WAsymm: WDecay.2.nb

File WDecay.2.nb, 14.5 KB (added by trac, 7 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[       145,          7]
13NotebookDataLength[     14703,        517]
14NotebookOptionsPosition[     12682,        441]
15NotebookOutlinePosition[     13040,        457]
16CellTagsIndexPosition[     12997,        454]
17WindowFrame->Normal
18ContainsDynamic->False*)
19
20(* Beginning of Notebook Content *)
21Notebook[{
22
23Cell[CellGroupData[{
24Cell[TextData[{
25 "Calculation for ",
26 StyleBox[" ", "DisplayFormula"],
27 Cell[BoxData[
28  FormBox[
29   SuperscriptBox["W", "+"], TraditionalForm]]],
30 StyleBox["\[RightArrow] ", "DisplayFormula"],
31 Cell[BoxData[
32  FormBox[
33   SuperscriptBox["e", "+"], TraditionalForm]]],
34 " ",
35 Cell[BoxData[
36  FormBox[
37   SubscriptBox["\[Nu]", "e"], TraditionalForm]]]
38}], "Title",
39 CellChangeTimes->{{3.42892672627883*^9, 3.428926824323577*^9}}],
40
41Cell[CellGroupData[{
42
43Cell["Input FeynCalc", "Subsection"],
44
45Cell[BoxData[
46 RowBox[{
47  RowBox[{"<<", "HighEnergyPhysics`fc`"}], ";"}]], "Input"]
48}, Closed]],
49
50Cell[CellGroupData[{
51
52Cell["Preliminaries", "Subsection"],
53
54Cell[CellGroupData[{
55
56Cell["Kinematics 1->2", "Subsubsection",
57 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
58
59Cell[BoxData[
60 RowBox[{"\[IndentingNewLine]",
61  RowBox[{
62   RowBox[{
63    RowBox[{
64     RowBox[{"ScalarProduct", "[",
65      RowBox[{"P", ",", "P"}], "]"}], "=", "mw2"}], ";"}],
66   "\[IndentingNewLine]",
67   RowBox[{
68    RowBox[{
69     RowBox[{"ScalarProduct", "[",
70      RowBox[{"pe", ",", "pe"}], "]"}], "=", "0"}], ";"}],
71   "\[IndentingNewLine]",
72   RowBox[{
73    RowBox[{
74     RowBox[{"ScalarProduct", "[",
75      RowBox[{"p\[Nu]", ",", "p\[Nu]"}], "]"}], "=", "0"}], ";"}],
76   "\[IndentingNewLine]",
77   RowBox[{
78    RowBox[{
79     RowBox[{"ScalarProduct", "[",
80      RowBox[{"P", ",", "pe"}], "]"}], "=",
81     RowBox[{"mw2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
82   RowBox[{
83    RowBox[{
84     RowBox[{"ScalarProduct", "[",
85      RowBox[{"P", ",", "p\[Nu]"}], "]"}], "=",
86     RowBox[{"mw2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
87   RowBox[{
88    RowBox[{
89     RowBox[{"ScalarProduct", "[",
90      RowBox[{"pe", ",", "p\[Nu]"}], "]"}], "=",
91     RowBox[{"mw2", "/", "2"}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",
92 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}}]
93}, Open  ]]
94}, Closed]],
95
96Cell[CellGroupData[{
97
98Cell["Amplitude (1 diagram)", "Subsection",
99 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
100
101Cell["The summed and averaged square matrix element", "Text",
102 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
103  3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
104  3.42892751343362*^9}}],
105
106Cell[CellGroupData[{
107
108Cell[BoxData[
109 RowBox[{"M2", "=",
110  RowBox[{
111   RowBox[{"1", "/", "3"}],
112   RowBox[{
113    RowBox[{"(",
114     RowBox[{
115      RowBox[{"gw", "/", "2"}], "/",
116      RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], "^", "2"}],
117   RowBox[{"Tr", "[",
118    RowBox[{
119     RowBox[{"GSD", "[", "pe", "]"}], ".",
120     RowBox[{"GAD", "[", "mu", "]"}], ".",
121     RowBox[{"(",
122      RowBox[{"1", "-", "GA5"}], ")"}], ".",
123     RowBox[{"GSD", "[", "p\[Nu]", "]"}], ".",
124     RowBox[{"GAD", "[", "nu", "]"}], ".",
125     RowBox[{"(",
126      RowBox[{"1", "-", "GA5"}], ")"}]}], "]"}],
127   RowBox[{"(",
128    RowBox[{
129     RowBox[{"-",
130      RowBox[{"MetricTensor", "[",
131       RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
132     RowBox[{
133      RowBox[{"FV", "[",
134       RowBox[{"P", ",", "mu"}], "]"}],
135      RowBox[{
136       RowBox[{"FV", "[",
137        RowBox[{"P", ",", "nu"}], "]"}], "/", "mw2"}]}]}], ")"}]}]}]], "Input",\
138
139 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
140   3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
141   3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
142   3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}}],
143
144Cell[BoxData[
145 FormBox[
146  RowBox[{
147   FractionBox["1", "6"], " ",
148   SuperscriptBox["gw", "2"], " ",
149   RowBox[{"(",
150    RowBox[{
151     FractionBox[
152      RowBox[{
153       SuperscriptBox["P", "mu"], " ",
154       SuperscriptBox["P", "nu"]}], "mw2"], "-",
155     SuperscriptBox["g",
156      RowBox[{"mu", "nu"}]]}], ")"}], " ",
157   RowBox[{"(",
158    RowBox[{
159     RowBox[{
160      RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ",
161      SuperscriptBox["\[Epsilon]",
162       RowBox[{
163        FormBox[
164         FormBox["mu",
165          TraditionalForm],
166         TraditionalForm],
167        FormBox[
168         FormBox["nu",
169          TraditionalForm],
170         TraditionalForm],
171        FormBox["pe",
172         TraditionalForm],
173        FormBox["p\[Nu]",
174         TraditionalForm]}]]}], "-",
175     RowBox[{"mw2", " ",
176      SuperscriptBox["g",
177       RowBox[{"mu", "nu"}]]}], "+",
178     RowBox[{"2", " ",
179      SuperscriptBox[
180       FormBox["p\[Nu]",
181        TraditionalForm],
182       FormBox[
183        FormBox["mu",
184         TraditionalForm],
185        TraditionalForm]], " ",
186      SuperscriptBox[
187       FormBox["pe",
188        TraditionalForm],
189       FormBox[
190        FormBox["nu",
191         TraditionalForm],
192        TraditionalForm]]}], "+",
193     RowBox[{"2", " ",
194      SuperscriptBox[
195       FormBox["pe",
196        TraditionalForm],
197       FormBox[
198        FormBox["mu",
199         TraditionalForm],
200        TraditionalForm]], " ",
201      SuperscriptBox[
202       FormBox["p\[Nu]",
203        TraditionalForm],
204       FormBox[
205        FormBox["nu",
206         TraditionalForm],
207        TraditionalForm]]}]}], ")"}]}], TraditionalForm]], "Output",
208 CellChangeTimes->{
209  3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
210   3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
211   3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
212   3.428929567605669*^9, 3.428938985716309*^9}]
213}, Open  ]],
214
215Cell["We contract the Lorentz indices", "Text",
216 CellChangeTimes->{{3.428927497453924*^9, 3.428927503026804*^9}}],
217
218Cell[CellGroupData[{
219
220Cell[BoxData[
221 RowBox[{"M2", "=",
222  RowBox[{"Contract", "[", "M2", "]"}]}]], "Input",
223 CellChangeTimes->{{3.428927540707325*^9, 3.42892754927673*^9}}],
224
225Cell[BoxData[
226 FormBox[
227  FractionBox[
228   RowBox[{
229    SuperscriptBox["gw", "2"], " ", "mw2"}], "3"], TraditionalForm]], "Output",\
230
231 CellChangeTimes->{3.428927549552278*^9, 3.4289291245462008`*^9,
232  3.4289293726684103`*^9, 3.428929569719249*^9, 3.428938985747068*^9}]
233}, Open  ]],
234
235Cell["We insert he definition of the Fermi constant", "Text",
236 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
237
238Cell[CellGroupData[{
239
240Cell[BoxData[
241 RowBox[{"M2", "=",
242  RowBox[{"M2", "/.",
243   RowBox[{
244    RowBox[{"gw", "^", "2"}], "\[Rule]",
245    RowBox[{"8", " ", "mw2", " ",
246     RowBox[{"Gf", "/",
247      RowBox[{"Sqrt", "[", "2", "]"}]}]}]}]}]}]], "Input",
248 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}}],
249
250Cell[BoxData[
251 FormBox[
252  RowBox[{
253   FractionBox["4", "3"], " ",
254   SqrtBox["2"], " ", "Gf", " ",
255   SuperscriptBox["mw2", "2"]}], TraditionalForm]], "Output",
256 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
257  3.428929571106011*^9, 3.428938985780642*^9}]
258}, Open  ]]
259}, Closed]],
260
261Cell[CellGroupData[{
262
263Cell["Phase Space", "Subsection",
264 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
265
266Cell["The massless two particle phase space is", "Text",
267 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}}],
268
269Cell[CellGroupData[{
270
271Cell[BoxData[
272 RowBox[{"d\[CapitalPhi]2", "=",
273  RowBox[{
274   RowBox[{
275    RowBox[{"(",
276     RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
277   RowBox[{"\[Delta]", "[",
278    RowBox[{"P", "-", "pe", "-", "p\[Nu]"}], "]"}],
279   RowBox[{
280    RowBox[{
281     RowBox[{"d3pe", "/",
282      RowBox[{
283       RowBox[{"(",
284        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "Ee"}],
285   " ",
286   RowBox[{
287    RowBox[{
288     RowBox[{"d3p\[Nu]", "/",
289      RowBox[{
290       RowBox[{"(",
291        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
292    "E\[Nu]"}]}]}]], "Input",
293 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
294  3.4289288594542103`*^9, 3.428928869884198*^9}}],
295
296Cell[BoxData[
297 FormBox[
298  FractionBox[
299   RowBox[{"d3pe", " ", "d3p\[Nu]", " ",
300    RowBox[{"\[Delta]", "(",
301     RowBox[{"P", "-", "pe", "-", "p\[Nu]"}], ")"}]}],
302   RowBox[{"16", " ", "Ee", " ", "E\[Nu]", " ",
303    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
304 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
305   3.428929126861431*^9, 3.428929574710586*^9, 3.428938985810316*^9}]
306}, Open  ]],
307
308Cell["\<\
309Performing the integration over d3p\[Nu] in the rest frame of the W gives\
310\>", "Text",
311 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
312  3.4289288233373938`*^9, 3.428928824472897*^9}}],
313
314Cell[CellGroupData[{
315
316Cell[BoxData[
317 RowBox[{"PS", "=",
318  RowBox[{
319   RowBox[{
320    RowBox[{"1", "/", "4"}], "/",
321    RowBox[{
322     RowBox[{"(",
323      RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
324   RowBox[{"\[Delta]", "[",
325    RowBox[{"mw", "-",
326     RowBox[{"2", "Ee"}]}], "]"}],
327   RowBox[{"d3pe", "/",
328    RowBox[{"Ee", "^", "2"}]}]}]}]], "Input",
329 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}}],
330
331Cell[BoxData[
332 FormBox[
333  FractionBox[
334   RowBox[{"d3pe", " ",
335    RowBox[{"\[Delta]", "(",
336     RowBox[{"mw", "-",
337      RowBox[{"2", " ", "Ee"}]}], ")"}]}],
338   RowBox[{"16", " ",
339    SuperscriptBox["Ee", "2"], " ",
340    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
341 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
342   3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
343   3.428938985844248*^9}]
344}, Open  ]],
345
346Cell["\<\
347Going to spherical coordinates, and usging pe dpe = Ee dEe, we get\
348\>", "Text",
349 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}}],
350
351Cell[CellGroupData[{
352
353Cell[BoxData[
354 RowBox[{"PS", "=",
355  RowBox[{
356   RowBox[{"PS", "/.",
357    RowBox[{
358     RowBox[{"\[Delta]", "[",
359      RowBox[{"mw", "-",
360       RowBox[{"2", "Ee"}]}], "]"}], "\[Rule]",
361     RowBox[{
362      RowBox[{"1", "/", "2"}],
363      RowBox[{"\[Delta]", "[",
364       RowBox[{"Ee", "-",
365        RowBox[{"mw", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
366   RowBox[{"d3pe", "\[Rule]",
367    RowBox[{"4", "Pi", " ",
368     RowBox[{"Ee", "^", "2"}], " ", "dEe"}]}]}]}]], "Input",
369 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
370   3.428929070151713*^9}],
371
372Cell[BoxData[
373 FormBox[
374  FractionBox[
375   RowBox[{"dEe", " ",
376    RowBox[{"\[Delta]", "(",
377     RowBox[{"Ee", "-",
378      FractionBox["mw", "2"]}], ")"}]}],
379   RowBox[{"8", " ", "\[Pi]"}]], TraditionalForm]], "Output",
380 CellChangeTimes->{3.428929025150517*^9, 3.428929070325218*^9,
381  3.4289291311060667`*^9, 3.428929574875102*^9, 3.4289389858778963`*^9}]
382}, Open  ]],
383
384Cell["Performing the integration", "Text",
385 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
386
387Cell[CellGroupData[{
388
389Cell[BoxData[
390 RowBox[{"PS", "=",
391  RowBox[{"PS", "/.",
392   RowBox[{
393    RowBox[{"dEe", " ",
394     RowBox[{"\[Delta]", "[",
395      RowBox[{"Ee", "-",
396       RowBox[{"mw", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}]}]], "Input",
397 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}}],
398
399Cell[BoxData[
400 FormBox[
401  FractionBox["1",
402   RowBox[{"8", " ", "\[Pi]"}]], TraditionalForm]], "Output",
403 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
404   3.4289291321148567`*^9, 3.428929574912538*^9, 3.4289389861836767`*^9}]
405}, Open  ]]
406}, Closed]],
407
408Cell[CellGroupData[{
409
410Cell["Result", "Subsection",
411 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
412
413Cell["The decay rate of the W then becomes", "Text",
414 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9}}],
415
416Cell[CellGroupData[{
417
418Cell[BoxData[
419 RowBox[{"\[CapitalGamma]", "=",
420  RowBox[{
421   RowBox[{
422    RowBox[{
423     RowBox[{"1", "/", "2"}], "/", "mw"}], " ", "PS", " ", "M2"}], "/.",
424   RowBox[{"mw2", "\[Rule]",
425    RowBox[{"mw", "^", "2"}]}]}]}]], "Input",
426 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
427   3.428929346599481*^9, 3.428938975232931*^9}],
428
429Cell[BoxData[
430 FormBox[
431  FractionBox[
432   RowBox[{"Gf", " ",
433    SuperscriptBox["mw", "3"]}],
434   RowBox[{"6", " ",
435    SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
436 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
437   3.4289293476527367`*^9, 3.4289295771229353`*^9, 3.428938986228635*^9}]
438}, Open  ]]
439}, Closed]]
440}, Open  ]]
441},
442WindowSize->{710, 706},
443WindowMargins->{{Automatic, 230}, {Automatic, 4}},
444ShowSelection->True,
445FrontEndVersion->"6.0 for Mac OS X x86 (32-bit) (April 20, 2007)",
446StyleDefinitions->"Default.nb"
447]
448(* End of Notebook Content *)
449
450(* Internal cache information *)
451(*CellTagsOutline
452CellTagsIndex->{}
453*)
454(*CellTagsIndex
455CellTagsIndex->{}
456*)
457(*NotebookFileOutline
458Notebook[{
459Cell[CellGroupData[{
460Cell[590, 23, 427, 15, 79, "Title"],
461Cell[CellGroupData[{
462Cell[1042, 42, 36, 0, 34, "Subsection"],
463Cell[1081, 44, 83, 2, 27, "Input"]
464}, Closed]],
465Cell[CellGroupData[{
466Cell[1201, 51, 35, 0, 26, "Subsection"],
467Cell[CellGroupData[{
468Cell[1261, 55, 106, 1, 25, "Subsubsection"],
469Cell[1370, 58, 1112, 33, 133, "Input"]
470}, Open  ]]
471}, Closed]],
472Cell[CellGroupData[{
473Cell[2531, 97, 111, 1, 26, "Subsection"],
474Cell[2645, 100, 228, 3, 26, "Text"],
475Cell[CellGroupData[{
476Cell[2898, 107, 1191, 34, 43, "Input"],
477Cell[4092, 143, 1924, 68, 70, "Output"]
478}, Open  ]],
479Cell[6031, 214, 113, 1, 26, "Text"],
480Cell[CellGroupData[{
481Cell[6169, 219, 151, 3, 27, "Input"],
482Cell[6323, 224, 269, 7, 70, "Output"]
483}, Open  ]],
484Cell[6607, 234, 127, 1, 26, "Text"],
485Cell[CellGroupData[{
486Cell[6759, 239, 295, 8, 27, "Input"],
487Cell[7057, 249, 275, 7, 70, "Output"]
488}, Open  ]]
489}, Closed]],
490Cell[CellGroupData[{
491Cell[7381, 262, 101, 1, 26, "Subsection"],
492Cell[7485, 265, 124, 1, 26, "Text"],
493Cell[CellGroupData[{
494Cell[7634, 270, 696, 23, 27, "Input"],
495Cell[8333, 295, 417, 9, 70, "Output"]
496}, Open  ]],
497Cell[8765, 307, 214, 4, 26, "Text"],
498Cell[CellGroupData[{
499Cell[9004, 315, 404, 13, 27, "Input"],
500Cell[9411, 330, 450, 12, 70, "Output"]
501}, Open  ]],
502Cell[9876, 345, 158, 3, 26, "Text"],
503Cell[CellGroupData[{
504Cell[10059, 352, 569, 17, 27, "Input"],
505Cell[10631, 371, 358, 9, 70, "Output"]
506}, Open  ]],
507Cell[11004, 383, 108, 1, 26, "Text"],
508Cell[CellGroupData[{
509Cell[11137, 388, 293, 8, 27, "Input"],
510Cell[11433, 398, 245, 5, 70, "Output"]
511}, Open  ]]
512}, Closed]],
513Cell[CellGroupData[{
514Cell[11727, 409, 98, 1, 26, "Subsection"],
515Cell[11828, 412, 118, 1, 26, "Text"],
516Cell[CellGroupData[{
517Cell[11971, 417, 347, 9, 27, "Input"],
518Cell[12321, 428, 321, 8, 52, "Output"]
519}, Open  ]]
520}, Closed]]
521}, Open  ]]
522}
523]
524*)
525
526(* End of internal cache information *)