSaGDrxfxDnjsxhmqS9HUcqgg9Z512l9
|
---|
726 | U8C2qr+30vpCh/a7MQcVbwG2KDmRYsGlw0MHYR2iNMLu9ruoB58aA+M4So7+
|
---|
727 | R4SFtq/YXr+MO4pYdmQYYS71j4MS745BFrXG+r7ULkzrXXvFy4YxsH9u+zMn
|
---|
728 | YBcmnRU4Ujg8Bmsf5BU+zNiFLTyUECvnYUCk0zS9v20XVhu592inPgP2vSD5
|
---|
729 | fjMxxfIvjlwdtGfAkORbqZsXTLG7XlHPWb4MMJS0XM9+bYq52JWOEzMZYNeW
|
---|
730 | YCxFNsMWFbdFG0owoe/wVE2hym6sX/p7rrk6E+z3pUkV+u3G6og+LXYWTHC/
|
---|
731 | kKJzrHg3do/1Yp13KBNo05/OOR00x0IHTXcF3WeCFtWlVfOlOeba2ed+7R0T
|
---|
732 | HibXHr2xZI5pl69994jGhKJzzIeCHyww2aIPHVl845BtlHqkX24PtvTSYemd
|
---|
733 | wjgo9PAfKozYgw2mspTKDMfhrVNMwwxzD1afeMuy4eA4nJRMMzF1tsTeXFfz
|
---|
734 | 6zg3DvJYgTH22xK7F/wteYA6DlMaexM+OFphrqd4+hbKx+HXBXgid3kvttch
|
---|
735 | nZ/YMw6Pio4OJ8rtw7T3GKtJz4yDF/fl4a9V+zBZ484DipITwE+185u+ao0t
|
---|
736 | al28qKE5ATdpXtYSe/dj/UqSqQaWE2Duah7Op2GD1ckWlO92nQCaLaHXXvUA
|
---|
737 | 9kbYetg2bALiJ2qqRDfbYveWaSInH07AQ9MPBQlNtlgoJ1rHq2gChNXX7LN7
|
---|
738 | aIe5Disdufh9AgYll58YPLHH9naXhUbSJ0BLnkPdsOkgJueh9aOGlwX+sZob
|
---|
739 | +mpkQOTf4oC1BAtGI7PlkvQdYPl4w/TPDSxw4ss9EvTYAzhtD0nH1FlAVKz0
|
---|
740 | sKVegCEbz/V9BiyoJEWaHMsKA+kaH0qYOQsM+vjWu96OAlOTAI0N9izwNmk2
|
---|
741 | e2ZChafql3eeOMsCVsRlHR7HZPieEbZ7PpgFd9RuJmMl92B57XXrh1EsEFHd
|
---|
742 | rQrGj8CRGO/YkcaCzS/VtSpbnkJc+O0zQbks2DJi8PJgeQZ8nE7xkfmPBQPt
|
---|
743 | JS5yXzJhzVBaqEMLC0pEMwK8urPhZ0XB4++8bJiMy34t8O0N8BgWZfqtYsNb
|
---|
744 | veAMRdpb0H5T/FpsPRt0gkqTx0QL4VZ6xed9emzoK/Fcm3z6PVheae355sEG
|
---|
745 | XTkCVVjtI5Tqzqwvb2TD+ckydflVlcB8tUA51cWG9we20G68rYT1ZILm8hAb
|
---|
746 | JLOUJS4erIJLq0kmO1fYYP8rOPBZajXojsufLNbhgFNq5F+m5jfIfYmlvbnH
|
---|
747 | gTt3hq3ijjXCffkbG56d5sLt0+GmX61bYXqg+aWNHxf2F7X1mmW2wsG8NdsW
|
---|
748 | r3DBOZxTELPQCpIox+LIfS7Q/S51HM5pg3i3xnNizVywWVvv2sfTDhFvJCsv
|
---|
749 | GU/CLVOFtdiLTvC0eOJuLzsFJV+8El7m9ULNKhprhTwFiq8y+AwXemFzl/aV
|
---|
750 | PJ0p+MvRfe5n+Qf6z1YmEvdPweLgsMbXf3/A8c5Qcen1KbBuYBqJEv+CbY+6
|
---|
751 | iDp7Clp8PZYfav4Dw/PFBXyN0yCvH1OZcGgAWlaMnQK6pmHbgpvf6MUBcL9V
|
---|
752 | Jto3PA3K+6e+rrk3AEnZNV4feWYgqMjy78SvAaD/aSMH6M/AH7+vzbcdBuHx
|
---|
753 | Pvb9PxkzENVglfvGYgiWKWoRJZdm4dXaRB8XsRFIeZenpRIzC0H3KqrObxkB
|
---|
754 | NaTTm5IyC3zmKpYnzPDcP2Fg5F8wC/VPP1x/HzICBXcsJpWHZiE7xi0s+d8I
|
---|
755 | nF528UyxnYPQ5Pyyda9pUNWRantOZR4ogofikzfTIcXl0OTU9nlQsTPmXDWi
|
---|
756 | gztT/EEomgfdoLtX9h6ggzDftb6bx+bh9cXqGGoIHWy1PP0y4+ahnnrfJ7eO
|
---|
757 | Dn+idOO7Jubhv4RnLrHuYzCv0/TNrHgBsLoNHm/iGND4+cbZ+uoF2BEcu4Gc
|
---|
758 | xoD0PWiV3Y8FeCOlaRmaz4BdJwsPO9EX4IKK7dX+FgbExj4cClm/CB9ig6Yj
|
---|
759 | pZkg2+fGlx+xCIIHfxqo4rmoE7+MyVktQZFf5jwHz6ltXotn8g4vQX//ce+c
|
---|
760 | R+OgazFPNT2zBLqSTY4WueOwgzDd7hO+BII31znq1o3DzgtMv4r3S6AR+Lxk
|
---|
761 | UGACLB170r2VlqEwQYHnw+UJOK3xcfnzwjL4Nf/uj1JlgQupmGJPWoHjdbGz
|
---|
762 | o1tZ4Dr8fu+I7AoET9r67N7BAvenb++t3rYCUx69r7pMWeAjnaPl7rkCrJO1
|
---|
763 | ejEnWBC8eN9p1a8VUCwVi16gsmDPsFGf9hEC4ubkQF4/fn5rGyPmJAG9zpJI
|
---|
764 | vzbCgqhyv/k/rgTEMTxnastgQcWjDJlb/gT05s7QjbYpFhgfELYevUlAF8BG
|
---|
765 | 8RqRDVuLu4qffSYgwUmRwMsabFhDDUmSVOJBMfsM35HPsfH3LvnUawsPqk+P
|
---|
766 | JcoEsuHgmdd55Vo8KPbFSudKEBvuYH9r/Yx5UKLVFZHKMDaIcPes1B/kQS9s
|
---|
767 | UnLmbrFh5cQan+sxPIjHgGZo8ooNI5ofzCcZPMg67UW5zT82KF31dVPn8qDG
|
---|
768 | /qNB5wbZ4NhIiXaZ40GzYs591BE2tHgnV7cI8CJlH6WRt0w2fHzpb5anwIvy
|
---|
769 | fbfdqphjQ/wm9V3utrwoAhGkmBIc0JF5urOzkBedln5CyTDmgM+ZI46rPvIi
|
---|
770 | h7BlgjLGgaxC8VCLcl403MByfIE4IG9/9VNRIy9S6ujIvWfOAf7E40Z3hngR
|
---|
771 | 038Sdh/gQDtRxmDvGj40fr4BWpw5cGXx5vbPl/lQcKZ43I/rHGi+4JpyOZIP
|
---|
772 | wUYty4VoDigyd04ZxPKhohq364qxHKjunfjw/i4fur5IvnUyngOiZYeMCt7w
|
---|
773 | ISML/tSMFA6kR27alTHMhxTXMsZOZnKANTf/7DSTDyXNhrmbZnHA9Hwb78ZJ
|
---|
774 | PtRSpFWmlM2BEZeY6lQefvSFXbSp4xUHtHcz99xdz4/MNhlZrSrkQIVgiU2s
|
---|
775 | PT8yjdCfrijngHR4UoHFMX7kem+K6V7JAfeZsxICp/nRPYVT64jVHBCmKfyM
|
---|
776 | 9OVHkQt8GvCNA/Z1UYeuxPKj3NcPiyKaODAYZ+voV8qPYg9+qz/UxQGh1TSv
|
---|
777 | g2oCSO6sWKvXOAemYxzNn2gLoOQ1g4HUCQ4ML7co0ncIoBeEL9bZLA7UMEo6
|
---|
778 | ws0EUD7zdtFvDgdu1MaZv3IUQBU6l0o3zXBAMGLrJt5EAWR1/k+J5gpeb/r5
|
---|
779 | ovVdATT4wj+ETODCsK9c5/1UAXSK6PhClocLNSd4EjWzBZDaM/0jU7xcuKHf
|
---|
780 | uni0QgC5uvZfSBHkguBEUGcBVwA9GtU65ijGhWm3scL5OQH0K77qkpo4Xq/n
|
---|
781 | VKI5QRBJJucbTeOuqbe0+C0qiDItQnJuSOD1suSLBJUFEWP5zq04KbyeU2ni
|
---|
782 | yaOCaKflzKzKWrxe27az2U6CiOO/4eoP3MP7XlpwzwgivYvp30Pk8XqGt5di
|
---|
783 | AwQRsaqAXr4OryfjcraIKojmU03M9RW4INAksEfkiyB6oEH/V6rEBVHfx669
|
---|
784 | VYJot92/bjsyF6TFtkcU1AsiQvBCQD9uyv7TJQ6dgkj+59WYRQoXdjd9VH/M
|
---|
785 | FUSz6jw50ipcsPa1s/Sbx+9nPIiRgvugGO0M4hFC6zTcRiS3cMF1v0z6oLgQ
|
---|
786 | os3wSBBVuXCt6ZyEppoQchB7HdmhxgWqr6DmirYQsokKbDdX50KSWJrVD30h
|
---|
787 | 5K7AmX+LO2N//bWL5kKoSn2w9LoGFyqaKFNfTguhv2tcosS0uFDr+2n1bQ8h
|
---|
788 | FGJdk+2Nu0XMXsvFTwjxZsgWfcX9d3+4h2CoEPokUk+9uJULhOauLpv7Qogc
|
---|
789 | /vXGZ20uEP38pxXThVCiIUubpMMFCXEhKW6mELL/h3U64Fa00bW+/04IuVmv
|
---|
790 | Ux3AvWW83tOrRAhdO03qVNnGBe0E52jjciHEEe9J8MYNzQmlfU1CiKH3TYGO
|
---|
791 | 28Jv8++3bULoYpzSkvJ2vO+Lf565/lsIeSMa0xm3k82o9pZRIST1Q2L1T9xh
|
---|
792 | zWbP/fmJaHv3sxepuvj38+suMxUhIp8a3VN1uBPEA3qkJYlovUcSTOFOs0mX
|
---|
793 | KdlIRLrTqWF79LiQOa67LU6ZiHpCd/T74n6d0GBzUpOIqjkhQUm4PzfPxvAY
|
---|
794 | E9GBoTyjdtzVfomZrbuIyE/nwrkp3I3iyhUvLInogwz1j+QOLrTlf+4NPkBE
|
---|
795 | 1mZ2VC3cPTYO81aHiUhRfctFS9yD46Oy608S0Siv97PTuBkJEdvHXYloos5v
|
---|
796 | dTDuSa01tuXeRNS1P+5bHO6F5jyfpAAiur91dU06boUfzqm7Q4hIu9G6sgC3
|
---|
797 | aatM/XQYEfXd2r2uDLf7r7rZ7GgiGrLc1NqIm9pxVeVEPBGNTRAZnbjzu3QO
|
---|
798 | iyUTkekDBc8B3D9+D0WVPSQiubBrVoz/X7/3YWHAUyJ6QrRP4uKW+7u/n/yS
|
---|
799 | iIyaX+6ew72zn2d1ex4RpT5IdVnCfXrwPcQWEdGgp+n4Cu6oYS8/o09E9OlK
|
---|
800 | /ihBnwsvaRvSGBX49fZPHP6/6+k/GtJrcaetNljGjx9nRM/bficigcCNifO4
|
---|
801 | JScMVfnaiejcJkWnKdw72Mwj73vw59sr93Ic93HusxseA0SkMETyGcZ9derQ
|
---|
802 | +7V0IrI1mczvwf10hjTYwCKimoXWgB+4q+e+SIbNEBFd5fmHaty0hYBd2stE
|
---|
803 | NK9+LPwDbtHlzf79/CQ00UlvysKtTehOTxEhIRPvvZl3cTvwJjRZSJJQ9E0P
|
---|
804 | /uu4g/hNF2flSMjffivLD/cjwWm1VxtJyPRwvNcx3P3CTrGrNEnowIfnomq4
|
---|
805 | BcUk/6vYTkJJGcpGErhVV9UMBRqREJH9fXESHz/+UlpmnXtIaGuSiNVH3Cky
|
---|
806 | /QFUGxL6Vmjf/gj3f2vuPd15CD+/R5VwGffyuuWlpy4k5GXcoa2LW0nhnYaD
|
---|
807 | FwllsWyMV+G2UHQ/IeBPQrvfPRyl4eP9FqW52OsqCYXs+2HwAPcb5Wsj66JI
|
---|
808 | aLzcutcXd9uWHbLNVBI6FF2sYYp7vWZ64LYHJMT6cqZ1GJ9fuXp+WgvvSEgk
|
---|
809 | ItdfEXezvtLJvBISSjV2SBvD5yvHsD3uVDkJQU/xtfe4DTFstKqJhHhfBYWZ
|
---|
810 | 4661EM+Mp5HQjbNunofxPBg6kr9WQUEYkRZsLpjg+ZJ1dKnSkSKM8s99/jOH
|
---|
811 | 54/nMWufVDVhpNHFb/YeN/04vVROXxiZx2ovb8HNOql8RspWGMVlDzrza3Jh
|
---|
812 | 0TU9n3hNGHULerPj8HwsPcM8sidWGLmkpd4ywB3utpPnRoIwckUU/UE8T3k9
|
---|
813 | uh34UoXRK2zkgwFuorfs3FKhMOLTS7/ZjuexlH+CGXdIGBWuZFwexvO7zb+X
|
---|
814 | ocMQRtJ6WRejcN8L0LjnzxFGB4Olb2/CLRdYT2MuCyNadqzKMTz/FYIEE2hr
|
---|
815 | RNB/T4eWv2ziglpoWGevlQga3rZkfArvJ7ti/Xxr80TQbHyDlNAaLsi/6zuS
|
---|
816 | UCSClMIPBkXI4vPvt63pwU8i6MLFzulZGfz9bN2+5m+tCLKdvXd4RBofrx0z
|
---|
817 | 5TMDIoidQ3hXIsmF9s2R0iryoijNdWePHt4fz1Ylf4q+IYq4kmUtyfxcuLtc
|
---|
818 | TDI7JYbSZLPcFPF+L6ry1e+umxiinLgxfxH/H4g68KN15KwYulZVyNfA5MD5
|
---|
819 | p6Np8SFiSFav8WIggwM2pvLb2u+IoX3+zxhfRvH+f+PKca9q3OtzywwHORAi
|
---|
820 | hr1KVBVHw4c/Z//o5MCJ9VXWPVxxtMHnH/UF/j8jWq7OUDokgYguzmNbYzjg
|
---|
821 | ppcxdUxjNQr/fFzmpxUHgsNC7BWnVqO2uytuGWIciKYntzY3SyKqQn6kaz0b
|
---|
822 | rNVWZYs+kkKZTJ2cZCobbuXtKLd2lkYu8kNnX+5jQ73D88ULhjIoVDnO+KoQ
|
---|
823 | G8qbzsVr8MkiUbO2TIdaFrzzjkSNvbJI8WvxUja+DlfYBwZ+RWvQP4XSQ8iM
|
---|
824 | BWYrjtefhMqh5lVcmf1CLDjTXsYpPrQW+Vl3ua9LnAAs8tp7Z0V5JBuVwkiV
|
---|
825 | n4Ckc+xPoiPySFw74EIXvt7oj3gx/KR0Hfq36FvlpDsOY24lZypj1iNx00Md
|
---|
826 | wbVMYPlKCjU5b0Daqs3lpw4zId+qYdFdUwGRpGObosYZMOypvYNvSgFleSmU
|
---|
827 | aeHrJ/lX3ckxTRtR4ueQEDUlBlw/fT6jaZ8i8r8bP5FbOQYzi2tv7StRRJft
|
---|
828 | eY/9PjkGWz7df1hP2YQiqqhT0Ut00HP9emD1zU3oUg8Rm3xBh/LHMnKNU5tQ
|
---|
829 | 88VvC35WdNhSLkO1OaGECKrLTPOpUdgvwNjws1QJhXomeNdmjgLr92BVnRoZ
|
---|
830 | pZhMfcg8MArnHt+SuplIRjTeWnlt3lFo5KFM7L1DRsLqFtHdhFFQ8/hYL5pM
|
---|
831 | Rk9fd0lHr9BgUGck8vY9MrKnqT/vXqTB0W+IdT+NjCSTxq7EzNDAlMNtzHpF
|
---|
832 | Rrw9+9bSGDSQtTx+o/obGVnfs+6r7qBBYB7L+UYdGSX3e/YHttOgRTLGxLKB
|
---|
833 | jB71T5LIv2gQ11s42dBMRod99tRE/qQBIVDMtfUXGbXVWnBREw3oaeXQP0BG
|
---|
834 | jVd05GsqabCH78i6zCEyslj1zzm4ggaZnsxptxEysrXJb9pSToNT2+XzR+lk
|
---|
835 | tHLq1ur4LzRoqw1cz2aTUcNIs9XBYhroaAnPvuOS0YPRnreC/9EgIflp64Up
|
---|
836 | MlL71mdS8p4GVk5N1NlZMjpdXFChUEiDrCpX94/zZPQu/XzJj7c04Fed3xW6
|
---|
837 | SEZIUPZX1BsaOCfc3oAtk1FtV4q0QQENSrnKcysrZETlpweP5dHgf0PAZgc=
|
---|
838 |
|
---|
839 | "]]}}, {}},
|
---|
840 | AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
|
---|
841 | Axes->{True, True},
|
---|
842 | AxesLabel->{None, None},
|
---|
843 | AxesOrigin->{0, 0},
|
---|
844 | DisplayFunction->Identity,
|
---|
845 | Frame->{{False, False}, {False, False}},
|
---|
846 | FrameLabel->{{None, None}, {None, None}},
|
---|
847 | FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
|
---|
848 | GridLines->{None, None},
|
---|
849 | GridLinesStyle->Directive[
|
---|
850 | GrayLevel[0.5, 0.4]],
|
---|
851 | ImagePadding->All,
|
---|
852 | Method->{
|
---|
853 | "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
|
---|
854 | AbsolutePointSize[6], "ScalingFunctions" -> None},
|
---|
855 | PlotRange->{{0, 10}, {0., 1.7384634940975814`}},
|
---|
856 | PlotRangeClipping->True,
|
---|
857 | PlotRangePadding->{{
|
---|
858 | Scaled[0.02],
|
---|
859 | Scaled[0.02]}, {
|
---|
860 | Scaled[0.05],
|
---|
861 | Scaled[0.05]}},
|
---|
862 | Ticks->{Automatic, Automatic}], TraditionalForm]], "Output",
|
---|
863 | CellChangeTimes->{
|
---|
864 | 3.692598901668117*^9, 3.692598959121788*^9, {3.692599021175414*^9,
|
---|
865 | 3.692599046704132*^9}, 3.6925991193441973`*^9, 3.692599187436233*^9,
|
---|
866 | 3.69259928561417*^9, 3.692601000884819*^9}]
|
---|
867 | }, Open ]],
|
---|
868 |
|
---|
869 | Cell["\<\
|
---|
870 | Plot of the real and imaginary part of 3*I(a) as defined in the notes (I use \
|
---|
871 | 3*I(a) so that the function goes to 1 as a->0.)\
|
---|
872 | \>", "Text"]
|
---|
873 | }, Open ]],
|
---|
874 |
|
---|
875 | Cell[CellGroupData[{
|
---|
876 |
|
---|
877 | Cell[TextData[{
|
---|
878 | "Function to be integrated to get the LO cross section. In general, we use \
|
---|
879 | the convention that all functions to be numerically integrated in the \
|
---|
880 | hypercubes ",
|
---|
881 | Cell[BoxData[
|
---|
882 | FormBox[
|
---|
883 | SuperscriptBox[
|
---|
884 | RowBox[{"[",
|
---|
885 | RowBox[{"0", ",", "1"}], "]"}], "d"], TraditionalForm]]],
|
---|
886 | ", where d is the dimension of the integration space. dsigma depends on the \
|
---|
887 | Higgs mass (mh), the total collider energy (sqrtS) and from the arbitrary \
|
---|
888 | normalization and factorization scales (mur,muf)."
|
---|
889 | }], "Subsubsection"],
|
---|
890 |
|
---|
891 | Cell["\<\
|
---|
892 | dsigmaLO[zz_,mh_,sqrtS_,muf_,mur_]:=Module[
|
---|
893 | {y,x1,x2,gg0,qg0,qq0,s0,ymin,ymax,JAC,v,S,tau0},
|
---|
894 | Muf=muf*1.;
|
---|
895 | v=246.;
|
---|
896 | S=sqrtS^2;
|
---|
897 | tau0=mh^2/S;
|
---|
898 | ymax=-Log[Sqrt[tau0]];
|
---|
899 | ymin=-ymax;
|
---|
900 | y=ymin+(ymax-ymin)*zz;
|
---|
901 | JAC=ymax-ymin;
|
---|
902 | x1=Sqrt[tau0] Exp[y];
|
---|
903 | x2=Sqrt[tau0] Exp[-y];
|
---|
904 | {gg0,qg0,qq0}=pdfCTEQLO[x1,x2,Muf];
|
---|
905 | s0=asLO[mur,5]^2/576/Pi/v^2*tau0;
|
---|
906 | s0=s0*gg0;
|
---|
907 | s0=s0*389379660; (*to picobarns*)
|
---|
908 | s0=s0*JAC;
|
---|
909 | Return[s0];
|
---|
910 | ];\
|
---|
911 | \>", "Input"],
|
---|
912 |
|
---|
913 | Cell[CellGroupData[{
|
---|
914 |
|
---|
915 | Cell["sLO=NIntegrate[dsigmaLO[xx,100,14000,100,100],{xx,0,1}]", "Input"],
|
---|
916 |
|
---|
917 | Cell[BoxData[
|
---|
918 | FormBox["32.22522904747175`", TraditionalForm]], "Output",
|
---|
919 | CellChangeTimes->{3.692597362173498*^9, 3.692597627791092*^9,
|
---|
920 | 3.692599370554532*^9, 3.6926010013707323`*^9}]
|
---|
921 | }, Open ]]
|
---|
922 | }, Open ]],
|
---|
923 |
|
---|
924 | Cell[CellGroupData[{
|
---|
925 |
|
---|
926 | Cell["\<\
|
---|
927 | Get the cross section for various Higgs masses and including the form factor \
|
---|
928 | of the loop.
|
---|
929 | I first build a table with the results of the cross section in picobarns, and \
|
---|
930 | then plot it.\
|
---|
931 | \>", "Subsection"],
|
---|
932 |
|
---|
933 | Cell["\<\
|
---|
934 | resEFT=Table[{i,NIntegrate[dsigmaLO[x,i*1.,14000.,i*1.,i*1.],{x,0,1}]},{i,20,\
|
---|
935 | 600,10}];\
|
---|
936 | \>", "Input"],
|
---|
937 |
|
---|
938 | Cell["\<\
|
---|
939 | resFULL=Table[{resEFT[[i]][[1]],Abs[inte[resEFT[[i]][[1]]^2/175^2/4]]^2*\
|
---|
940 | resEFT[[i]][[2]]},{i,1,Length[resEFT]}];\
|
---|
941 | \>", "Input"],
|
---|
942 |
|
---|
943 | Cell[CellGroupData[{
|
---|
944 |
|
---|
945 | Cell[BoxData[
|
---|
946 | RowBox[{"ListLogPlot", "[",
|
---|
947 | RowBox[{
|
---|
948 | RowBox[{"{",
|
---|
949 | RowBox[{"resEFT", ",", " ", "resFULL"}], "}"}], ",", " ",
|
---|
950 | RowBox[{"Joined", "\[Rule]", "True"}], ",", " ",
|
---|
951 | RowBox[{"PlotLabels", "\[Rule]",
|
---|
952 | RowBox[{"{",
|
---|
953 | RowBox[{"EFT", ",", " ", "FULL"}], "}"}]}]}], "]"}]], "Input",
|
---|
954 | CellChangeTimes->{{3.6925995130057592`*^9, 3.692599673664235*^9}, {
|
---|
955 | 3.6925997070262327`*^9, 3.692599793542263*^9}}],
|
---|
956 |
|
---|
957 | Cell[BoxData[
|
---|
958 | FormBox[
|
---|
959 | GraphicsBox[{{}, {{}, {},
|
---|
960 | {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
|
---|
961 | AbsoluteThickness[1.6], LineBox[CompressedData["
|
---|
962 | 1:eJwtz3lIk3EYwPFpqamYKWaiKVoNypT2Ryrl9UwSmYo2FaXD2GRz6srpUucx
|
---|
963 | d5natbL+sBlikivBJRGbZYJNuqaRMFJnojkvbGZJeLQ8mBm/54WXlw/P7/l9
|
---|
964 | eYNyBGlcewqFErnz/v+S5yRs9iZ/WVT5AHEMVIdOKvPp3ugzYGx6NG8WeqEZ
|
---|
965 | 0Nni2HXU6olOgRLpIa8YrQexjAkK33ZB24N9OM8A4xzr1Okwd5xnQsSTpbB4
|
---|
966 | vhvOz4FpwviX1u+K8wsQGn1zLSreBeeXgKUfsaZ820MMLDgobzAIbzvheTb4
|
---|
967 | vWzKqk91JO7LAW1sXabTEQfc58CGN80y47Qb97kQSRUrOOv2uJ8LPUPp0f5W
|
---|
968 | O9znQQ4nBEzbFNzPh+xRlaHWEw0FcC9pVay8aIsl+3xgKwuK1eot4r7LUJCX
|
---|
969 | +nR1c4OYUgguz7zpyex1YhAAr9bZ0DxkRRdBkNU2uMb8QzxVBAFlnWrZ+Cre
|
---|
970 | XwyKurZesWCFOFAI9k5NXVFuy9gTwuf2JNNh3W9i1lX41Jq+lWBYwn4J0Nyz
|
---|
971 | dKLwn8StJcBspn/8oVvAfincvy6iDtC/Y78U0iUTyuSJOeyXwfsxd9Wbmhns
|
---|
972 | i8DRp3KvKGIK+yLwU/St6H6NY78cRqTU7heKUexXAM92ljoWMoT9CjBZpgu5
|
---|
973 | pkHsV0J2Vba5s+ID9itB4/88+FVND/arIHzSuJ/fpca+GK5tP5SUBDfqSV8M
|
---|
974 | jruWGx1OdBGzqqE5I6rtTuJbYooEAjQBMx3mAeJWCWjFnjabxkgMUmBY0npT
|
---|
975 | zg8TT0khMPfr44TNUZzLIJETx+PeHSdukEH5jTh3/wNmPC+DllC+tpAxTUyT
|
---|
976 | Q9jx/u56u1limRz0zFt5rro5YqMcXlOveBxjzxMHKoCpWutwc7YQF+3Yd2xr
|
---|
977 | VrOA/6cA43rQu2HGov4fQF8saQ==
|
---|
978 | "]]},
|
---|
979 | {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668],
|
---|
980 | AbsoluteThickness[1.6], LineBox[CompressedData["
|
---|
981 | 1:eJw1z3lIk3EYB/B55U2HszTEFAcloXYp6Ui/pLlKMM0jTFzTtG3p8kin89zm
|
---|
982 | MMNAs2FgieJRoYVliRP/aLIRlKGZ/qGIOo9KTM0ybXl08T698PLy4fl93+/z
|
---|
983 | c09KP59iymKxuH/ff1/mOYaO0rlHBbVOYByIuYMjwUshu8khOJKwOeohY5PP
|
---|
984 | oCy29pyR5UAOR7+hKVXUu5OxPBJhupXF9dYdNI/GyJvtKcvC7TSPhX6u+Lem
|
---|
985 | zZ7mcWge/Ljh4WRH83hwFjm9RQ9saM5HaIKVeU+kNWMIMOEnaDY6WtH5RMgu
|
---|
986 | O7p7Lm9jrE2CSLxROD5uQflkeIvtLu0bN6d8Cs5yeZLYBTPKX0FRZvtxXxuy
|
---|
987 | Vohb1fWSNl9TyovxvNVpYExiQvmrSLPQWDt2sCifCnbrQ/1bE7I2DZuzSz7+
|
---|
988 | 3b+CmPw1iPg+FQrVFmOkw7vrXuXhlE1yBjxbItjR8RuMDRmIrDazDROuM5Zn
|
---|
989 | glVfHTJz8ydjtyw4xKldpHojY20WJHVmEx7OZMF1OEvvtwdW/KD+bLzyqUxw
|
---|
990 | dyM3ZGMwqUXFmVqj/hwgRuV3978NOYiwDT+hEdJ5uRR1uhqRsYb+75YLz7rG
|
---|
991 | rVP+tI82F/Y8Dfd9KlmQh+EwkSGCR2bJUMqtP+o6SfkGGaQzPeV7T5KRj8b5
|
---|
992 | p3eeFVCfIR9eAbzKTjXtIy8AZ0iktFCvUn8h+lzmPliWfKf+QjRY7mkyv7hC
|
---|
993 | /UVYy2IlCw98o/5i6MvKR5YXlqm/GJ2yUH5X1BfqL4Enf8r/a+8C9ZegO93k
|
---|
994 | yY398zSXI38s7MLnsk+Mq+Rwbqvecp2epfNyRCXGr/YFTDM+pMBWU9WLZs4k
|
---|
995 | 7a+A164Mq8dDo4zfKZD3snPxtmqY7qNETKkgbiCzn3GGEsEer71WZnR0PyXU
|
---|
996 | zuzTYl1H0B9RsCB4
|
---|
997 | "]]}}, {{{},
|
---|
998 | {GrayLevel[0.4], AbsoluteThickness[0.5],
|
---|
999 | StyleBox[{
|
---|
1000 | LineBox[{
|
---|
1001 | Scaled[{0.02, 0}, {600., -0.8527625857530499}],
|
---|
1002 | Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.8527625857530499}]],
|
---|
1003 | Offset[{7, 0}, Scaled[{0.02, 0}, {600., -0.8527964031541225}]],
|
---|
1004 | Offset[{12, 0}, Scaled[{0.02, 0}, {600., -0.8527964031541225}]]}],
|
---|
1005 | LineBox[{
|
---|
1006 | Scaled[{0.02, 0}, {600., 0.07329423913697602}],
|
---|
1007 | Offset[{3, 0}, Scaled[{0.02, 0}, {600., 0.07329423913697602}]],
|
---|
1008 | Offset[{7, 0}, Scaled[{0.02, 0}, {600., 0.07332816341223422}]],
|
---|
1009 | Offset[{12, 0}, Scaled[{0.02, 0}, {600., 0.07332816341223422}]]}]},
|
---|
1010 |
|
---|
1011 | FontColor->GrayLevel[0.4]]}, {
|
---|
1012 | InsetBox["EFT", Offset[{15, 0},
|
---|
1013 | Scaled[{0.02, 0}, {600., -0.8527964031541225}]],
|
---|
1014 | ImageScaled[{0, 0.5}]],
|
---|
1015 | InsetBox["FULL", Offset[{15, 0},
|
---|
1016 | Scaled[{0.02, 0}, {600., 0.07332816341223422}]],
|
---|
1017 | ImageScaled[{0, 0.5}]]},
|
---|
1018 | {GrayLevel[0.4], AbsoluteThickness[0.5],
|
---|
1019 | StyleBox[{{}, {}},
|
---|
1020 | FontColor->GrayLevel[0.4]]}}, {}}},
|
---|
1021 | AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
|
---|
1022 | Axes->{True, True},
|
---|
1023 | AxesLabel->{None, None},
|
---|
1024 | AxesOrigin->{0, -1.3610902020354156`},
|
---|
1025 | DisplayFunction->Identity,
|
---|
1026 | Frame->{{False, False}, {False, False}},
|
---|
1027 | FrameLabel->{{None, None}, {None, None}},
|
---|
1028 | FrameTicks->{{{{-0.6931471805599453,
|
---|
1029 | FormBox[
|
---|
1030 | TagBox[
|
---|
1031 | InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True],
|
---|
1032 | NumberForm[#, {
|
---|
1033 | DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
|
---|
1034 | AbsoluteThickness[0.1]}}, {0.,
|
---|
1035 | FormBox["1", TraditionalForm], {0.01, 0.}, {
|
---|
1036 | AbsoluteThickness[0.1]}}, {1.6094379124341003`,
|
---|
1037 | FormBox["5", TraditionalForm], {0.01, 0.}, {
|
---|
1038 | AbsoluteThickness[0.1]}}, {2.302585092994046,
|
---|
1039 | FormBox["10", TraditionalForm], {0.01, 0.}, {
|
---|
1040 | AbsoluteThickness[0.1]}}, {3.912023005428146,
|
---|
1041 | FormBox["50", TraditionalForm], {0.01, 0.}, {
|
---|
1042 | AbsoluteThickness[0.1]}}, {4.605170185988092,
|
---|
1043 | FormBox["100", TraditionalForm], {0.01, 0.}, {
|
---|
1044 | AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
|
---|
1045 | FormBox[
|
---|
1046 | InterpretationBox[
|
---|
1047 | StyleBox[
|
---|
1048 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1049 | "CacheGraphics" -> False],
|
---|
1050 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1051 | AbsoluteThickness[0.1]}}, {-1.6094379124341003`,
|
---|
1052 | FormBox[
|
---|
1053 | InterpretationBox[
|
---|
1054 | StyleBox[
|
---|
1055 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1056 | "CacheGraphics" -> False],
|
---|
1057 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1058 | AbsoluteThickness[0.1]}}, {-1.2039728043259361`,
|
---|
1059 | FormBox[
|
---|
1060 | InterpretationBox[
|
---|
1061 | StyleBox[
|
---|
1062 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1063 | "CacheGraphics" -> False],
|
---|
1064 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1065 | AbsoluteThickness[0.1]}}, {-0.916290731874155,
|
---|
1066 | FormBox[
|
---|
1067 | InterpretationBox[
|
---|
1068 | StyleBox[
|
---|
1069 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1070 | "CacheGraphics" -> False],
|
---|
1071 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1072 | AbsoluteThickness[0.1]}}, {-0.5108256237659907,
|
---|
1073 | FormBox[
|
---|
1074 | InterpretationBox[
|
---|
1075 | StyleBox[
|
---|
1076 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1077 | "CacheGraphics" -> False],
|
---|
1078 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1079 | AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
|
---|
1080 | FormBox[
|
---|
1081 | InterpretationBox[
|
---|
1082 | StyleBox[
|
---|
1083 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1084 | "CacheGraphics" -> False],
|
---|
1085 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1086 | AbsoluteThickness[0.1]}}, {-0.2231435513142097,
|
---|
1087 | FormBox[
|
---|
1088 | InterpretationBox[
|
---|
1089 | StyleBox[
|
---|
1090 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1091 | "CacheGraphics" -> False],
|
---|
1092 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1093 | AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
|
---|
1094 | FormBox[
|
---|
1095 | InterpretationBox[
|
---|
1096 | StyleBox[
|
---|
1097 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1098 | "CacheGraphics" -> False],
|
---|
1099 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1100 | AbsoluteThickness[0.1]}}, {0.6931471805599453,
|
---|
1101 | FormBox[
|
---|
1102 | InterpretationBox[
|
---|
1103 | StyleBox[
|
---|
1104 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1105 | "CacheGraphics" -> False],
|
---|
1106 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1107 | AbsoluteThickness[0.1]}}, {1.0986122886681098`,
|
---|
1108 | FormBox[
|
---|
1109 | InterpretationBox[
|
---|
1110 | StyleBox[
|
---|
1111 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1112 | "CacheGraphics" -> False],
|
---|
1113 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1114 | AbsoluteThickness[0.1]}}, {1.3862943611198906`,
|
---|
1115 | FormBox[
|
---|
1116 | InterpretationBox[
|
---|
1117 | StyleBox[
|
---|
1118 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1119 | "CacheGraphics" -> False],
|
---|
1120 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1121 | AbsoluteThickness[0.1]}}, {1.791759469228055,
|
---|
1122 | FormBox[
|
---|
1123 | InterpretationBox[
|
---|
1124 | StyleBox[
|
---|
1125 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1126 | "CacheGraphics" -> False],
|
---|
1127 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1128 | AbsoluteThickness[0.1]}}, {1.9459101490553132`,
|
---|
1129 | FormBox[
|
---|
1130 | InterpretationBox[
|
---|
1131 | StyleBox[
|
---|
1132 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1133 | "CacheGraphics" -> False],
|
---|
1134 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1135 | AbsoluteThickness[0.1]}}, {2.0794415416798357`,
|
---|
1136 | FormBox[
|
---|
1137 | InterpretationBox[
|
---|
1138 | StyleBox[
|
---|
1139 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1140 | "CacheGraphics" -> False],
|
---|
1141 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1142 | AbsoluteThickness[0.1]}}, {2.1972245773362196`,
|
---|
1143 | FormBox[
|
---|
1144 | InterpretationBox[
|
---|
1145 | StyleBox[
|
---|
1146 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1147 | "CacheGraphics" -> False],
|
---|
1148 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1149 | AbsoluteThickness[0.1]}}, {2.995732273553991,
|
---|
1150 | FormBox[
|
---|
1151 | InterpretationBox[
|
---|
1152 | StyleBox[
|
---|
1153 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1154 | "CacheGraphics" -> False],
|
---|
1155 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1156 | AbsoluteThickness[0.1]}}, {3.4011973816621555`,
|
---|
1157 | FormBox[
|
---|
1158 | InterpretationBox[
|
---|
1159 | StyleBox[
|
---|
1160 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1161 | "CacheGraphics" -> False],
|
---|
1162 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1163 | AbsoluteThickness[0.1]}}, {3.6888794541139363`,
|
---|
1164 | FormBox[
|
---|
1165 | InterpretationBox[
|
---|
1166 | StyleBox[
|
---|
1167 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1168 | "CacheGraphics" -> False],
|
---|
1169 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1170 | AbsoluteThickness[0.1]}}, {4.0943445622221,
|
---|
1171 | FormBox[
|
---|
1172 | InterpretationBox[
|
---|
1173 | StyleBox[
|
---|
1174 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1175 | "CacheGraphics" -> False],
|
---|
1176 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1177 | AbsoluteThickness[0.1]}}, {4.248495242049359,
|
---|
1178 | FormBox[
|
---|
1179 | InterpretationBox[
|
---|
1180 | StyleBox[
|
---|
1181 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1182 | "CacheGraphics" -> False],
|
---|
1183 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1184 | AbsoluteThickness[0.1]}}, {4.382026634673881,
|
---|
1185 | FormBox[
|
---|
1186 | InterpretationBox[
|
---|
1187 | StyleBox[
|
---|
1188 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1189 | "CacheGraphics" -> False],
|
---|
1190 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1191 | AbsoluteThickness[0.1]}}, {4.499809670330265,
|
---|
1192 | FormBox[
|
---|
1193 | InterpretationBox[
|
---|
1194 | StyleBox[
|
---|
1195 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1196 | "CacheGraphics" -> False],
|
---|
1197 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1198 | AbsoluteThickness[0.1]}}, {5.298317366548036,
|
---|
1199 | FormBox[
|
---|
1200 | InterpretationBox[
|
---|
1201 | StyleBox[
|
---|
1202 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1203 | "CacheGraphics" -> False],
|
---|
1204 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1205 | AbsoluteThickness[0.1]}}, {5.703782474656201,
|
---|
1206 | FormBox[
|
---|
1207 | InterpretationBox[
|
---|
1208 | StyleBox[
|
---|
1209 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1210 | "CacheGraphics" -> False],
|
---|
1211 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1212 | AbsoluteThickness[0.1]}}, {5.991464547107982,
|
---|
1213 | FormBox[
|
---|
1214 | InterpretationBox[
|
---|
1215 | StyleBox[
|
---|
1216 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1217 | "CacheGraphics" -> False],
|
---|
1218 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1219 | AbsoluteThickness[0.1]}}, {6.214608098422191,
|
---|
1220 | FormBox[
|
---|
1221 | InterpretationBox[
|
---|
1222 | StyleBox[
|
---|
1223 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1224 | "CacheGraphics" -> False],
|
---|
1225 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1226 | AbsoluteThickness[0.1]}}, {6.396929655216146,
|
---|
1227 | FormBox[
|
---|
1228 | InterpretationBox[
|
---|
1229 | StyleBox[
|
---|
1230 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1231 | "CacheGraphics" -> False],
|
---|
1232 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1233 | AbsoluteThickness[0.1]}}, {6.551080335043404,
|
---|
1234 | FormBox[
|
---|
1235 | InterpretationBox[
|
---|
1236 | StyleBox[
|
---|
1237 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1238 | "CacheGraphics" -> False],
|
---|
1239 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1240 | AbsoluteThickness[0.1]}}, {6.684611727667927,
|
---|
1241 | FormBox[
|
---|
1242 | InterpretationBox[
|
---|
1243 | StyleBox[
|
---|
1244 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1245 | "CacheGraphics" -> False],
|
---|
1246 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1247 | AbsoluteThickness[0.1]}}, {6.802394763324311,
|
---|
1248 | FormBox[
|
---|
1249 | InterpretationBox[
|
---|
1250 | StyleBox[
|
---|
1251 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1252 | "CacheGraphics" -> False],
|
---|
1253 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1254 | AbsoluteThickness[0.1]}}, {6.907755278982137,
|
---|
1255 | FormBox[
|
---|
1256 | InterpretationBox[
|
---|
1257 | StyleBox[
|
---|
1258 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1259 | "CacheGraphics" -> False],
|
---|
1260 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1261 | AbsoluteThickness[0.1]}}, {7.313220387090301,
|
---|
1262 | FormBox[
|
---|
1263 | InterpretationBox[
|
---|
1264 | StyleBox[
|
---|
1265 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1266 | "CacheGraphics" -> False],
|
---|
1267 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1268 | AbsoluteThickness[0.1]}}, {7.600902459542082,
|
---|
1269 | FormBox[
|
---|
1270 | InterpretationBox[
|
---|
1271 | StyleBox[
|
---|
1272 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1273 | "CacheGraphics" -> False],
|
---|
1274 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1275 | AbsoluteThickness[0.1]}}, {7.824046010856292,
|
---|
1276 | FormBox[
|
---|
1277 | InterpretationBox[
|
---|
1278 | StyleBox[
|
---|
1279 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1280 | "CacheGraphics" -> False],
|
---|
1281 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1282 | AbsoluteThickness[0.1]}}}, Automatic}, {Automatic, Automatic}},
|
---|
1283 | GridLines->{None, None},
|
---|
1284 | GridLinesStyle->Directive[
|
---|
1285 | GrayLevel[0.5, 0.4]],
|
---|
1286 | ImagePadding->{{All, 50.2}, {All, All}},
|
---|
1287 | Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
|
---|
1288 | (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
|
---|
1289 | Part[#, 1]],
|
---|
1290 | (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
|
---|
1291 | Part[#, 2]]}& ), "CopiedValueFunction" -> ({
|
---|
1292 | (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
|
---|
1293 | Part[#, 1]],
|
---|
1294 | (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
|
---|
1295 | Part[#, 2]]}& )}},
|
---|
1296 | PlotRange->{{0, 600.}, {-1.24185285994449, 6.150862349692874}},
|
---|
1297 | PlotRangeClipping->False,
|
---|
1298 | PlotRangePadding->{{
|
---|
1299 | Scaled[0.02],
|
---|
1300 | Scaled[0.02]}, {
|
---|
1301 | Scaled[0.02],
|
---|
1302 | Scaled[0.05]}},
|
---|
1303 | Ticks->{Automatic, {{-0.6931471805599453,
|
---|
1304 | FormBox[
|
---|
1305 | TagBox[
|
---|
1306 | InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True], NumberForm[#, {
|
---|
1307 | DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
|
---|
1308 | AbsoluteThickness[0.1]}}, {0.,
|
---|
1309 | FormBox["1", TraditionalForm], {0.01, 0.}, {
|
---|
1310 | AbsoluteThickness[0.1]}}, {1.6094379124341003`,
|
---|
1311 | FormBox["5", TraditionalForm], {0.01, 0.}, {
|
---|
1312 | AbsoluteThickness[0.1]}}, {2.302585092994046,
|
---|
1313 | FormBox["10", TraditionalForm], {0.01, 0.}, {
|
---|
1314 | AbsoluteThickness[0.1]}}, {3.912023005428146,
|
---|
1315 | FormBox["50", TraditionalForm], {0.01, 0.}, {
|
---|
1316 | AbsoluteThickness[0.1]}}, {4.605170185988092,
|
---|
1317 | FormBox["100", TraditionalForm], {0.01, 0.}, {
|
---|
1318 | AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
|
---|
1319 | FormBox[
|
---|
1320 | InterpretationBox[
|
---|
1321 | StyleBox[
|
---|
1322 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1323 | "CacheGraphics" -> False],
|
---|
1324 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1325 | AbsoluteThickness[0.1]}}, {-1.6094379124341003`,
|
---|
1326 | FormBox[
|
---|
1327 | InterpretationBox[
|
---|
1328 | StyleBox[
|
---|
1329 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1330 | "CacheGraphics" -> False],
|
---|
1331 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1332 | AbsoluteThickness[0.1]}}, {-1.2039728043259361`,
|
---|
1333 | FormBox[
|
---|
1334 | InterpretationBox[
|
---|
1335 | StyleBox[
|
---|
1336 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1337 | "CacheGraphics" -> False],
|
---|
1338 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1339 | AbsoluteThickness[0.1]}}, {-0.916290731874155,
|
---|
1340 | FormBox[
|
---|
1341 | InterpretationBox[
|
---|
1342 | StyleBox[
|
---|
1343 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1344 | "CacheGraphics" -> False],
|
---|
1345 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1346 | AbsoluteThickness[0.1]}}, {-0.5108256237659907,
|
---|
1347 | FormBox[
|
---|
1348 | InterpretationBox[
|
---|
1349 | StyleBox[
|
---|
1350 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1351 | "CacheGraphics" -> False],
|
---|
1352 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1353 | AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
|
---|
1354 | FormBox[
|
---|
1355 | InterpretationBox[
|
---|
1356 | StyleBox[
|
---|
1357 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1358 | "CacheGraphics" -> False],
|
---|
1359 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1360 | AbsoluteThickness[0.1]}}, {-0.2231435513142097,
|
---|
1361 | FormBox[
|
---|
1362 | InterpretationBox[
|
---|
1363 | StyleBox[
|
---|
1364 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1365 | "CacheGraphics" -> False],
|
---|
1366 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1367 | AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
|
---|
1368 | FormBox[
|
---|
1369 | InterpretationBox[
|
---|
1370 | StyleBox[
|
---|
1371 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1372 | "CacheGraphics" -> False],
|
---|
1373 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1374 | AbsoluteThickness[0.1]}}, {0.6931471805599453,
|
---|
1375 | FormBox[
|
---|
1376 | InterpretationBox[
|
---|
1377 | StyleBox[
|
---|
1378 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1379 | "CacheGraphics" -> False],
|
---|
1380 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1381 | AbsoluteThickness[0.1]}}, {1.0986122886681098`,
|
---|
1382 | FormBox[
|
---|
1383 | InterpretationBox[
|
---|
1384 | StyleBox[
|
---|
1385 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1386 | "CacheGraphics" -> False],
|
---|
1387 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1388 | AbsoluteThickness[0.1]}}, {1.3862943611198906`,
|
---|
1389 | FormBox[
|
---|
1390 | InterpretationBox[
|
---|
1391 | StyleBox[
|
---|
1392 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1393 | "CacheGraphics" -> False],
|
---|
1394 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1395 | AbsoluteThickness[0.1]}}, {1.791759469228055,
|
---|
1396 | FormBox[
|
---|
1397 | InterpretationBox[
|
---|
1398 | StyleBox[
|
---|
1399 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1400 | "CacheGraphics" -> False],
|
---|
1401 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1402 | AbsoluteThickness[0.1]}}, {1.9459101490553132`,
|
---|
1403 | FormBox[
|
---|
1404 | InterpretationBox[
|
---|
1405 | StyleBox[
|
---|
1406 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1407 | "CacheGraphics" -> False],
|
---|
1408 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1409 | AbsoluteThickness[0.1]}}, {2.0794415416798357`,
|
---|
1410 | FormBox[
|
---|
1411 | InterpretationBox[
|
---|
1412 | StyleBox[
|
---|
1413 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1414 | "CacheGraphics" -> False],
|
---|
1415 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1416 | AbsoluteThickness[0.1]}}, {2.1972245773362196`,
|
---|
1417 | FormBox[
|
---|
1418 | InterpretationBox[
|
---|
1419 | StyleBox[
|
---|
1420 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1421 | "CacheGraphics" -> False],
|
---|
1422 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1423 | AbsoluteThickness[0.1]}}, {2.995732273553991,
|
---|
1424 | FormBox[
|
---|
1425 | InterpretationBox[
|
---|
1426 | StyleBox[
|
---|
1427 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1428 | "CacheGraphics" -> False],
|
---|
1429 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1430 | AbsoluteThickness[0.1]}}, {3.4011973816621555`,
|
---|
1431 | FormBox[
|
---|
1432 | InterpretationBox[
|
---|
1433 | StyleBox[
|
---|
1434 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1435 | "CacheGraphics" -> False],
|
---|
1436 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1437 | AbsoluteThickness[0.1]}}, {3.6888794541139363`,
|
---|
1438 | FormBox[
|
---|
1439 | InterpretationBox[
|
---|
1440 | StyleBox[
|
---|
1441 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1442 | "CacheGraphics" -> False],
|
---|
1443 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1444 | AbsoluteThickness[0.1]}}, {4.0943445622221,
|
---|
1445 | FormBox[
|
---|
1446 | InterpretationBox[
|
---|
1447 | StyleBox[
|
---|
1448 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1449 | "CacheGraphics" -> False],
|
---|
1450 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1451 | AbsoluteThickness[0.1]}}, {4.248495242049359,
|
---|
1452 | FormBox[
|
---|
1453 | InterpretationBox[
|
---|
1454 | StyleBox[
|
---|
1455 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1456 | "CacheGraphics" -> False],
|
---|
1457 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1458 | AbsoluteThickness[0.1]}}, {4.382026634673881,
|
---|
1459 | FormBox[
|
---|
1460 | InterpretationBox[
|
---|
1461 | StyleBox[
|
---|
1462 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1463 | "CacheGraphics" -> False],
|
---|
1464 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1465 | AbsoluteThickness[0.1]}}, {4.499809670330265,
|
---|
1466 | FormBox[
|
---|
1467 | InterpretationBox[
|
---|
1468 | StyleBox[
|
---|
1469 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1470 | "CacheGraphics" -> False],
|
---|
1471 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1472 | AbsoluteThickness[0.1]}}, {5.298317366548036,
|
---|
1473 | FormBox[
|
---|
1474 | InterpretationBox[
|
---|
1475 | StyleBox[
|
---|
1476 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1477 | "CacheGraphics" -> False],
|
---|
1478 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1479 | AbsoluteThickness[0.1]}}, {5.703782474656201,
|
---|
1480 | FormBox[
|
---|
1481 | InterpretationBox[
|
---|
1482 | StyleBox[
|
---|
1483 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1484 | "CacheGraphics" -> False],
|
---|
1485 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1486 | AbsoluteThickness[0.1]}}, {5.991464547107982,
|
---|
1487 | FormBox[
|
---|
1488 | InterpretationBox[
|
---|
1489 | StyleBox[
|
---|
1490 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1491 | "CacheGraphics" -> False],
|
---|
1492 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1493 | AbsoluteThickness[0.1]}}, {6.214608098422191,
|
---|
1494 | FormBox[
|
---|
1495 | InterpretationBox[
|
---|
1496 | StyleBox[
|
---|
1497 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1498 | "CacheGraphics" -> False],
|
---|
1499 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1500 | AbsoluteThickness[0.1]}}, {6.396929655216146,
|
---|
1501 | FormBox[
|
---|
1502 | InterpretationBox[
|
---|
1503 | StyleBox[
|
---|
1504 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1505 | "CacheGraphics" -> False],
|
---|
1506 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1507 | AbsoluteThickness[0.1]}}, {6.551080335043404,
|
---|
1508 | FormBox[
|
---|
1509 | InterpretationBox[
|
---|
1510 | StyleBox[
|
---|
1511 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1512 | "CacheGraphics" -> False],
|
---|
1513 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1514 | AbsoluteThickness[0.1]}}, {6.684611727667927,
|
---|
1515 | FormBox[
|
---|
1516 | InterpretationBox[
|
---|
1517 | StyleBox[
|
---|
1518 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1519 | "CacheGraphics" -> False],
|
---|
1520 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1521 | AbsoluteThickness[0.1]}}, {6.802394763324311,
|
---|
1522 | FormBox[
|
---|
1523 | InterpretationBox[
|
---|
1524 | StyleBox[
|
---|
1525 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1526 | "CacheGraphics" -> False],
|
---|
1527 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1528 | AbsoluteThickness[0.1]}}, {6.907755278982137,
|
---|
1529 | FormBox[
|
---|
1530 | InterpretationBox[
|
---|
1531 | StyleBox[
|
---|
1532 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1533 | "CacheGraphics" -> False],
|
---|
1534 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1535 | AbsoluteThickness[0.1]}}, {7.313220387090301,
|
---|
1536 | FormBox[
|
---|
1537 | InterpretationBox[
|
---|
1538 | StyleBox[
|
---|
1539 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1540 | "CacheGraphics" -> False],
|
---|
1541 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1542 | AbsoluteThickness[0.1]}}, {7.600902459542082,
|
---|
1543 | FormBox[
|
---|
1544 | InterpretationBox[
|
---|
1545 | StyleBox[
|
---|
1546 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1547 | "CacheGraphics" -> False],
|
---|
1548 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1549 | AbsoluteThickness[0.1]}}, {7.824046010856292,
|
---|
1550 | FormBox[
|
---|
1551 | InterpretationBox[
|
---|
1552 | StyleBox[
|
---|
1553 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
1554 | "CacheGraphics" -> False],
|
---|
1555 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
1556 | AbsoluteThickness[0.1]}}}}], TraditionalForm]], "Output",
|
---|
1557 | CellChangeTimes->{
|
---|
1558 | 3.692599645527886*^9, 3.692599721491393*^9, {3.6925997870283203`*^9,
|
---|
1559 | 3.692599794342276*^9}, 3.692601005643268*^9}]
|
---|
1560 | }, Open ]],
|
---|
1561 |
|
---|
1562 | Cell["\<\
|
---|
1563 | Cross section (pb) as a function of the Higgs mass. This plot shows how well \
|
---|
1564 | the EFT does. For a Higgs<200 GeV the approximation is very good.\
|
---|
1565 | \>", "Text"]
|
---|
1566 | }, Open ]],
|
---|
1567 |
|
---|
1568 | Cell[CellGroupData[{
|
---|
1569 |
|
---|
1570 | Cell["Various ways to do the integration over the x1 and x2.", "Subsection"],
|
---|
1571 |
|
---|
1572 | Cell[CellGroupData[{
|
---|
1573 |
|
---|
1574 | Cell["\<\
|
---|
1575 |
|
---|
1576 | uno=Integrate[x1*x2,{x1,t0,1},{x2,t0/x1,1}]//Expand
|
---|
1577 | due=Integrate[ta,{ta,t0,1},{y,Log[Sqrt[ta]],-Log[Sqrt[ta]]}]//PowerExpand//\
|
---|
1578 | Expand
|
---|
1579 | tre=Integrate[t0/z \
|
---|
1580 | t0/z^2,{z,t0,1},{y,Log[Sqrt[t0/z]],-Log[Sqrt[t0/z]]}]//PowerExpand//Expand\
|
---|
1581 | \>", "Input"],
|
---|
1582 |
|
---|
1583 | Cell[BoxData[
|
---|
1584 | FormBox[
|
---|
1585 | RowBox[{"ConditionalExpression", "[",
|
---|
1586 | RowBox[{
|
---|
1587 | RowBox[{
|
---|
1588 | RowBox[{"-",
|
---|
1589 | FractionBox[
|
---|
1590 | SuperscriptBox["t0", "2"], "4"]}], "+",
|
---|
1591 | RowBox[{
|
---|
1592 | FractionBox["1", "2"], " ",
|
---|
1593 | SuperscriptBox["t0", "2"], " ",
|
---|
1594 | RowBox[{"log", "(", "t0", ")"}]}], "+",
|
---|
1595 | FractionBox["1", "4"]}], ",",
|
---|
1596 | RowBox[{
|
---|
1597 | RowBox[{"(",
|
---|
1598 | RowBox[{
|
---|
1599 | RowBox[{"(",
|
---|
1600 | RowBox[{
|
---|
1601 | RowBox[{
|
---|
1602 | RowBox[{"Re", "(",
|
---|
1603 | FractionBox["t0",
|
---|
1604 | RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
|
---|
1605 | "\[And]",
|
---|
1606 | RowBox[{
|
---|
1607 | FractionBox["t0",
|
---|
1608 | RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
|
---|
1609 |
|
---|
1610 | RowBox[{
|
---|
1611 | FractionBox["t0",
|
---|
1612 | RowBox[{"1", "-", "t0"}]], "\[NotElement]",
|
---|
1613 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1614 | Function[{}, Reals]]}], "\[Or]",
|
---|
1615 | RowBox[{
|
---|
1616 | RowBox[{"Re", "(",
|
---|
1617 | FractionBox["t0",
|
---|
1618 | RowBox[{"1", "-", "t0"}]], ")"}], "<",
|
---|
1619 | RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
|
---|
1620 | RowBox[{"(",
|
---|
1621 | RowBox[{
|
---|
1622 | RowBox[{"t0", "\[NotElement]",
|
---|
1623 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1624 | Function[{}, Reals]]}], "\[Or]",
|
---|
1625 | RowBox[{
|
---|
1626 | RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
|
---|
1627 | RowBox[{"0", "<",
|
---|
1628 | RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
|
---|
1629 | TraditionalForm]], "Output",
|
---|
1630 | CellChangeTimes->{3.692599859998564*^9, 3.6926010108109922`*^9}],
|
---|
1631 |
|
---|
1632 | Cell[BoxData[
|
---|
1633 | FormBox[
|
---|
1634 | RowBox[{"ConditionalExpression", "[",
|
---|
1635 | RowBox[{
|
---|
1636 | RowBox[{
|
---|
1637 | RowBox[{"-",
|
---|
1638 | FractionBox[
|
---|
1639 | SuperscriptBox["t0", "2"], "4"]}], "+",
|
---|
1640 | RowBox[{
|
---|
1641 | FractionBox["1", "2"], " ",
|
---|
1642 | SuperscriptBox["t0", "2"], " ",
|
---|
1643 | RowBox[{"log", "(", "t0", ")"}]}], "+",
|
---|
1644 | FractionBox["1", "4"]}], ",",
|
---|
1645 | RowBox[{
|
---|
1646 | RowBox[{"(",
|
---|
1647 | RowBox[{
|
---|
1648 | RowBox[{"(",
|
---|
1649 | RowBox[{
|
---|
1650 | RowBox[{
|
---|
1651 | RowBox[{"Re", "(",
|
---|
1652 | FractionBox["t0",
|
---|
1653 | RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
|
---|
1654 | "\[And]",
|
---|
1655 | RowBox[{
|
---|
1656 | FractionBox["t0",
|
---|
1657 | RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
|
---|
1658 |
|
---|
1659 | RowBox[{
|
---|
1660 | FractionBox["t0",
|
---|
1661 | RowBox[{"1", "-", "t0"}]], "\[NotElement]",
|
---|
1662 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1663 | Function[{}, Reals]]}], "\[Or]",
|
---|
1664 | RowBox[{
|
---|
1665 | RowBox[{"Re", "(",
|
---|
1666 | FractionBox["t0",
|
---|
1667 | RowBox[{"1", "-", "t0"}]], ")"}], "<",
|
---|
1668 | RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
|
---|
1669 | RowBox[{"(",
|
---|
1670 | RowBox[{
|
---|
1671 | RowBox[{"t0", "\[NotElement]",
|
---|
1672 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1673 | Function[{}, Reals]]}], "\[Or]",
|
---|
1674 | RowBox[{
|
---|
1675 | RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
|
---|
1676 | RowBox[{"0", "<",
|
---|
1677 | RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
|
---|
1678 | TraditionalForm]], "Output",
|
---|
1679 | CellChangeTimes->{3.692599859998564*^9, 3.69260101499305*^9}],
|
---|
1680 |
|
---|
1681 | Cell[BoxData[
|
---|
1682 | FormBox[
|
---|
1683 | RowBox[{"ConditionalExpression", "[",
|
---|
1684 | RowBox[{
|
---|
1685 | RowBox[{
|
---|
1686 | RowBox[{"-",
|
---|
1687 | FractionBox[
|
---|
1688 | SuperscriptBox["t0", "2"], "4"]}], "+",
|
---|
1689 | RowBox[{
|
---|
1690 | FractionBox["1", "2"], " ",
|
---|
1691 | SuperscriptBox["t0", "2"], " ",
|
---|
1692 | RowBox[{"log", "(", "t0", ")"}]}], "+",
|
---|
1693 | FractionBox["1", "4"]}], ",",
|
---|
1694 | RowBox[{
|
---|
1695 | RowBox[{"(",
|
---|
1696 | RowBox[{
|
---|
1697 | RowBox[{"(",
|
---|
1698 | RowBox[{
|
---|
1699 | RowBox[{
|
---|
1700 | RowBox[{"Re", "(",
|
---|
1701 | FractionBox["t0",
|
---|
1702 | RowBox[{"1", "-", "t0"}]], ")"}], "\[GreaterEqual]", "0"}],
|
---|
1703 | "\[And]",
|
---|
1704 | RowBox[{
|
---|
1705 | FractionBox["t0",
|
---|
1706 | RowBox[{"t0", "-", "1"}]], "\[NotEqual]", "0"}]}], ")"}], "\[Or]",
|
---|
1707 |
|
---|
1708 | RowBox[{
|
---|
1709 | FractionBox["t0",
|
---|
1710 | RowBox[{"1", "-", "t0"}]], "\[NotElement]",
|
---|
1711 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1712 | Function[{}, Reals]]}], "\[Or]",
|
---|
1713 | RowBox[{
|
---|
1714 | RowBox[{"Re", "(",
|
---|
1715 | FractionBox["t0",
|
---|
1716 | RowBox[{"1", "-", "t0"}]], ")"}], "<",
|
---|
1717 | RowBox[{"-", "1"}]}]}], ")"}], "\[And]",
|
---|
1718 | RowBox[{"(",
|
---|
1719 | RowBox[{
|
---|
1720 | RowBox[{"t0", "\[NotElement]",
|
---|
1721 | TagBox["\[DoubleStruckCapitalR]",
|
---|
1722 | Function[{}, Reals]]}], "\[Or]",
|
---|
1723 | RowBox[{
|
---|
1724 | RowBox[{"Re", "(", "t0", ")"}], ">", "1"}], "\[Or]",
|
---|
1725 | RowBox[{"0", "<",
|
---|
1726 | RowBox[{"Re", "(", "t0", ")"}], "<", "1"}]}], ")"}]}]}], "]"}],
|
---|
1727 | TraditionalForm]], "Output",
|
---|
1728 | CellChangeTimes->{3.692599859998564*^9, 3.692601019133106*^9}]
|
---|
1729 | }, Open ]]
|
---|
1730 | }, Open ]]
|
---|
1731 | }, Open ]],
|
---|
1732 |
|
---|
1733 | Cell[CellGroupData[{
|
---|
1734 |
|
---|
1735 | Cell["NLO cross section", "Section"],
|
---|
1736 |
|
---|
1737 | Cell["\<\
|
---|
1738 | We have integrated over the angular variables, so we are only left with two \
|
---|
1739 | integrations. One is over z (=mh/S/x1/x2) and the other over the rapidity y \
|
---|
1740 | of the partonic cms. For every point in the phase space we have to calculate \
|
---|
1741 | an event and a corresponding counter-event with z=1 to implement the + \
|
---|
1742 | distributions in the gg channel. Various contributions add to the final result:
|
---|
1743 |
|
---|
1744 | virtual: gg>h at 1-loop + corrections to the effective lagrangian (UV and IR \
|
---|
1745 | divergent)
|
---|
1746 | real: qq~ >h g (finite)
|
---|
1747 | qg > qh (collinear divergent)
|
---|
1748 | gg>gh (soft and collinear divergent)
|
---|
1749 | \
|
---|
1750 | \>", "Text",
|
---|
1751 | CellChangeTimes->{3.6925999095314913`*^9},
|
---|
1752 | FontSize->16],
|
---|
1753 |
|
---|
1754 | Cell[CellGroupData[{
|
---|
1755 |
|
---|
1756 | Cell["Born+Virtual ", "Subsection"],
|
---|
1757 |
|
---|
1758 | Cell[TextData[{
|
---|
1759 | "dsigmaBV[yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
|
---|
1760 | StyleBox["(* local variables *)",
|
---|
1761 | FontColor->RGBColor[0, 1, 0]],
|
---|
1762 | "\n{y0,x10,x20,sig0,ymax0,JAC0,v,S,tau0,beta,gg0,qg0,qq0},\nMuf=muf 1.;\n\
|
---|
1763 | Mur=mur 1.;\nv=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nbeta=Sqrt[1-tau0];\n\n",
|
---|
1764 | StyleBox["(* calculate quantities for z=1 *)",
|
---|
1765 | FontColor->RGBColor[1, 0, 0]],
|
---|
1766 | "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\nJAC0=2*ymax0;\n\
|
---|
1767 | x10=Sqrt[tau0] Exp[y0];\nx20=Sqrt[tau0] Exp[-y0];\n\
|
---|
1768 | {gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
|
---|
1769 | StyleBox["(* sigma0 *)",
|
---|
1770 | FontColor->RGBColor[1, 0, 0]],
|
---|
1771 | "\nsig0=asNLO[Mur,5]^2/576/Pi/v^2*tau0;\nsig0=sig0+sig0*asNLO[Mur,5]/2/Pi*\n\
|
---|
1772 | (11/3 CA+ 2 Pi^2 - 2 b0 2 Log[Muf/Mur]+\n16 CA Log[beta] Log[mh/Muf]+16 CA \
|
---|
1773 | Log[beta]^2);\nsig0=sig0*gg0;\nsig0=sig0*389379660; (*to picobarns*)\n\
|
---|
1774 | sig0=sig0*JAC0;\n\n\
|
---|
1775 | (*Print[{muf,mur,v,S,tau0,beta,ymax0,y0,JAC0,x10,x20,gg0,qg0,qq0,sig0}];*)\n\
|
---|
1776 | Return[sig0];\n];"
|
---|
1777 | }], "Input"]
|
---|
1778 | }, Open ]],
|
---|
1779 |
|
---|
1780 | Cell[CellGroupData[{
|
---|
1781 |
|
---|
1782 | Cell["Real contributions", "Subsection"],
|
---|
1783 |
|
---|
1784 | Cell[TextData[{
|
---|
1785 | "dsigmaR[xx_,yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
|
---|
1786 | StyleBox["(* local variables *)",
|
---|
1787 | FontColor->RGBColor[0, 1, 0]],
|
---|
1788 | "\n{v,S,tau0,\n y,y0,z,tau,\n x1,x2,x10,x20,\n ymax0,ymax,\n JAC,JAC0,\n \
|
---|
1789 | gg,qg,qq,gg0,qg0,qq0,\n qqterm,qgterm,ggterm,ggterm0,\n sig,sig0,\n Muf},\n\n\
|
---|
1790 | v=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nMuf=muf*1.0;\n\n",
|
---|
1791 | StyleBox["(* calculate quantities for an event *)",
|
---|
1792 | FontColor->RGBColor[1, 0, 0]],
|
---|
1793 | "\nz=tau0+(1-tau0)*xx;\ntau=tau0/z;\nymax =-Log[Sqrt[tau]];\n\
|
---|
1794 | y=-ymax+2*ymax*yy;\nJAC =2*ymax*(1-tau0)*tau0/z^2;\nx1=Sqrt[tau] Exp[y];\n\
|
---|
1795 | x2=tau/x1;\n",
|
---|
1796 | StyleBox["(* call the pdf *)\n",
|
---|
1797 | FontColor->RGBColor[1, 0, 0]],
|
---|
1798 | "\n{gg,qg,qq}=pdfcall[x1,x2,Muf];\n\n",
|
---|
1799 | StyleBox["(* calculate quantities for counter-event *)",
|
---|
1800 | FontColor->RGBColor[1, 0, 0]],
|
---|
1801 | "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\n\
|
---|
1802 | JAC0=2*ymax0*(1-tau0)*tau0;\nx10=Sqrt[tau0] Exp[y0];\nx20=tau0/x10;\n",
|
---|
1803 | StyleBox["(* call the pdf at z=1 *)",
|
---|
1804 | FontColor->RGBColor[1, 0, 0]],
|
---|
1805 | "\n{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
|
---|
1806 | StyleBox["(* sigma0 *)",
|
---|
1807 | FontColor->RGBColor[1, 0, 0]],
|
---|
1808 | "\nsig0=asNLO[mur,5]^2/576/Pi/v^2;\nsig0=sig0*asNLO[mur,5]/2/Pi;\n\n",
|
---|
1809 | StyleBox["(* qq channnel : no counter event *)",
|
---|
1810 | FontColor->RGBColor[1, 0, 0]],
|
---|
1811 | "\nqqterm=64/27*(1-z)^3;\nqqterm=qqterm*sig0*JAC*qq;\n\n",
|
---|
1812 | StyleBox["(* qg channnel : no counter event *)",
|
---|
1813 | FontColor->RGBColor[1, 0, 0]],
|
---|
1814 | "\nqgterm=CF*( (1+(1-z)^2)/z (2*Log[mh/muf]+2 Log[1-z]-Log[z])\n \
|
---|
1815 | +(z^2-3/2(1-z)^2)/z )*z;\nqgterm=qgterm*sig0*JAC*qg;\n\n",
|
---|
1816 | StyleBox["(* gg channnel *)",
|
---|
1817 | FontColor->RGBColor[1, 0, 0]],
|
---|
1818 | "\nggterm=CA*(2 (2 (z/(1-z)+(1-z)/z+z (1-z) )) * (2*Log[mh/muf])-\n \
|
---|
1819 | 11/3 (1-z)^3/z -\n 4 (1-z+z^2)^2/z/(1-z) Log[z]+\n 8 \
|
---|
1820 | (1-z+z^2)^2/z Log[1-z]/(1-z) )*z;\nggterm=ggterm*sig0*JAC*gg;\n",
|
---|
1821 | StyleBox["(* gg counter-event *)",
|
---|
1822 | FontColor->RGBColor[1, 0, 0]],
|
---|
1823 | "\nggterm0=CA*(-4/(1-z) 2*Log[mh/muf] - 8*Log[1-z]/(1-z) );\n\
|
---|
1824 | ggterm0=ggterm0*sig0*JAC0*gg0;\n\n\n",
|
---|
1825 | StyleBox["(* total *)",
|
---|
1826 | FontColor->RGBColor[1, 0, 0]],
|
---|
1827 | "\nsig=0;\nsig=sig+qqterm;\nsig=sig+qgterm;\nsig=sig+ggterm+ggterm0;\n\
|
---|
1828 | sig=sig*389379660; (*to picobarns*)\n\nReturn[sig];\n\n];\n"
|
---|
1829 | }], "Input"],
|
---|
1830 |
|
---|
1831 | Cell[CellGroupData[{
|
---|
1832 |
|
---|
1833 | Cell["\<\
|
---|
1834 | virt=NIntegrate[dsigmaBV[xvar,100,14000,100,100],{xvar,0,1}];
|
---|
1835 | virt\
|
---|
1836 | \>", "Input"],
|
---|
1837 |
|
---|
1838 | Cell[BoxData[
|
---|
1839 | FormBox["33.568776025755255`", TraditionalForm]], "Output",
|
---|
1840 | CellChangeTimes->{3.69259998438443*^9, 3.6926010194034967`*^9}]
|
---|
1841 | }, Open ]],
|
---|
1842 |
|
---|
1843 | Cell["\<\
|
---|
1844 | eps=0.0000000001;
|
---|
1845 | (* real=Vegas[dsigmaR[xvar,yvar,100,14000,100,100],{xvar,eps,1-eps},{yvar,eps,\
|
---|
1846 | 1-eps},Compiled->False,NStart->1000,MaxPoints->10000]*)\
|
---|
1847 | \>", "Input",
|
---|
1848 | CellChangeTimes->{{3.692600210806891*^9, 3.692600216702009*^9}}],
|
---|
1849 |
|
---|
1850 | Cell[CellGroupData[{
|
---|
1851 |
|
---|
1852 | Cell[BoxData[
|
---|
1853 | RowBox[{"real", "=",
|
---|
1854 | RowBox[{"NIntegrate", "[",
|
---|
1855 | RowBox[{
|
---|
1856 | RowBox[{"dsigmaR", "[",
|
---|
1857 | RowBox[{
|
---|
1858 | "xvar", ",", "yvar", ",", "100", ",", "14000", ",", "100", ",", "100"}],
|
---|
1859 | "]"}], ",",
|
---|
1860 | RowBox[{"{",
|
---|
1861 | RowBox[{"xvar", ",", "eps", ",",
|
---|
1862 | RowBox[{"1", "-", "eps"}]}], "}"}], ",",
|
---|
1863 | RowBox[{"{",
|
---|
1864 | RowBox[{"yvar", ",", "eps", ",",
|
---|
1865 | RowBox[{"1", "-", "eps"}]}], "}"}], ",",
|
---|
1866 | RowBox[{"Compiled", "->", "False"}], ",",
|
---|
1867 | RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}]], "Input",
|
---|
1868 | CellChangeTimes->{{3.692600166376462*^9, 3.692600177417946*^9}, {
|
---|
1869 | 3.692600360649798*^9, 3.6926003615777073`*^9}}],
|
---|
1870 |
|
---|
1871 | Cell[BoxData[
|
---|
1872 | FormBox[
|
---|
1873 | RowBox[{
|
---|
1874 | StyleBox[
|
---|
1875 | RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
|
---|
1876 | RowBox[{
|
---|
1877 | ":", " "}], "\<\"The integral failed to converge after \
|
---|
1878 | \[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
|
---|
1879 | integrand evaluations. NIntegrate obtained \
|
---|
1880 | \[NoBreak]\\!\\(\\*FormBox[\\\"16.66201077391391`\\\", TraditionalForm]\\)\
|
---|
1881 | \[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.000022383172924215294`\\\", \
|
---|
1882 | TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
|
---|
1883 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
1884 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
|
---|
1885 | \\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
1886 | CellChangeTimes->{3.6926010228788767`*^9}],
|
---|
1887 |
|
---|
1888 | Cell[BoxData[
|
---|
1889 | FormBox["16.66201077391391`", TraditionalForm]], "Output",
|
---|
1890 | CellChangeTimes->{3.692599984614505*^9, 3.692601022882782*^9}]
|
---|
1891 | }, Open ]],
|
---|
1892 |
|
---|
1893 | Cell[CellGroupData[{
|
---|
1894 |
|
---|
1895 | Cell["asNLO[100,5]", "Input"],
|
---|
1896 |
|
---|
1897 | Cell[BoxData[
|
---|
1898 | FormBox["0.11636176382460801`", TraditionalForm]], "Output",
|
---|
1899 | CellChangeTimes->{3.69259998466387*^9, 3.692601022979712*^9}]
|
---|
1900 | }, Open ]]
|
---|
1901 | }, Open ]],
|
---|
1902 |
|
---|
1903 | Cell[CellGroupData[{
|
---|
1904 |
|
---|
1905 | Cell["Do a mass-scan for a couple of points and plot LO vs NLO", "Subsection",
|
---|
1906 | CellChangeTimes->{{3.692600821201602*^9, 3.692600848006814*^9}}],
|
---|
1907 |
|
---|
1908 | Cell[CellGroupData[{
|
---|
1909 |
|
---|
1910 | Cell[BoxData[
|
---|
1911 | RowBox[{
|
---|
1912 | RowBox[{"RealList", " ", "=", " ",
|
---|
1913 | RowBox[{"Table", "[",
|
---|
1914 | RowBox[{
|
---|
1915 | RowBox[{"{",
|
---|
1916 | RowBox[{"i", ",",
|
---|
1917 | RowBox[{"NIntegrate", "[",
|
---|
1918 | RowBox[{
|
---|
1919 | RowBox[{"dsigmaR", "[",
|
---|
1920 | RowBox[{"xvar", ",", " ", "yvar", ",",
|
---|
1921 | RowBox[{"i", "*", "1."}], ",", "14000.", ",",
|
---|
1922 | RowBox[{"i", "*", "1."}], ",",
|
---|
1923 | RowBox[{"i", "*", "1."}]}], "]"}], ",",
|
---|
1924 | RowBox[{"{",
|
---|
1925 | RowBox[{"xvar", ",", "eps", ",",
|
---|
1926 | RowBox[{"1", "-", "eps"}]}], "}"}], ",",
|
---|
1927 | RowBox[{"{",
|
---|
1928 | RowBox[{"yvar", ",", "eps", ",",
|
---|
1929 | RowBox[{"1", "-", "eps"}]}], "}"}], ",",
|
---|
1930 | RowBox[{"Compiled", "->", "False"}], ",",
|
---|
1931 | RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}], "}"}], ",",
|
---|
1932 | RowBox[{"{",
|
---|
1933 | RowBox[{"i", ",", "20", ",", "600", ",", "10"}], "}"}]}], "]"}]}],
|
---|
1934 | ";"}]], "Input",
|
---|
1935 | CellChangeTimes->{{3.6926002896875057`*^9, 3.692600331110671*^9},
|
---|
1936 | 3.692600365642234*^9, 3.692600613795476*^9}],
|
---|
1937 |
|
---|
1938 | Cell[BoxData[
|
---|
1939 | FormBox[
|
---|
1940 | RowBox[{
|
---|
1941 | StyleBox[
|
---|
1942 | RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
|
---|
1943 | RowBox[{
|
---|
1944 | ":", " "}], "\<\"The integral failed to converge after \
|
---|
1945 | \[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
|
---|
1946 | integrand evaluations. NIntegrate obtained \
|
---|
1947 | \[NoBreak]\\!\\(\\*FormBox[\\\"249.53858371108677`\\\", TraditionalForm]\\)\
|
---|
1948 | \[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.00046671005854989264`\\\", \
|
---|
1949 | TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
|
---|
1950 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
1951 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
|
---|
1952 | \\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
1953 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
1954 | 3.692601026809997*^9}],
|
---|
1955 |
|
---|
1956 | Cell[BoxData[
|
---|
1957 | FormBox[
|
---|
1958 | RowBox[{
|
---|
1959 | StyleBox[
|
---|
1960 | RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
|
---|
1961 | RowBox[{
|
---|
1962 | ":", " "}], "\<\"The integral failed to converge after \
|
---|
1963 | \[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
|
---|
1964 | integrand evaluations. NIntegrate obtained \
|
---|
1965 | \[NoBreak]\\!\\(\\*FormBox[\\\"136.30122409849506`\\\", TraditionalForm]\\)\
|
---|
1966 | \[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.00021920270660652564`\\\", \
|
---|
1967 | TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
|
---|
1968 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
1969 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
|
---|
1970 | \\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
1971 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
1972 | 3.692601030482253*^9}],
|
---|
1973 |
|
---|
1974 | Cell[BoxData[
|
---|
1975 | FormBox[
|
---|
1976 | RowBox[{
|
---|
1977 | StyleBox[
|
---|
1978 | RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
|
---|
1979 | RowBox[{
|
---|
1980 | ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
|
---|
1981 | of the following: singularity, value of the integration is 0, highly \
|
---|
1982 | oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
|
---|
1983 | \[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
1984 | ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
|
---|
1985 | \\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
1986 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
1987 | 3.692601032828919*^9}],
|
---|
1988 |
|
---|
1989 | Cell[BoxData[
|
---|
1990 | FormBox[
|
---|
1991 | RowBox[{
|
---|
1992 | StyleBox[
|
---|
1993 | RowBox[{"NIntegrate", "::", "maxp"}], "MessageName"],
|
---|
1994 | RowBox[{
|
---|
1995 | ":", " "}], "\<\"The integral failed to converge after \
|
---|
1996 | \[NoBreak]\\!\\(\\*FormBox[\\\"10013\\\", TraditionalForm]\\)\[NoBreak] \
|
---|
1997 | integrand evaluations. NIntegrate obtained \
|
---|
1998 | \[NoBreak]\\!\\(\\*FormBox[\\\"86.01964094871275`\\\", TraditionalForm]\\)\
|
---|
1999 | \[NoBreak] and \[NoBreak]\\!\\(\\*FormBox[\\\"0.0004496982081794881`\\\", \
|
---|
2000 | TraditionalForm]\\)\[NoBreak] for the integral and error estimates. \
|
---|
2001 | \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
|
---|
2002 | ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
|
---|
2003 | \\\"NIntegrate::maxp\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
2004 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
2005 | 3.69260103462813*^9}],
|
---|
2006 |
|
---|
2007 | Cell[BoxData[
|
---|
2008 | FormBox[
|
---|
2009 | RowBox[{
|
---|
2010 | StyleBox[
|
---|
2011 | RowBox[{"General", "::", "stop"}], "MessageName"],
|
---|
2012 | RowBox[{
|
---|
2013 | ":", " "}], "\<\"Further output of \
|
---|
2014 | \[NoBreak]\\!\\(\\*FormBox[StyleBox[RowBox[{\\\"NIntegrate\\\", \\\"::\\\", \
|
---|
2015 | \\\"maxp\\\"}], \\\"MessageName\\\"], TraditionalForm]\\)\[NoBreak] will be \
|
---|
2016 | suppressed during this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\
|
---|
2017 | \", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
2018 | ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \
|
---|
2019 | \\\"General::stop\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
2020 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
2021 | 3.6926010346650553`*^9}],
|
---|
2022 |
|
---|
2023 | Cell[BoxData[
|
---|
2024 | FormBox[
|
---|
2025 | RowBox[{
|
---|
2026 | StyleBox[
|
---|
2027 | RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
|
---|
2028 | RowBox[{
|
---|
2029 | ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
|
---|
2030 | of the following: singularity, value of the integration is 0, highly \
|
---|
2031 | oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
|
---|
2032 | \[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
2033 | ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
|
---|
2034 | \\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
2035 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
2036 | 3.69260104075222*^9}],
|
---|
2037 |
|
---|
2038 | Cell[BoxData[
|
---|
2039 | FormBox[
|
---|
2040 | RowBox[{
|
---|
2041 | StyleBox[
|
---|
2042 | RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
|
---|
2043 | RowBox[{
|
---|
2044 | ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
|
---|
2045 | of the following: singularity, value of the integration is 0, highly \
|
---|
2046 | oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
|
---|
2047 | \[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
2048 | ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
|
---|
2049 | \\\"NIntegrate::slwcon\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
2050 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
2051 | 3.692601137065007*^9}],
|
---|
2052 |
|
---|
2053 | Cell[BoxData[
|
---|
2054 | FormBox[
|
---|
2055 | RowBox[{
|
---|
2056 | StyleBox[
|
---|
2057 | RowBox[{"General", "::", "stop"}], "MessageName"],
|
---|
2058 | RowBox[{
|
---|
2059 | ":", " "}], "\<\"Further output of \
|
---|
2060 | \[NoBreak]\\!\\(\\*FormBox[StyleBox[RowBox[{\\\"NIntegrate\\\", \\\"::\\\", \
|
---|
2061 | \\\"slwcon\\\"}], \\\"MessageName\\\"], TraditionalForm]\\)\[NoBreak] will be \
|
---|
2062 | suppressed during this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\
|
---|
2063 | \", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
|
---|
2064 | ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \
|
---|
2065 | \\\"General::stop\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
|
---|
2066 | CellChangeTimes->{{3.692600349011602*^9, 3.69260036971212*^9},
|
---|
2067 | 3.6926011371117573`*^9}]
|
---|
2068 | }, Open ]],
|
---|
2069 |
|
---|
2070 | Cell[BoxData[
|
---|
2071 | RowBox[{
|
---|
2072 | RowBox[{"BVirtList", " ", "=", " ",
|
---|
2073 | RowBox[{"Table", "[",
|
---|
2074 | RowBox[{
|
---|
2075 | RowBox[{"{",
|
---|
2076 | RowBox[{"i", ",",
|
---|
2077 | RowBox[{"NIntegrate", "[",
|
---|
2078 | RowBox[{
|
---|
2079 | RowBox[{"dsigmaBV", "[",
|
---|
2080 | RowBox[{"xvar", ",", " ",
|
---|
2081 | RowBox[{"i", "*", "1."}], ",", "14000.", ",",
|
---|
2082 | RowBox[{"i", "*", "1."}], ",",
|
---|
2083 | RowBox[{"i", "*", "1."}]}], "]"}], ",",
|
---|
2084 | RowBox[{"{",
|
---|
2085 | RowBox[{"xvar", ",", "eps", ",",
|
---|
2086 | RowBox[{"1", "-", "eps"}]}], "}"}], ",",
|
---|
2087 | RowBox[{"Compiled", "->", "False"}], ",",
|
---|
2088 | RowBox[{"MaxPoints", "->", "10000"}]}], "]"}]}], "}"}], ",",
|
---|
2089 | RowBox[{"{",
|
---|
2090 | RowBox[{"i", ",", "20", ",", "600", ",", "10"}], "}"}]}], "]"}]}],
|
---|
2091 | ";"}]], "Input",
|
---|
2092 | CellChangeTimes->{{3.692600478345191*^9, 3.692600492712871*^9}, {
|
---|
2093 | 3.692600599484334*^9, 3.6926006178505993`*^9}, {3.6926007853172293`*^9,
|
---|
2094 | 3.692600799250576*^9}}],
|
---|
2095 |
|
---|
2096 | Cell[BoxData[
|
---|
2097 | RowBox[{
|
---|
2098 | RowBox[{"NLOList", "=",
|
---|
2099 | RowBox[{"Table", "[",
|
---|
2100 | RowBox[{
|
---|
2101 | RowBox[{"{",
|
---|
2102 | RowBox[{
|
---|
2103 | RowBox[{
|
---|
2104 | RowBox[{"RealList", "[",
|
---|
2105 | RowBox[{"[", "i", "]"}], "]"}], "[",
|
---|
2106 | RowBox[{"[", "1", "]"}], "]"}], ",",
|
---|
2107 | RowBox[{
|
---|
2108 | RowBox[{
|
---|
2109 | RowBox[{"RealList", "[",
|
---|
2110 | RowBox[{"[", "i", "]"}], "]"}], "[",
|
---|
2111 | RowBox[{"[", "2", "]"}], "]"}], "+",
|
---|
2112 | RowBox[{
|
---|
2113 | RowBox[{"BVirtList", "[",
|
---|
2114 | RowBox[{"[", "i", "]"}], "]"}], "[",
|
---|
2115 | RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",",
|
---|
2116 | RowBox[{"{",
|
---|
2117 | RowBox[{"i", ",", "1", ",",
|
---|
2118 | RowBox[{"Length", "[", "RealList", "]"}]}], "}"}]}], "]"}]}],
|
---|
2119 | ";"}]], "Input",
|
---|
2120 | CellChangeTimes->{{3.692600623114683*^9, 3.692600630569345*^9}, {
|
---|
2121 | 3.6926006758401203`*^9, 3.692600712764638*^9}, {3.692600749786141*^9,
|
---|
2122 | 3.692600774211691*^9}, 3.692600858174468*^9}],
|
---|
2123 |
|
---|
2124 | Cell[CellGroupData[{
|
---|
2125 |
|
---|
2126 | Cell[BoxData[
|
---|
2127 | RowBox[{"ListLogPlot", "[",
|
---|
2128 | RowBox[{
|
---|
2129 | RowBox[{"{",
|
---|
2130 | RowBox[{"resEFT", ",", " ", "NLOList"}], "}"}], ",", " ",
|
---|
2131 | RowBox[{"Joined", "\[Rule]", "True"}], ",", " ",
|
---|
2132 | RowBox[{"PlotLabels", "\[Rule]",
|
---|
2133 | RowBox[{"{",
|
---|
2134 | RowBox[{
|
---|
2135 | RowBox[{"EFT", " ", "LO"}], ",", " ",
|
---|
2136 | RowBox[{"EFT", " ", "NLO"}]}], "}"}]}]}], "]"}]], "Input",
|
---|
2137 | CellChangeTimes->{{3.6926008857897587`*^9, 3.692600898076047*^9}}],
|
---|
2138 |
|
---|
2139 | Cell[BoxData[
|
---|
2140 | FormBox[
|
---|
2141 | GraphicsBox[{{}, {{}, {},
|
---|
2142 | {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
|
---|
2143 | AbsoluteThickness[1.6], LineBox[CompressedData["
|
---|
2144 | 1:eJwtz3lIk3EYwPFpqamYKWaiKVoNypT2Ryrl9UwSmYo2FaXD2GRz6srpUucx
|
---|
2145 | d5natbL+sBlikivBJRGbZYJNuqaRMFJnojkvbGZJeLQ8mBm/54WXlw/P7/l9
|
---|
2146 | eYNyBGlcewqFErnz/v+S5yRs9iZ/WVT5AHEMVIdOKvPp3ugzYGx6NG8WeqEZ
|
---|
2147 | 0Nni2HXU6olOgRLpIa8YrQexjAkK33ZB24N9OM8A4xzr1Okwd5xnQsSTpbB4
|
---|
2148 | vhvOz4FpwviX1u+K8wsQGn1zLSreBeeXgKUfsaZ820MMLDgobzAIbzvheTb4
|
---|
2149 | vWzKqk91JO7LAW1sXabTEQfc58CGN80y47Qb97kQSRUrOOv2uJ8LPUPp0f5W
|
---|
2150 | O9znQQ4nBEzbFNzPh+xRlaHWEw0FcC9pVay8aIsl+3xgKwuK1eot4r7LUJCX
|
---|
2151 | +nR1c4OYUgguz7zpyex1YhAAr9bZ0DxkRRdBkNU2uMb8QzxVBAFlnWrZ+Cre
|
---|
2152 | XwyKurZesWCFOFAI9k5NXVFuy9gTwuf2JNNh3W9i1lX41Jq+lWBYwn4J0Nyz
|
---|
2153 | dKLwn8StJcBspn/8oVvAfincvy6iDtC/Y78U0iUTyuSJOeyXwfsxd9Wbmhns
|
---|
2154 | i8DRp3KvKGIK+yLwU/St6H6NY78cRqTU7heKUexXAM92ljoWMoT9CjBZpgu5
|
---|
2155 | pkHsV0J2Vba5s+ID9itB4/88+FVND/arIHzSuJ/fpca+GK5tP5SUBDfqSV8M
|
---|
2156 | jruWGx1OdBGzqqE5I6rtTuJbYooEAjQBMx3mAeJWCWjFnjabxkgMUmBY0npT
|
---|
2157 | zg8TT0khMPfr44TNUZzLIJETx+PeHSdukEH5jTh3/wNmPC+DllC+tpAxTUyT
|
---|
2158 | Q9jx/u56u1limRz0zFt5rro5YqMcXlOveBxjzxMHKoCpWutwc7YQF+3Yd2xr
|
---|
2159 | VrOA/6cA43rQu2HGov4fQF8saQ==
|
---|
2160 | "]]},
|
---|
2161 | {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668],
|
---|
2162 | AbsoluteThickness[1.6], LineBox[CompressedData["
|
---|
2163 | 1:eJwtzn8s1HEcx/Hr/LjkR8dpYbudhiV/cNO1kuLdZDcmyY6Rau7kQs6d8+M4
|
---|
2164 | zp1LTGuYTaVJZKOSdZqKortlfkaR22qzIceJmB9XiTSVz/u73b577P197XkH
|
---|
2165 | BOLIRCqFQvH/9/v/Jg8HpK657z/edwbiALjtvlA2n70ffRq8Phif8wb3oUOg
|
---|
2166 | eJo9GpfsiA4HgV15hMKfQaw6B0nCkoQ6Xwe880CcXtw3HWyP92gA2/ZvoWI6
|
---|
2167 | 3mPBjm1knYrai/c4SGneTqqat8X7JRjoaJ0x3LIhhng40hq3XBprjd/zIcLE
|
---|
2168 | L2/03kOsE0CVRdu9OYYV7i+DsaEhUUjbjftEqK5xbi6n0XAvhBINv5/OsMT9
|
---|
2169 | FZg93tI06GmB+2QIdzvT1cc1x30KsJpkARyxGe6vQnhMtWdMLRX3qSCjlt2s
|
---|
2170 | 1O/CfRqMMuuHo+zRIIbJo3X17jwKWgLTLu/8WX7bgTuekoD+jZtYqP9DrEoH
|
---|
2171 | pxsTJ1Nzt4hdpdBrcuouP/ibWCcF79gpfuDEBnF8BnjI7U+s1/wipmRCkT6J
|
---|
2172 | HpiwTlyXCY8NaT6P2D+JIQtS73IOjZr/wH4WmDS0F+cnTdjPBmW/1GpVu4Z9
|
---|
2173 | GShaKoeCG1exLwNt/LqGXrmC/RxI04T5MC2XsZ8LKz2Hr1PXFrGfC16fH9y5
|
---|
2174 | OLeAfTl06iIlb2e/Yl8OXNHZpKFFI/bzgBtiGcTcmsF+PkwNO4xfYBiwnw+l
|
---|
2175 | 9E7FMd8v2FdA9DWjeY9mAvsFkNeh7nOzHsd+AdQuhTw0y/iEfSVkLIu8DXNj
|
---|
2176 | 2FeCY21oLzd5BO8qsAnjt+UtDRBXqCC9uHrzKasbv1eBVQUz6NVIOzG7EOSi
|
---|
2177 | BP6mSxP+/0LQVYkmuzpztDseKQTN6nyR5cYTYlc1jPnpxzeCXxNL1OAhUK+9
|
---|
2178 | /N5NrFMDQ/mMZ80Z1P4FZ18hFw==
|
---|
2179 | "]]}}, {{{},
|
---|
2180 | {GrayLevel[0.4], AbsoluteThickness[0.5],
|
---|
2181 | StyleBox[{
|
---|
2182 | LineBox[{
|
---|
2183 | Scaled[{0.02, 0}, {600., -0.8527625857530499}],
|
---|
2184 | Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.8527625857530499}]],
|
---|
2185 | Offset[{7, 0}, Scaled[{0.02, 0}, {600., -1.0023245080873902`}]],
|
---|
2186 | Offset[{12, 0}, Scaled[{0.02, 0}, {600., -1.0023245080873902`}]]}],
|
---|
2187 | LineBox[{
|
---|
2188 | Scaled[{0.02, 0}, {600., -0.20471326480491622`}],
|
---|
2189 | Offset[{3, 0}, Scaled[{0.02, 0}, {600., -0.20471326480491622`}]],
|
---|
2190 | Offset[{7, 0}, Scaled[{0.02, 0}, {600., -0.05515117037456525}]],
|
---|
2191 | Offset[{12, 0}, Scaled[{0.02, 0}, {600., -0.05515117037456525}]]}]},
|
---|
2192 | FontColor->GrayLevel[0.4]]}, {InsetBox[
|
---|
2193 | RowBox[{"EFT", " ", "LO"}], Offset[{15, 0},
|
---|
2194 | Scaled[{0.02, 0}, {600., -1.0023245080873902`}]],
|
---|
2195 | ImageScaled[{0, 0.5}]], InsetBox[
|
---|
2196 | RowBox[{"EFT", " ", "NLO"}], Offset[{15, 0},
|
---|
2197 | Scaled[{0.02, 0}, {600., -0.05515117037456525}]],
|
---|
2198 | ImageScaled[{0, 0.5}]]},
|
---|
2199 | {GrayLevel[0.4], AbsoluteThickness[0.5],
|
---|
2200 | StyleBox[{{}, {}},
|
---|
2201 | FontColor->GrayLevel[0.4]]}}, {}}},
|
---|
2202 | AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
|
---|
2203 | Axes->{True, True},
|
---|
2204 | AxesLabel->{None, None},
|
---|
2205 | AxesOrigin->{0, -1.3796138896023795`},
|
---|
2206 | DisplayFunction->Identity,
|
---|
2207 | Frame->{{False, False}, {False, False}},
|
---|
2208 | FrameLabel->{{None, None}, {None, None}},
|
---|
2209 | FrameTicks->{{{{-0.6931471805599453,
|
---|
2210 | FormBox[
|
---|
2211 | TagBox[
|
---|
2212 | InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True],
|
---|
2213 | NumberForm[#, {
|
---|
2214 | DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
|
---|
2215 | AbsoluteThickness[0.1]}}, {0.,
|
---|
2216 | FormBox["1", TraditionalForm], {0.01, 0.}, {
|
---|
2217 | AbsoluteThickness[0.1]}}, {1.6094379124341003`,
|
---|
2218 | FormBox["5", TraditionalForm], {0.01, 0.}, {
|
---|
2219 | AbsoluteThickness[0.1]}}, {2.302585092994046,
|
---|
2220 | FormBox["10", TraditionalForm], {0.01, 0.}, {
|
---|
2221 | AbsoluteThickness[0.1]}}, {3.912023005428146,
|
---|
2222 | FormBox["50", TraditionalForm], {0.01, 0.}, {
|
---|
2223 | AbsoluteThickness[0.1]}}, {4.605170185988092,
|
---|
2224 | FormBox["100", TraditionalForm], {0.01, 0.}, {
|
---|
2225 | AbsoluteThickness[0.1]}}, {6.214608098422191,
|
---|
2226 | FormBox["500", TraditionalForm], {0.01, 0.}, {
|
---|
2227 | AbsoluteThickness[0.1]}}, {-0.5108256237659907,
|
---|
2228 | FormBox[
|
---|
2229 | InterpretationBox[
|
---|
2230 | StyleBox[
|
---|
2231 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2232 | "CacheGraphics" -> False],
|
---|
2233 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2234 | AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
|
---|
2235 | FormBox[
|
---|
2236 | InterpretationBox[
|
---|
2237 | StyleBox[
|
---|
2238 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2239 | "CacheGraphics" -> False],
|
---|
2240 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2241 | AbsoluteThickness[0.1]}}, {-0.2231435513142097,
|
---|
2242 | FormBox[
|
---|
2243 | InterpretationBox[
|
---|
2244 | StyleBox[
|
---|
2245 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2246 | "CacheGraphics" -> False],
|
---|
2247 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2248 | AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
|
---|
2249 | FormBox[
|
---|
2250 | InterpretationBox[
|
---|
2251 | StyleBox[
|
---|
2252 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2253 | "CacheGraphics" -> False],
|
---|
2254 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2255 | AbsoluteThickness[0.1]}}, {0.6931471805599453,
|
---|
2256 | FormBox[
|
---|
2257 | InterpretationBox[
|
---|
2258 | StyleBox[
|
---|
2259 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2260 | "CacheGraphics" -> False],
|
---|
2261 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2262 | AbsoluteThickness[0.1]}}, {1.0986122886681098`,
|
---|
2263 | FormBox[
|
---|
2264 | InterpretationBox[
|
---|
2265 | StyleBox[
|
---|
2266 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2267 | "CacheGraphics" -> False],
|
---|
2268 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2269 | AbsoluteThickness[0.1]}}, {1.3862943611198906`,
|
---|
2270 | FormBox[
|
---|
2271 | InterpretationBox[
|
---|
2272 | StyleBox[
|
---|
2273 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2274 | "CacheGraphics" -> False],
|
---|
2275 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2276 | AbsoluteThickness[0.1]}}, {1.791759469228055,
|
---|
2277 | FormBox[
|
---|
2278 | InterpretationBox[
|
---|
2279 | StyleBox[
|
---|
2280 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2281 | "CacheGraphics" -> False],
|
---|
2282 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2283 | AbsoluteThickness[0.1]}}, {1.9459101490553132`,
|
---|
2284 | FormBox[
|
---|
2285 | InterpretationBox[
|
---|
2286 | StyleBox[
|
---|
2287 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2288 | "CacheGraphics" -> False],
|
---|
2289 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2290 | AbsoluteThickness[0.1]}}, {2.0794415416798357`,
|
---|
2291 | FormBox[
|
---|
2292 | InterpretationBox[
|
---|
2293 | StyleBox[
|
---|
2294 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2295 | "CacheGraphics" -> False],
|
---|
2296 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2297 | AbsoluteThickness[0.1]}}, {2.1972245773362196`,
|
---|
2298 | FormBox[
|
---|
2299 | InterpretationBox[
|
---|
2300 | StyleBox[
|
---|
2301 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2302 | "CacheGraphics" -> False],
|
---|
2303 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2304 | AbsoluteThickness[0.1]}}, {2.995732273553991,
|
---|
2305 | FormBox[
|
---|
2306 | InterpretationBox[
|
---|
2307 | StyleBox[
|
---|
2308 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2309 | "CacheGraphics" -> False],
|
---|
2310 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2311 | AbsoluteThickness[0.1]}}, {3.4011973816621555`,
|
---|
2312 | FormBox[
|
---|
2313 | InterpretationBox[
|
---|
2314 | StyleBox[
|
---|
2315 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2316 | "CacheGraphics" -> False],
|
---|
2317 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2318 | AbsoluteThickness[0.1]}}, {3.6888794541139363`,
|
---|
2319 | FormBox[
|
---|
2320 | InterpretationBox[
|
---|
2321 | StyleBox[
|
---|
2322 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2323 | "CacheGraphics" -> False],
|
---|
2324 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2325 | AbsoluteThickness[0.1]}}, {4.0943445622221,
|
---|
2326 | FormBox[
|
---|
2327 | InterpretationBox[
|
---|
2328 | StyleBox[
|
---|
2329 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2330 | "CacheGraphics" -> False],
|
---|
2331 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2332 | AbsoluteThickness[0.1]}}, {4.248495242049359,
|
---|
2333 | FormBox[
|
---|
2334 | InterpretationBox[
|
---|
2335 | StyleBox[
|
---|
2336 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2337 | "CacheGraphics" -> False],
|
---|
2338 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2339 | AbsoluteThickness[0.1]}}, {4.382026634673881,
|
---|
2340 | FormBox[
|
---|
2341 | InterpretationBox[
|
---|
2342 | StyleBox[
|
---|
2343 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2344 | "CacheGraphics" -> False],
|
---|
2345 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2346 | AbsoluteThickness[0.1]}}, {4.499809670330265,
|
---|
2347 | FormBox[
|
---|
2348 | InterpretationBox[
|
---|
2349 | StyleBox[
|
---|
2350 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2351 | "CacheGraphics" -> False],
|
---|
2352 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2353 | AbsoluteThickness[0.1]}}, {5.298317366548036,
|
---|
2354 | FormBox[
|
---|
2355 | InterpretationBox[
|
---|
2356 | StyleBox[
|
---|
2357 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2358 | "CacheGraphics" -> False],
|
---|
2359 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2360 | AbsoluteThickness[0.1]}}, {5.703782474656201,
|
---|
2361 | FormBox[
|
---|
2362 | InterpretationBox[
|
---|
2363 | StyleBox[
|
---|
2364 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2365 | "CacheGraphics" -> False],
|
---|
2366 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2367 | AbsoluteThickness[0.1]}}, {5.991464547107982,
|
---|
2368 | FormBox[
|
---|
2369 | InterpretationBox[
|
---|
2370 | StyleBox[
|
---|
2371 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2372 | "CacheGraphics" -> False],
|
---|
2373 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2374 | AbsoluteThickness[0.1]}}, {6.396929655216146,
|
---|
2375 | FormBox[
|
---|
2376 | InterpretationBox[
|
---|
2377 | StyleBox[
|
---|
2378 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2379 | "CacheGraphics" -> False],
|
---|
2380 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2381 | AbsoluteThickness[0.1]}}, {6.551080335043404,
|
---|
2382 | FormBox[
|
---|
2383 | InterpretationBox[
|
---|
2384 | StyleBox[
|
---|
2385 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2386 | "CacheGraphics" -> False],
|
---|
2387 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2388 | AbsoluteThickness[0.1]}}, {6.684611727667927,
|
---|
2389 | FormBox[
|
---|
2390 | InterpretationBox[
|
---|
2391 | StyleBox[
|
---|
2392 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2393 | "CacheGraphics" -> False],
|
---|
2394 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2395 | AbsoluteThickness[0.1]}}, {6.802394763324311,
|
---|
2396 | FormBox[
|
---|
2397 | InterpretationBox[
|
---|
2398 | StyleBox[
|
---|
2399 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2400 | "CacheGraphics" -> False],
|
---|
2401 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2402 | AbsoluteThickness[0.1]}}, {6.907755278982137,
|
---|
2403 | FormBox[
|
---|
2404 | InterpretationBox[
|
---|
2405 | StyleBox[
|
---|
2406 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2407 | "CacheGraphics" -> False],
|
---|
2408 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2409 | AbsoluteThickness[0.1]}}, {7.003065458786462,
|
---|
2410 | FormBox[
|
---|
2411 | InterpretationBox[
|
---|
2412 | StyleBox[
|
---|
2413 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2414 | "CacheGraphics" -> False],
|
---|
2415 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2416 | AbsoluteThickness[0.1]}}, {7.090076835776092,
|
---|
2417 | FormBox[
|
---|
2418 | InterpretationBox[
|
---|
2419 | StyleBox[
|
---|
2420 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2421 | "CacheGraphics" -> False],
|
---|
2422 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2423 | AbsoluteThickness[0.1]}}, {7.170119543449628,
|
---|
2424 | FormBox[
|
---|
2425 | InterpretationBox[
|
---|
2426 | StyleBox[
|
---|
2427 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2428 | "CacheGraphics" -> False],
|
---|
2429 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2430 | AbsoluteThickness[0.1]}}, {7.24422751560335,
|
---|
2431 | FormBox[
|
---|
2432 | InterpretationBox[
|
---|
2433 | StyleBox[
|
---|
2434 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2435 | "CacheGraphics" -> False],
|
---|
2436 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2437 | AbsoluteThickness[0.1]}}, {7.313220387090301,
|
---|
2438 | FormBox[
|
---|
2439 | InterpretationBox[
|
---|
2440 | StyleBox[
|
---|
2441 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2442 | "CacheGraphics" -> False],
|
---|
2443 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2444 | AbsoluteThickness[0.1]}}, {7.3777589082278725`,
|
---|
2445 | FormBox[
|
---|
2446 | InterpretationBox[
|
---|
2447 | StyleBox[
|
---|
2448 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2449 | "CacheGraphics" -> False],
|
---|
2450 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2451 | AbsoluteThickness[0.1]}}}, Automatic}, {Automatic, Automatic}},
|
---|
2452 | GridLines->{None, None},
|
---|
2453 | GridLinesStyle->Directive[
|
---|
2454 | GrayLevel[0.5, 0.4]],
|
---|
2455 | ImagePadding->{{All, 67.2}, {All, All}},
|
---|
2456 | Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
|
---|
2457 | (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
|
---|
2458 | Part[#, 1]],
|
---|
2459 | (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
|
---|
2460 | Part[#, 2]]}& ), "CopiedValueFunction" -> ({
|
---|
2461 | (Part[{{Identity, Identity}, {Log, Exp}}, 1, 2][#]& )[
|
---|
2462 | Part[#, 1]],
|
---|
2463 | (Part[{{Identity, Identity}, {Log, Exp}}, 2, 2][#]& )[
|
---|
2464 | Part[#, 2]]}& )}},
|
---|
2465 | PlotRange->{{0, 600.}, {-1.2560314849957466`, 6.406077600615491}},
|
---|
2466 | PlotRangeClipping->False,
|
---|
2467 | PlotRangePadding->{{
|
---|
2468 | Scaled[0.02],
|
---|
2469 | Scaled[0.02]}, {
|
---|
2470 | Scaled[0.02],
|
---|
2471 | Scaled[0.05]}},
|
---|
2472 | Ticks->{Automatic, {{-0.6931471805599453,
|
---|
2473 | FormBox[
|
---|
2474 | TagBox[
|
---|
2475 | InterpretationBox["\"0.5\"", 0.5, AutoDelete -> True], NumberForm[#, {
|
---|
2476 | DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}, {
|
---|
2477 | AbsoluteThickness[0.1]}}, {0.,
|
---|
2478 | FormBox["1", TraditionalForm], {0.01, 0.}, {
|
---|
2479 | AbsoluteThickness[0.1]}}, {1.6094379124341003`,
|
---|
2480 | FormBox["5", TraditionalForm], {0.01, 0.}, {
|
---|
2481 | AbsoluteThickness[0.1]}}, {2.302585092994046,
|
---|
2482 | FormBox["10", TraditionalForm], {0.01, 0.}, {
|
---|
2483 | AbsoluteThickness[0.1]}}, {3.912023005428146,
|
---|
2484 | FormBox["50", TraditionalForm], {0.01, 0.}, {
|
---|
2485 | AbsoluteThickness[0.1]}}, {4.605170185988092,
|
---|
2486 | FormBox["100", TraditionalForm], {0.01, 0.}, {
|
---|
2487 | AbsoluteThickness[0.1]}}, {6.214608098422191,
|
---|
2488 | FormBox["500", TraditionalForm], {0.01, 0.}, {
|
---|
2489 | AbsoluteThickness[0.1]}}, {-0.5108256237659907,
|
---|
2490 | FormBox[
|
---|
2491 | InterpretationBox[
|
---|
2492 | StyleBox[
|
---|
2493 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2494 | "CacheGraphics" -> False],
|
---|
2495 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2496 | AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
|
---|
2497 | FormBox[
|
---|
2498 | InterpretationBox[
|
---|
2499 | StyleBox[
|
---|
2500 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2501 | "CacheGraphics" -> False],
|
---|
2502 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2503 | AbsoluteThickness[0.1]}}, {-0.2231435513142097,
|
---|
2504 | FormBox[
|
---|
2505 | InterpretationBox[
|
---|
2506 | StyleBox[
|
---|
2507 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2508 | "CacheGraphics" -> False],
|
---|
2509 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2510 | AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
|
---|
2511 | FormBox[
|
---|
2512 | InterpretationBox[
|
---|
2513 | StyleBox[
|
---|
2514 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2515 | "CacheGraphics" -> False],
|
---|
2516 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2517 | AbsoluteThickness[0.1]}}, {0.6931471805599453,
|
---|
2518 | FormBox[
|
---|
2519 | InterpretationBox[
|
---|
2520 | StyleBox[
|
---|
2521 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2522 | "CacheGraphics" -> False],
|
---|
2523 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2524 | AbsoluteThickness[0.1]}}, {1.0986122886681098`,
|
---|
2525 | FormBox[
|
---|
2526 | InterpretationBox[
|
---|
2527 | StyleBox[
|
---|
2528 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2529 | "CacheGraphics" -> False],
|
---|
2530 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2531 | AbsoluteThickness[0.1]}}, {1.3862943611198906`,
|
---|
2532 | FormBox[
|
---|
2533 | InterpretationBox[
|
---|
2534 | StyleBox[
|
---|
2535 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2536 | "CacheGraphics" -> False],
|
---|
2537 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2538 | AbsoluteThickness[0.1]}}, {1.791759469228055,
|
---|
2539 | FormBox[
|
---|
2540 | InterpretationBox[
|
---|
2541 | StyleBox[
|
---|
2542 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2543 | "CacheGraphics" -> False],
|
---|
2544 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2545 | AbsoluteThickness[0.1]}}, {1.9459101490553132`,
|
---|
2546 | FormBox[
|
---|
2547 | InterpretationBox[
|
---|
2548 | StyleBox[
|
---|
2549 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2550 | "CacheGraphics" -> False],
|
---|
2551 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2552 | AbsoluteThickness[0.1]}}, {2.0794415416798357`,
|
---|
2553 | FormBox[
|
---|
2554 | InterpretationBox[
|
---|
2555 | StyleBox[
|
---|
2556 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2557 | "CacheGraphics" -> False],
|
---|
2558 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2559 | AbsoluteThickness[0.1]}}, {2.1972245773362196`,
|
---|
2560 | FormBox[
|
---|
2561 | InterpretationBox[
|
---|
2562 | StyleBox[
|
---|
2563 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2564 | "CacheGraphics" -> False],
|
---|
2565 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2566 | AbsoluteThickness[0.1]}}, {2.995732273553991,
|
---|
2567 | FormBox[
|
---|
2568 | InterpretationBox[
|
---|
2569 | StyleBox[
|
---|
2570 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2571 | "CacheGraphics" -> False],
|
---|
2572 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2573 | AbsoluteThickness[0.1]}}, {3.4011973816621555`,
|
---|
2574 | FormBox[
|
---|
2575 | InterpretationBox[
|
---|
2576 | StyleBox[
|
---|
2577 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2578 | "CacheGraphics" -> False],
|
---|
2579 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2580 | AbsoluteThickness[0.1]}}, {3.6888794541139363`,
|
---|
2581 | FormBox[
|
---|
2582 | InterpretationBox[
|
---|
2583 | StyleBox[
|
---|
2584 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2585 | "CacheGraphics" -> False],
|
---|
2586 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2587 | AbsoluteThickness[0.1]}}, {4.0943445622221,
|
---|
2588 | FormBox[
|
---|
2589 | InterpretationBox[
|
---|
2590 | StyleBox[
|
---|
2591 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2592 | "CacheGraphics" -> False],
|
---|
2593 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2594 | AbsoluteThickness[0.1]}}, {4.248495242049359,
|
---|
2595 | FormBox[
|
---|
2596 | InterpretationBox[
|
---|
2597 | StyleBox[
|
---|
2598 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2599 | "CacheGraphics" -> False],
|
---|
2600 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2601 | AbsoluteThickness[0.1]}}, {4.382026634673881,
|
---|
2602 | FormBox[
|
---|
2603 | InterpretationBox[
|
---|
2604 | StyleBox[
|
---|
2605 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2606 | "CacheGraphics" -> False],
|
---|
2607 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2608 | AbsoluteThickness[0.1]}}, {4.499809670330265,
|
---|
2609 | FormBox[
|
---|
2610 | InterpretationBox[
|
---|
2611 | StyleBox[
|
---|
2612 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2613 | "CacheGraphics" -> False],
|
---|
2614 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2615 | AbsoluteThickness[0.1]}}, {5.298317366548036,
|
---|
2616 | FormBox[
|
---|
2617 | InterpretationBox[
|
---|
2618 | StyleBox[
|
---|
2619 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2620 | "CacheGraphics" -> False],
|
---|
2621 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2622 | AbsoluteThickness[0.1]}}, {5.703782474656201,
|
---|
2623 | FormBox[
|
---|
2624 | InterpretationBox[
|
---|
2625 | StyleBox[
|
---|
2626 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2627 | "CacheGraphics" -> False],
|
---|
2628 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2629 | AbsoluteThickness[0.1]}}, {5.991464547107982,
|
---|
2630 | FormBox[
|
---|
2631 | InterpretationBox[
|
---|
2632 | StyleBox[
|
---|
2633 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2634 | "CacheGraphics" -> False],
|
---|
2635 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2636 | AbsoluteThickness[0.1]}}, {6.396929655216146,
|
---|
2637 | FormBox[
|
---|
2638 | InterpretationBox[
|
---|
2639 | StyleBox[
|
---|
2640 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2641 | "CacheGraphics" -> False],
|
---|
2642 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2643 | AbsoluteThickness[0.1]}}, {6.551080335043404,
|
---|
2644 | FormBox[
|
---|
2645 | InterpretationBox[
|
---|
2646 | StyleBox[
|
---|
2647 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2648 | "CacheGraphics" -> False],
|
---|
2649 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2650 | AbsoluteThickness[0.1]}}, {6.684611727667927,
|
---|
2651 | FormBox[
|
---|
2652 | InterpretationBox[
|
---|
2653 | StyleBox[
|
---|
2654 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2655 | "CacheGraphics" -> False],
|
---|
2656 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2657 | AbsoluteThickness[0.1]}}, {6.802394763324311,
|
---|
2658 | FormBox[
|
---|
2659 | InterpretationBox[
|
---|
2660 | StyleBox[
|
---|
2661 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2662 | "CacheGraphics" -> False],
|
---|
2663 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2664 | AbsoluteThickness[0.1]}}, {6.907755278982137,
|
---|
2665 | FormBox[
|
---|
2666 | InterpretationBox[
|
---|
2667 | StyleBox[
|
---|
2668 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2669 | "CacheGraphics" -> False],
|
---|
2670 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2671 | AbsoluteThickness[0.1]}}, {7.003065458786462,
|
---|
2672 | FormBox[
|
---|
2673 | InterpretationBox[
|
---|
2674 | StyleBox[
|
---|
2675 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2676 | "CacheGraphics" -> False],
|
---|
2677 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2678 | AbsoluteThickness[0.1]}}, {7.090076835776092,
|
---|
2679 | FormBox[
|
---|
2680 | InterpretationBox[
|
---|
2681 | StyleBox[
|
---|
2682 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2683 | "CacheGraphics" -> False],
|
---|
2684 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2685 | AbsoluteThickness[0.1]}}, {7.170119543449628,
|
---|
2686 | FormBox[
|
---|
2687 | InterpretationBox[
|
---|
2688 | StyleBox[
|
---|
2689 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2690 | "CacheGraphics" -> False],
|
---|
2691 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2692 | AbsoluteThickness[0.1]}}, {7.24422751560335,
|
---|
2693 | FormBox[
|
---|
2694 | InterpretationBox[
|
---|
2695 | StyleBox[
|
---|
2696 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2697 | "CacheGraphics" -> False],
|
---|
2698 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2699 | AbsoluteThickness[0.1]}}, {7.313220387090301,
|
---|
2700 | FormBox[
|
---|
2701 | InterpretationBox[
|
---|
2702 | StyleBox[
|
---|
2703 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2704 | "CacheGraphics" -> False],
|
---|
2705 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2706 | AbsoluteThickness[0.1]}}, {7.3777589082278725`,
|
---|
2707 | FormBox[
|
---|
2708 | InterpretationBox[
|
---|
2709 | StyleBox[
|
---|
2710 | GraphicsBox[{}, ImageSize -> {0, 0}, BaselinePosition -> Baseline],
|
---|
2711 | "CacheGraphics" -> False],
|
---|
2712 | Spacer[{0, 0}]], TraditionalForm], {0.005, 0.}, {
|
---|
2713 | AbsoluteThickness[0.1]}}}}], TraditionalForm]], "Output",
|
---|
2714 | CellChangeTimes->{3.6926008986771097`*^9, 3.692601225779516*^9}]
|
---|
2715 | }, Open ]]
|
---|
2716 | }, Open ]]
|
---|
2717 | }, Open ]]
|
---|
2718 | }, Open ]]
|
---|
2719 | },
|
---|
2720 | WindowSize->{872, 573},
|
---|
2721 | WindowMargins->{{131, Automatic}, {106, Automatic}},
|
---|
2722 | PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
|
---|
2723 | FrontEndVersion->"10.4 for Mac OS X x86 (32-bit, 64-bit Kernel) (February 25, \
|
---|
2724 | 2016)",
|
---|
2725 | StyleDefinitions->"Default.nb"
|
---|
2726 | ]
|
---|
2727 | (* End of Notebook Content *)
|
---|
2728 |
|
---|
2729 | (* Internal cache information *)
|
---|
2730 | (*CellTagsOutline
|
---|
2731 | CellTagsIndex->{}
|
---|
2732 | *)
|
---|
2733 | (*CellTagsIndex
|
---|
2734 | CellTagsIndex->{}
|
---|
2735 | *)
|
---|
2736 | (*NotebookFileOutline
|
---|
2737 | Notebook[{
|
---|
2738 | Cell[CellGroupData[{
|
---|
2739 | Cell[580, 22, 53, 0, 92, "Title"],
|
---|
2740 | Cell[CellGroupData[{
|
---|
2741 | Cell[658, 26, 31, 0, 64, "Section"],
|
---|
2742 | Cell[692, 28, 676, 14, 143, "Text"]
|
---|
2743 | }, Open ]],
|
---|
2744 | Cell[CellGroupData[{
|
---|
2745 | Cell[1405, 47, 32, 0, 64, "Section"],
|
---|
2746 | Cell[1440, 49, 88, 4, 59, "Input"],
|
---|
2747 | Cell[CellGroupData[{
|
---|
2748 | Cell[1553, 57, 35, 0, 44, "Subsection"],
|
---|
2749 | Cell[1591, 59, 157, 3, 49, "Text"],
|
---|
2750 | Cell[CellGroupData[{
|
---|
2751 | Cell[1773, 66, 230, 7, 46, "Input"],
|
---|
2752 | Cell[2006, 75, 611, 13, 24, "Message"],
|
---|
2753 | Cell[2620, 90, 611, 13, 24, "Message"],
|
---|
2754 | Cell[3234, 105, 196, 4, 33, "Output"]
|
---|
2755 | }, Open ]]
|
---|
2756 | }, Open ]],
|
---|
2757 | Cell[CellGroupData[{
|
---|
2758 | Cell[3479, 115, 52, 0, 44, "Subsection"],
|
---|
2759 | Cell[CellGroupData[{
|
---|
2760 | Cell[3556, 119, 68, 3, 44, "Input"],
|
---|
2761 | Cell[3627, 124, 595, 13, 24, "Message"],
|
---|
2762 | Cell[4225, 139, 597, 13, 24, "Message"]
|
---|
2763 | }, Open ]]
|
---|
2764 | }, Open ]],
|
---|
2765 | Cell[CellGroupData[{
|
---|
2766 | Cell[4871, 158, 73, 0, 44, "Subsection"],
|
---|
2767 | Cell[CellGroupData[{
|
---|
2768 | Cell[4969, 162, 247, 4, 46, "Input"],
|
---|
2769 | Cell[5219, 168, 268, 5, 28, "Output"],
|
---|
2770 | Cell[5490, 175, 663, 14, 24, "Message"],
|
---|
2771 | Cell[6156, 191, 222, 4, 30, "Output"]
|
---|
2772 | }, Open ]],
|
---|
2773 | Cell[CellGroupData[{
|
---|
2774 | Cell[6415, 200, 44, 3, 44, "Input"],
|
---|
2775 | Cell[CellGroupData[{
|
---|
2776 | Cell[6484, 207, 173, 3, 20, "Print"],
|
---|
2777 | Cell[6660, 212, 169, 3, 20, "Print"],
|
---|
2778 | Cell[6832, 217, 183, 3, 20, "Print"],
|
---|
2779 | Cell[7018, 222, 194, 4, 20, "Print"],
|
---|
2780 | Cell[7215, 228, 201, 4, 20, "Print"],
|
---|
2781 | Cell[7419, 234, 223, 4, 20, "Print"],
|
---|
2782 | Cell[7645, 240, 154, 3, 20, "Print"],
|
---|
2783 | Cell[7802, 245, 182, 3, 20, "Print"],
|
---|
2784 | Cell[7987, 250, 198, 4, 20, "Print"]
|
---|
2785 | }, Open ]]
|
---|
2786 | }, Open ]],
|
---|
2787 | Cell[CellGroupData[{
|
---|
2788 | Cell[8234, 260, 349, 6, 107, "Subsubsection"],
|
---|
2789 | Cell[8586, 268, 945, 37, 524, "Input"],
|
---|
2790 | Cell[9534, 307, 37, 3, 44, "Input"],
|
---|
2791 | Cell[9574, 312, 1739, 64, 899, "Input"]
|
---|
2792 | }, Open ]],
|
---|
2793 | Cell[CellGroupData[{
|
---|
2794 | Cell[11350, 381, 58, 0, 35, "Subsubsection"],
|
---|
2795 | Cell[11411, 383, 43, 0, 29, "Input"]
|
---|
2796 | }, Open ]]
|
---|
2797 | }, Open ]],
|
---|
2798 | Cell[CellGroupData[{
|
---|
2799 | Cell[11503, 389, 267, 6, 119, "Subsection"],
|
---|
2800 | Cell[11773, 397, 2107, 72, 165, "Input"],
|
---|
2801 | Cell[CellGroupData[{
|
---|
2802 | Cell[13905, 473, 68, 0, 35, "Subsubsection"],
|
---|
2803 | Cell[CellGroupData[{
|
---|
2804 | Cell[13998, 477, 32, 0, 29, "Input"],
|
---|
2805 | Cell[14033, 479, 188, 3, 28, "Output"]
|
---|
2806 | }, Open ]]
|
---|
2807 | }, Open ]]
|
---|
2808 | }, Open ]],
|
---|
2809 | Cell[CellGroupData[{
|
---|
2810 | Cell[14282, 489, 36, 0, 44, "Subsection"],
|
---|
2811 | Cell[14321, 491, 76, 7, 104, "Input"]
|
---|
2812 | }, Open ]]
|
---|
2813 | }, Open ]],
|
---|
2814 | Cell[CellGroupData[{
|
---|
2815 | Cell[14446, 504, 35, 0, 64, "Section"],
|
---|
2816 | Cell[CellGroupData[{
|
---|
2817 | Cell[14506, 508, 205, 4, 83, "Subsubsection"],
|
---|
2818 | Cell[14714, 514, 18, 0, 29, "Input"],
|
---|
2819 | Cell[CellGroupData[{
|
---|
2820 | Cell[14757, 518, 901, 17, 89, "Input"],
|
---|
2821 | Cell[15661, 537, 1162, 34, 55, "Output"],
|
---|
2822 | Cell[16826, 573, 1056, 32, 55, "Output"],
|
---|
2823 | Cell[17885, 607, 14813, 258, 237, "Output"]
|
---|
2824 | }, Open ]],
|
---|
2825 | Cell[32713, 868, 150, 3, 30, "Text"]
|
---|
2826 | }, Open ]],
|
---|
2827 | Cell[CellGroupData[{
|
---|
2828 | Cell[32900, 876, 532, 12, 108, "Subsubsection"],
|
---|
2829 | Cell[33435, 890, 420, 20, 299, "Input"],
|
---|
2830 | Cell[CellGroupData[{
|
---|
2831 | Cell[33880, 914, 72, 0, 29, "Input"],
|
---|
2832 | Cell[33955, 916, 186, 3, 28, "Output"]
|
---|
2833 | }, Open ]]
|
---|
2834 | }, Open ]],
|
---|
2835 | Cell[CellGroupData[{
|
---|
2836 | Cell[34190, 925, 215, 5, 69, "Subsection"],
|
---|
2837 | Cell[34408, 932, 113, 3, 29, "Input"],
|
---|
2838 | Cell[34524, 937, 139, 3, 29, "Input"],
|
---|
2839 | Cell[CellGroupData[{
|
---|
2840 | Cell[34688, 944, 429, 10, 28, "Input"],
|
---|
2841 | Cell[35120, 956, 26458, 602, 214, "Output"]
|
---|
2842 | }, Open ]],
|
---|
2843 | Cell[61593, 1561, 168, 3, 49, "Text"]
|
---|
2844 | }, Open ]],
|
---|
2845 | Cell[CellGroupData[{
|
---|
2846 | Cell[61798, 1569, 76, 0, 44, "Subsection"],
|
---|
2847 | Cell[CellGroupData[{
|
---|
2848 | Cell[61899, 1573, 257, 7, 74, "Input"],
|
---|
2849 | Cell[62159, 1582, 1522, 47, 89, "Output"],
|
---|
2850 | Cell[63684, 1631, 1519, 47, 89, "Output"],
|
---|
2851 | Cell[65206, 1680, 1520, 47, 89, "Output"]
|
---|
2852 | }, Open ]]
|
---|
2853 | }, Open ]]
|
---|
2854 | }, Open ]],
|
---|
2855 | Cell[CellGroupData[{
|
---|
2856 | Cell[66787, 1734, 36, 0, 64, "Section"],
|
---|
2857 | Cell[66826, 1736, 678, 15, 231, "Text"],
|
---|
2858 | Cell[CellGroupData[{
|
---|
2859 | Cell[67529, 1755, 35, 0, 44, "Subsection"],
|
---|
2860 | Cell[67567, 1757, 945, 19, 464, "Input"]
|
---|
2861 | }, Open ]],
|
---|
2862 | Cell[CellGroupData[{
|
---|
2863 | Cell[68549, 1781, 40, 0, 44, "Subsection"],
|
---|
2864 | Cell[68592, 1783, 2174, 45, 1109, "Input"],
|
---|
2865 | Cell[CellGroupData[{
|
---|
2866 | Cell[70791, 1832, 91, 3, 44, "Input"],
|
---|
2867 | Cell[70885, 1837, 139, 2, 28, "Output"]
|
---|
2868 | }, Open ]],
|
---|
2869 | Cell[71039, 1842, 244, 5, 44, "Input"],
|
---|
2870 | Cell[CellGroupData[{
|
---|
2871 | Cell[71308, 1851, 655, 17, 46, "Input"],
|
---|
2872 | Cell[71966, 1870, 791, 15, 42, "Message"],
|
---|
2873 | Cell[72760, 1887, 137, 2, 28, "Output"]
|
---|
2874 | }, Open ]],
|
---|
2875 | Cell[CellGroupData[{
|
---|
2876 | Cell[72934, 1894, 29, 0, 29, "Input"],
|
---|
2877 | Cell[72966, 1896, 138, 2, 28, "Output"]
|
---|
2878 | }, Open ]]
|
---|
2879 | }, Open ]],
|
---|
2880 | Cell[CellGroupData[{
|
---|
2881 | Cell[73153, 1904, 144, 1, 44, "Subsection"],
|
---|
2882 | Cell[CellGroupData[{
|
---|
2883 | Cell[73322, 1909, 1024, 26, 63, "Input"],
|
---|
2884 | Cell[74349, 1937, 838, 16, 42, "Message"],
|
---|
2885 | Cell[75190, 1955, 838, 16, 42, "Message"],
|
---|
2886 | Cell[76031, 1973, 660, 13, 42, "Message"],
|
---|
2887 | Cell[76694, 1988, 835, 16, 42, "Message"],
|
---|
2888 | Cell[77532, 2006, 675, 14, 24, "Message"],
|
---|
2889 | Cell[78210, 2022, 659, 13, 42, "Message"],
|
---|
2890 | Cell[78872, 2037, 660, 13, 42, "Message"],
|
---|
2891 | Cell[79535, 2052, 677, 14, 24, "Message"]
|
---|
2892 | }, Open ]],
|
---|
2893 | Cell[80227, 2069, 945, 24, 63, "Input"],
|
---|
2894 | Cell[81175, 2095, 921, 26, 46, "Input"],
|
---|
2895 | Cell[CellGroupData[{
|
---|
2896 | Cell[82121, 2125, 434, 11, 28, "Input"],
|
---|
2897 | Cell[82558, 2138, 25459, 575, 204, "Output"]
|
---|
2898 | }, Open ]]
|
---|
2899 | }, Open ]]
|
---|
2900 | }, Open ]]
|
---|
2901 | }, Open ]]
|
---|
2902 | }
|
---|
2903 | ]
|
---|
2904 | *)
|
---|
2905 |
|
---|