# WAsymm: DYNarrowWidth.2.nb

File DYNarrowWidth.2.nb, 14.6 KB (added by trac, 8 years ago) |
---|

Line | |
---|---|

1 | (* Content-type: application/mathematica *) |

2 | |

3 | (*** Wolfram Notebook File ***) |

4 | (* http://www.wolfram.com/nb *) |

5 | |

6 | (* CreatedBy='Mathematica 6.0' *) |

7 | |

8 | (*CacheID: 234*) |

9 | (* Internal cache information: |

10 | NotebookFileLineBreakTest |

11 | NotebookFileLineBreakTest |

12 | NotebookDataPosition[ 145, 7] |

13 | NotebookDataLength[ 14721, 497] |

14 | NotebookOptionsPosition[ 12913, 429] |

15 | NotebookOutlinePosition[ 13290, 446] |

16 | CellTagsIndexPosition[ 13247, 443] |

17 | WindowFrame->Normal |

18 | ContainsDynamic->False*) |

19 | |

20 | (* Beginning of Notebook Content *) |

21 | Notebook[{ |

22 | |

23 | Cell[CellGroupData[{ |

24 | Cell["\<\ |

25 | The Drell-Yan cross-section in the narrow width approximation\ |

26 | \>", "Title", |

27 | CellChangeTimes->{{3.42892672627883*^9, 3.428926824323577*^9}, { |

28 | 3.428937703319875*^9, 3.428937712432496*^9}, {3.428941361957245*^9, |

29 | 3.4289413752252607`*^9}}], |

30 | |

31 | Cell[CellGroupData[{ |

32 | |

33 | Cell["Input FeynCalc", "Subsection"], |

34 | |

35 | Cell[BoxData[ |

36 | RowBox[{ |

37 | RowBox[{"<<", "HighEnergyPhysics`fc`"}], ";"}]], "Input", |

38 | CellChangeTimes->{{3.428941446581498*^9, 3.428941449045033*^9}}] |

39 | }, Open ]], |

40 | |

41 | Cell[CellGroupData[{ |

42 | |

43 | Cell["The partonic cross - section", "Section", |

44 | CellChangeTimes->{{3.428941607370674*^9, 3.428941611186956*^9}}], |

45 | |

46 | Cell[BoxData[ |

47 | RowBox[{ |

48 | RowBox[{"Near", " ", "the", " ", "W", " ", "resonance"}], ",", " ", |

49 | RowBox[{ |

50 | RowBox[{ |

51 | "the", " ", "partonic", " ", "cross", " ", "section", " ", "\[Sigma]p", |

52 | " ", "for", " ", "u", " ", "dbar"}], " ", "\[RightArrow]", " ", |

53 | SuperscriptBox["W", "+"], "\[RightArrow]", " ", |

54 | RowBox[{ |

55 | SuperscriptBox["e", "+"], " ", |

56 | SubscriptBox["\[Nu]", |

57 | RowBox[{"e", " "}]], "can", " ", "be", " ", "written"}]}]}]], "Text", |

58 | CellChangeTimes->{{3.428941462807769*^9, 3.428941586342557*^9}}], |

59 | |

60 | Cell[CellGroupData[{ |

61 | |

62 | Cell[BoxData[ |

63 | RowBox[{"\[Sigma]p", "=", |

64 | RowBox[{"4", |

65 | RowBox[{"Pi", "/", "3"}], " ", "\[CapitalGamma]ud", " ", |

66 | RowBox[{"\[CapitalGamma]ev", " ", "/", |

67 | RowBox[{"(", |

68 | RowBox[{ |

69 | RowBox[{ |

70 | RowBox[{"(", |

71 | RowBox[{"sp", " ", "-", " ", |

72 | RowBox[{"mw", "^", "2"}]}], ")"}], "^", "2"}], " ", "+", |

73 | RowBox[{ |

74 | RowBox[{"mw", "^", "2"}], |

75 | RowBox[{"\[CapitalGamma]tot", "^", "2"}]}]}], ")"}]}]}]}]], "Input", |

76 | CellChangeTimes->{{3.428941591115911*^9, 3.428941670219965*^9}, { |

77 | 3.428941861583827*^9, 3.428941864412772*^9}}], |

78 | |

79 | Cell[BoxData[ |

80 | FormBox[ |

81 | FractionBox[ |

82 | RowBox[{ |

83 | "4", " ", "\[Pi]", " ", "\[CapitalGamma]ev", " ", "\[CapitalGamma]ud"}], |

84 | RowBox[{"3", " ", |

85 | RowBox[{"(", |

86 | RowBox[{ |

87 | SuperscriptBox[ |

88 | RowBox[{"(", |

89 | RowBox[{"sp", "-", |

90 | SuperscriptBox["mw", "2"]}], ")"}], "2"], "+", |

91 | RowBox[{ |

92 | SuperscriptBox["mw", "2"], " ", |

93 | SuperscriptBox["\[CapitalGamma]tot", "2"]}]}], ")"}]}]], |

94 | TraditionalForm]], "Output", |

95 | CellChangeTimes->{3.428941671372353*^9, 3.4289418646862993`*^9, |

96 | 3.428942151070161*^9, 3.428942597586359*^9}] |

97 | }, Open ]], |

98 | |

99 | Cell["\<\ |

100 | where |

101 | |

102 | * \[CapitalGamma]ud is the partial width of the W into u d |

103 | * \[CapitalGamma]ev is the partial width of the W into e \[Nu] |

104 | *\[CapitalGamma]tot is the totel width |

105 | |

106 | At tree-level, we can write approximatively |

107 | |

108 | \[CapitalGamma]ev = \[CapitalGamma] |

109 | \[CapitalGamma]ud = 3 \[CapitalGamma] |

110 | \[CapitalGamma]tot = 9 \[CapitalGamma] |

111 | \ |

112 | \>", "Text", |

113 | CellChangeTimes->{{3.428941673641809*^9, 3.428941779762138*^9}, { |

114 | 3.4289418146980762`*^9, 3.428941823801876*^9}}], |

115 | |

116 | Cell[CellGroupData[{ |

117 | |

118 | Cell[BoxData[ |

119 | RowBox[{"\[Sigma]p", "=", |

120 | RowBox[{"\[Sigma]p", "/.", |

121 | RowBox[{"{", |

122 | RowBox[{ |

123 | RowBox[{"\[CapitalGamma]ud", "\[Rule]", |

124 | RowBox[{"3", "\[CapitalGamma]"}]}], ",", |

125 | RowBox[{"\[CapitalGamma]ev", "->", "\[CapitalGamma]"}], ",", |

126 | RowBox[{"\[CapitalGamma]tot", "\[Rule]", |

127 | RowBox[{"9", "\[CapitalGamma]"}]}]}], "}"}]}]}]], "Input", |

128 | CellChangeTimes->{{3.4289418266514587`*^9, 3.4289418551565723`*^9}}], |

129 | |

130 | Cell[BoxData[ |

131 | FormBox[ |

132 | FractionBox[ |

133 | RowBox[{"4", " ", "\[Pi]", " ", |

134 | SuperscriptBox["\[CapitalGamma]", "2"]}], |

135 | RowBox[{ |

136 | SuperscriptBox[ |

137 | RowBox[{"(", |

138 | RowBox[{"sp", "-", |

139 | SuperscriptBox["mw", "2"]}], ")"}], "2"], "+", |

140 | RowBox[{"81", " ", |

141 | SuperscriptBox["mw", "2"], " ", |

142 | SuperscriptBox["\[CapitalGamma]", "2"]}]}]], TraditionalForm]], "Output",\ |

143 | |

144 | CellChangeTimes->{{3.428941855531948*^9, 3.428941867874544*^9}, |

145 | 3.4289421541207457`*^9, 3.42894260090372*^9}] |

146 | }, Open ]], |

147 | |

148 | Cell[TextData[{ |

149 | "In the narrow width approximation, using\n\n\[Delta](x) = lim ", |

150 | Cell[BoxData[ |

151 | FormBox[ |

152 | FractionBox["1", "\[Pi]"], TraditionalForm]]], |

153 | " ", |

154 | Cell[BoxData[ |

155 | FormBox[ |

156 | FractionBox["\[Epsilon]", |

157 | RowBox[{ |

158 | SuperscriptBox["x", "2"], "+", |

159 | SuperscriptBox["\[Epsilon]", "2"]}]], TraditionalForm]]], |

160 | "\n \[Epsilon]\[RightArrow]0\nwe have" |

161 | }], "Text", |

162 | CellChangeTimes->{{3.428941885053216*^9, 3.4289420421627827`*^9}}], |

163 | |

164 | Cell[CellGroupData[{ |

165 | |

166 | Cell[BoxData[ |

167 | RowBox[{"\[Sigma]pNW", "=", |

168 | RowBox[{"9", "mw", " ", "\[CapitalGamma]", " ", "\[Sigma]pw", " ", |

169 | RowBox[{"DiracDelta", "[", |

170 | RowBox[{"sp", " ", "-", " ", |

171 | SuperscriptBox["mw", "2"]}], "]"}]}]}]], "Input", |

172 | CellChangeTimes->{{3.428942043694252*^9, 3.4289421458530283`*^9}, { |

173 | 3.4289423809661303`*^9, 3.428942388280025*^9}, {3.4289426098473177`*^9, |

174 | 3.428942609966979*^9}}], |

175 | |

176 | Cell[BoxData[ |

177 | FormBox[ |

178 | RowBox[{"9", " ", "mw", " ", "\[CapitalGamma]", " ", "\[Sigma]pw", " ", |

179 | RowBox[{ |

180 | InterpretationBox["\[Delta]", |

181 | DiracDelta, |

182 | Editable->False, |

183 | Selectable->False], "(", |

184 | RowBox[{"sp", "-", |

185 | SuperscriptBox["mw", "2"]}], ")"}]}], TraditionalForm]], "Output", |

186 | CellChangeTimes->{{3.42894212937996*^9, 3.4289421574093657`*^9}, |

187 | 3.428942389290112*^9, 3.4289426110242777`*^9}] |

188 | }, Open ]], |

189 | |

190 | Cell["\<\ |

191 | where \[Sigma]pw is \[Sigma]p evaluated at sp = mw^2\ |

192 | \>", "Text", |

193 | CellChangeTimes->{{3.4289421593269777`*^9, 3.428942176694747*^9}}] |

194 | }, Open ]], |

195 | |

196 | Cell[CellGroupData[{ |

197 | |

198 | Cell["The hadronic cross - section @ Tevatron", "Section", |

199 | CellChangeTimes->{{3.4289421851120443`*^9, 3.4289421961269503`*^9}}], |

200 | |

201 | Cell["We now fold the partonic cross - section with the pdf' s", "Text", |

202 | CellChangeTimes->{{3.428942204656125*^9, 3.4289422175994797`*^9}}], |

203 | |

204 | Cell[BoxData[{ |

205 | RowBox[{ |

206 | RowBox[{ |

207 | RowBox[{"u", "[", "x_", "]"}], ":=", |

208 | RowBox[{"6", |

209 | RowBox[{ |

210 | RowBox[{"(", |

211 | RowBox[{"1", "-", "x"}], ")"}], "^", "2"}]}]}], |

212 | ";"}], "\[IndentingNewLine]", |

213 | RowBox[{ |

214 | RowBox[{ |

215 | RowBox[{"d", "[", "x_", "]"}], ":=", |

216 | RowBox[{"3", |

217 | RowBox[{ |

218 | RowBox[{"(", |

219 | RowBox[{"1", "-", "x"}], ")"}], "^", "2"}]}]}], ";"}]}], "Input", |

220 | CellChangeTimes->{{3.4289422228675957`*^9, 3.428942241154451*^9}}], |

221 | |

222 | Cell[TextData[{ |

223 | "The limits of the integration are \n\nx1: [0, 1]\nx2: ", |

224 | Cell[BoxData[ |

225 | FormBox["[", TraditionalForm]]], |

226 | " ", |

227 | Cell[BoxData[ |

228 | FormBox[ |

229 | RowBox[{ |

230 | RowBox[{ |

231 | RowBox[{ |

232 | SuperscriptBox["mw", "2"], "/", "s"}], ",", " ", "1"}], "]"}], |

233 | TraditionalForm]]] |

234 | }], "Text", |

235 | CellChangeTimes->{{3.428942264303419*^9, 3.428942324108612*^9}}], |

236 | |

237 | Cell["Integration in x1:", "Text", |

238 | CellChangeTimes->{{3.42894232586976*^9, 3.428942341099662*^9}}], |

239 | |

240 | Cell[CellGroupData[{ |

241 | |

242 | Cell[BoxData[ |

243 | RowBox[{ |

244 | RowBox[{ |

245 | RowBox[{"u", "[", "x1", "]"}], |

246 | RowBox[{"d", "[", "x2", "]"}], "\[Sigma]pNW"}], "/.", |

247 | RowBox[{"{", |

248 | RowBox[{"sp", "\[Rule]", |

249 | RowBox[{"s", " ", "x1", " ", "x2"}]}], "}"}]}]], "Input", |

250 | CellChangeTimes->{{3.4289431681668463`*^9, 3.4289431694285183`*^9}}], |

251 | |

252 | Cell[BoxData[ |

253 | FormBox[ |

254 | RowBox[{"162", " ", "mw", " ", |

255 | SuperscriptBox[ |

256 | RowBox[{"(", |

257 | RowBox[{"1", "-", "x1"}], ")"}], "2"], " ", |

258 | SuperscriptBox[ |

259 | RowBox[{"(", |

260 | RowBox[{"1", "-", "x2"}], ")"}], "2"], " ", "\[CapitalGamma]", " ", |

261 | "\[Sigma]pw", " ", |

262 | RowBox[{ |

263 | InterpretationBox["\[Delta]", |

264 | DiracDelta, |

265 | Editable->False, |

266 | Selectable->False], "(", |

267 | RowBox[{ |

268 | SuperscriptBox["mw", "2"], "-", |

269 | FractionBox["s", |

270 | RowBox[{"x1", " ", "x2"}]]}], ")"}]}], TraditionalForm]], "Output", |

271 | CellChangeTimes->{3.428943155912224*^9}] |

272 | }, Open ]], |

273 | |

274 | Cell[CellGroupData[{ |

275 | |

276 | Cell[BoxData[ |

277 | RowBox[{"\[Sigma]", "=", |

278 | RowBox[{"Integrate", "[", |

279 | RowBox[{ |

280 | RowBox[{ |

281 | RowBox[{ |

282 | RowBox[{"u", "[", "x1", "]"}], |

283 | RowBox[{"d", "[", "x2", "]"}], "\[Sigma]pNW"}], "/.", |

284 | RowBox[{"{", |

285 | RowBox[{"sp", "\[Rule]", |

286 | RowBox[{"s", " ", "x1", " ", "x2"}]}], "}"}]}], ",", |

287 | RowBox[{"{", |

288 | RowBox[{"x1", ",", "0", ",", "1"}], "}"}], ",", |

289 | RowBox[{"Assumptions", "\[Rule]", |

290 | RowBox[{ |

291 | RowBox[{"(", |

292 | RowBox[{ |

293 | RowBox[{ |

294 | RowBox[{"mw", "^", "2"}], "/", "s"}], "<", "x2", "<", "1"}], ")"}], "&&", |

295 | |

296 | RowBox[{"(", |

297 | RowBox[{"mw", ">", "0"}], ")"}], "&&", |

298 | RowBox[{"(", |

299 | RowBox[{"s", ">", "0"}], ")"}]}]}]}], "]"}]}]], "Input", |

300 | CellChangeTimes->{{3.428942342103321*^9, 3.428942375261568*^9}, { |

301 | 3.428942406883278*^9, 3.428942462485826*^9}, {3.428942620176518*^9, |

302 | 3.428942620422737*^9}, {3.428943124604053*^9, 3.42894321367962*^9}}], |

303 | |

304 | Cell[BoxData[ |

305 | FormBox[ |

306 | FractionBox[ |

307 | RowBox[{"162", " ", "mw", " ", |

308 | SuperscriptBox[ |

309 | RowBox[{"(", |

310 | RowBox[{"x2", "-", "1"}], ")"}], "2"], " ", |

311 | SuperscriptBox[ |

312 | RowBox[{"(", |

313 | RowBox[{ |

314 | SuperscriptBox["mw", "2"], "-", |

315 | RowBox[{"s", " ", "x2"}]}], ")"}], "2"], " ", "\[CapitalGamma]", " ", |

316 | "\[Sigma]pw"}], |

317 | RowBox[{ |

318 | SuperscriptBox["s", "3"], " ", |

319 | SuperscriptBox["x2", "3"]}]], TraditionalForm]], "Output", |

320 | CellChangeTimes->{ |

321 | 3.428942400145671*^9, {3.4289424466850643`*^9, 3.428942465656705*^9}, |

322 | 3.4289425295180407`*^9, 3.428942621257402*^9, 3.428942755459882*^9, |

323 | 3.4289429048806868`*^9, 3.428943215227071*^9}] |

324 | }, Open ]], |

325 | |

326 | Cell["Integration in x2:", "Text", |

327 | CellChangeTimes->{{3.42894232586976*^9, 3.428942341099662*^9}, { |

328 | 3.428942481054343*^9, 3.428942481204427*^9}}], |

329 | |

330 | Cell[CellGroupData[{ |

331 | |

332 | Cell[BoxData[ |

333 | RowBox[{"\[Sigma]", "=", |

334 | RowBox[{ |

335 | RowBox[{ |

336 | RowBox[{"Integrate", "[", |

337 | RowBox[{"\[Sigma]", ",", |

338 | RowBox[{"{", |

339 | RowBox[{"x2", ",", |

340 | RowBox[{ |

341 | RowBox[{"mw", "^", "2"}], "/", "s"}], ",", "1"}], "}"}]}], "]"}], "//", |

342 | "Expand"}], "//", "Simplify"}]}]], "Input", |

343 | CellChangeTimes->{{3.428942483394573*^9, 3.42894252477667*^9}, { |

344 | 3.4289427584498053`*^9, 3.4289427585792522`*^9}, {3.428942966307247*^9, |

345 | 3.428942997247208*^9}, {3.428943223022503*^9, 3.428943273216826*^9}}], |

346 | |

347 | Cell[BoxData[ |

348 | FormBox[ |

349 | RowBox[{"-", |

350 | FractionBox[ |

351 | RowBox[{ |

352 | "162", " ", "mw", " ", "\[CapitalGamma]", " ", "\[Sigma]pw", " ", |

353 | RowBox[{"(", |

354 | RowBox[{ |

355 | RowBox[{ |

356 | RowBox[{"-", "3"}], " ", |

357 | SuperscriptBox["mw", "4"]}], "+", |

358 | RowBox[{"3", " ", |

359 | SuperscriptBox["s", "2"]}], "+", |

360 | RowBox[{ |

361 | RowBox[{"(", |

362 | RowBox[{ |

363 | SuperscriptBox["mw", "4"], "+", |

364 | RowBox[{"4", " ", "s", " ", |

365 | SuperscriptBox["mw", "2"]}], "+", |

366 | SuperscriptBox["s", "2"]}], ")"}], " ", |

367 | RowBox[{"log", "(", |

368 | FractionBox[ |

369 | SuperscriptBox["mw", "2"], "s"], ")"}]}]}], ")"}]}], |

370 | SuperscriptBox["s", "3"]]}], TraditionalForm]], "Output", |

371 | CellChangeTimes->{{3.428942519914587*^9, 3.428942553721361*^9}, |

372 | 3.428942628541798*^9, 3.428942765391282*^9, 3.428942937050954*^9, |

373 | 3.428942998707487*^9, {3.428943229928903*^9, 3.428943278718606*^9}}] |

374 | }, Open ]], |

375 | |

376 | Cell[CellGroupData[{ |

377 | |

378 | Cell[BoxData[ |

379 | RowBox[{"\[Sigma]pw", "=", |

380 | RowBox[{"\[Sigma]p", "/.", |

381 | RowBox[{"sp", "\[Rule]", |

382 | RowBox[{"mw", "^", "2"}]}]}]}]], "Input", |

383 | CellChangeTimes->{{3.428943280891795*^9, 3.428943298023265*^9}}], |

384 | |

385 | Cell[BoxData[ |

386 | FormBox[ |

387 | FractionBox[ |

388 | RowBox[{"4", " ", "\[Pi]"}], |

389 | RowBox[{"81", " ", |

390 | SuperscriptBox["mw", "2"]}]], TraditionalForm]], "Output", |

391 | CellChangeTimes->{{3.428943298212599*^9, 3.4289433089075317`*^9}}] |

392 | }, Open ]], |

393 | |

394 | Cell[CellGroupData[{ |

395 | |

396 | Cell[BoxData[ |

397 | RowBox[{ |

398 | RowBox[{"\[Sigma]", "//", "Expand"}], "//", "Simplify"}]], "Input", |

399 | CellChangeTimes->{{3.42894331467972*^9, 3.428943330039212*^9}}], |

400 | |

401 | Cell[BoxData[ |

402 | FormBox[ |

403 | RowBox[{"-", |

404 | FractionBox[ |

405 | RowBox[{"8", " ", "\[Pi]", " ", "\[CapitalGamma]", " ", |

406 | RowBox[{"(", |

407 | RowBox[{ |

408 | RowBox[{ |

409 | RowBox[{"-", "3"}], " ", |

410 | SuperscriptBox["mw", "4"]}], "+", |

411 | RowBox[{"3", " ", |

412 | SuperscriptBox["s", "2"]}], "+", |

413 | RowBox[{ |

414 | RowBox[{"(", |

415 | RowBox[{ |

416 | SuperscriptBox["mw", "4"], "+", |

417 | RowBox[{"4", " ", "s", " ", |

418 | SuperscriptBox["mw", "2"]}], "+", |

419 | SuperscriptBox["s", "2"]}], ")"}], " ", |

420 | RowBox[{"log", "(", |

421 | FractionBox[ |

422 | SuperscriptBox["mw", "2"], "s"], ")"}]}]}], ")"}]}], |

423 | RowBox[{"mw", " ", |

424 | SuperscriptBox["s", "3"]}]]}], TraditionalForm]], "Output", |

425 | CellChangeTimes->{{3.428943318260807*^9, 3.42894333060226*^9}}] |

426 | }, Open ]] |

427 | }, Open ]] |

428 | }, Open ]] |

429 | }, |

430 | WindowSize->{1280, 683}, |

431 | WindowMargins->{{0, Automatic}, {0, Automatic}}, |

432 | ShowSelection->True, |

433 | Magnification->1.5, |

434 | FrontEndVersion->"6.0 for Mac OS X x86 (32-bit) (April 20, 2007)", |

435 | StyleDefinitions->"Default.nb" |

436 | ] |

437 | (* End of Notebook Content *) |

438 | |

439 | (* Internal cache information *) |

440 | (*CellTagsOutline |

441 | CellTagsIndex->{} |

442 | *) |

443 | (*CellTagsIndex |

444 | CellTagsIndex->{} |

445 | *) |

446 | (*NotebookFileOutline |

447 | Notebook[{ |

448 | Cell[CellGroupData[{ |

449 | Cell[590, 23, 251, 5, 185, "Title"], |

450 | Cell[CellGroupData[{ |

451 | Cell[866, 32, 36, 0, 51, "Subsection"], |

452 | Cell[905, 34, 149, 3, 40, "Input"] |

453 | }, Open ]], |

454 | Cell[CellGroupData[{ |

455 | Cell[1091, 42, 113, 1, 100, "Section"], |

456 | Cell[1207, 45, 531, 12, 39, "Text"], |

457 | Cell[CellGroupData[{ |

458 | Cell[1763, 61, 574, 15, 40, "Input"], |

459 | Cell[2340, 78, 573, 17, 75, "Output"] |

460 | }, Open ]], |

461 | Cell[2928, 98, 469, 15, 287, "Text"], |

462 | Cell[CellGroupData[{ |

463 | Cell[3422, 117, 444, 10, 40, "Input"], |

464 | Cell[3869, 129, 511, 15, 79, "Output"] |

465 | }, Open ]], |

466 | Cell[4395, 147, 462, 14, 144, "Text"], |

467 | Cell[CellGroupData[{ |

468 | Cell[4882, 165, 403, 8, 49, "Input"], |

469 | Cell[5288, 175, 427, 11, 49, "Output"] |

470 | }, Open ]], |

471 | Cell[5730, 189, 144, 3, 39, "Text"] |

472 | }, Open ]], |

473 | Cell[CellGroupData[{ |

474 | Cell[5911, 197, 128, 1, 100, "Section"], |

475 | Cell[6042, 200, 140, 1, 39, "Text"], |

476 | Cell[6185, 203, 464, 16, 66, "Input"], |

477 | Cell[6652, 221, 365, 13, 115, "Text"], |

478 | Cell[7020, 236, 99, 1, 39, "Text"], |

479 | Cell[CellGroupData[{ |

480 | Cell[7144, 241, 304, 8, 40, "Input"], |

481 | Cell[7451, 251, 584, 19, 59, "Output"] |

482 | }, Open ]], |

483 | Cell[CellGroupData[{ |

484 | Cell[8072, 275, 948, 26, 64, "Input"], |

485 | Cell[9023, 303, 682, 19, 75, "Output"] |

486 | }, Open ]], |

487 | Cell[9720, 325, 148, 2, 39, "Text"], |

488 | Cell[CellGroupData[{ |

489 | Cell[9893, 331, 532, 13, 40, "Input"], |

490 | Cell[10428, 346, 954, 26, 83, "Output"] |

491 | }, Open ]], |

492 | Cell[CellGroupData[{ |

493 | Cell[11419, 377, 213, 5, 40, "Input"], |

494 | Cell[11635, 384, 225, 6, 67, "Output"] |

495 | }, Open ]], |

496 | Cell[CellGroupData[{ |

497 | Cell[11897, 395, 158, 3, 40, "Input"], |

498 | Cell[12058, 400, 815, 24, 83, "Output"] |

499 | }, Open ]] |

500 | }, Open ]] |

501 | }, Open ]] |

502 | } |

503 | ] |

504 | *) |

505 | |

506 | (* End of internal cache information *) |