1 | c--------couplings----second argument 1->W-, 2->w+, 3->Z, 4->gamma,
|
---|
2 | c----- 5->gammaZ
|
---|
3 | subroutine SetCouplings()
|
---|
4 | implicit none
|
---|
5 | integer nf,i,j
|
---|
6 | double precision couplings(-6:6,5), couplings3(-6:6,5),sthw
|
---|
7 | common/coupl/couplings
|
---|
8 | common/coupl3/couplings3
|
---|
9 | common/nflav/nf
|
---|
10 | sthw=0.2315d0
|
---|
11 | do i=-6,6
|
---|
12 | do j=1,5
|
---|
13 | couplings(i,j)=0d0
|
---|
14 | couplings3(i,j)=0d0
|
---|
15 | end do
|
---|
16 | end do
|
---|
17 | c---------- W- ------------------
|
---|
18 | do i=1,3
|
---|
19 | couplings(2*i,1)=2d0
|
---|
20 | couplings3(2*i,1)=2d0
|
---|
21 | couplings(-2*i+1,1)=2d0
|
---|
22 | couplings3(-2*i+1,1)=2d0
|
---|
23 | end do
|
---|
24 | c--------- W+ ------------------
|
---|
25 | do i=-6,6
|
---|
26 | couplings(i,2)=couplings(-i,1)
|
---|
27 | couplings3(i,2)=couplings3(-i,1)
|
---|
28 | end do
|
---|
29 | c---------gamma-----------------
|
---|
30 | do i=1,3
|
---|
31 | end do
|
---|
32 | c--------Z0--------------------
|
---|
33 | do i=1,3
|
---|
34 | couplings(2*i,3)=2d0*(1d0/4d0+(1d0/2d0-4d0/3d0*sthw)**2)
|
---|
35 | couplings(-2*i,3)=2d0*(1d0/4d0+(1d0/2d0-4d0/3d0*sthw)**2)
|
---|
36 | couplings(2*i-1,3)=2d0*(1d0/4d0+(1d0/2d0-2d0/3d0*sthw)**2)
|
---|
37 | couplings(-2*i+1,3)=2d0*(1d0/4d0+(1d0/2d0-2d0/3d0*sthw)**2)
|
---|
38 |
|
---|
39 | couplings3(2*i,3)=(1d0-8d0/3d0*sthw)
|
---|
40 | couplings3(-2*i,3)=(1d0-8d0/3d0*sthw)
|
---|
41 | couplings3(2*i-1,3)=(1d0-4d0/3d0*sthw)
|
---|
42 | couplings3(-2*i+1,3)=(1d0-4d0/3d0*sthw)
|
---|
43 | end do
|
---|
44 | do i=1,nf
|
---|
45 | do j=1,5
|
---|
46 | couplings(0,j)=couplings(0,j)+couplings(-i,j)+couplings(i,j)
|
---|
47 | couplings3(0,j)=couplings3(0,j)+couplings3(-i,j)+couplings3(i,j)
|
---|
48 | end do
|
---|
49 | end do
|
---|
50 | return
|
---|
51 | end
|
---|
52 |
|
---|
53 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
---|
54 | c--------------------------------------------------------------------------
|
---|
55 | c PDF gives the value of the parton density, i.e. q(x) instead of x q(x), with the coupling included
|
---|
56 |
|
---|
57 | subroutine PDF(x,q,f)
|
---|
58 | implicit none
|
---|
59 | integer i,v,f3c
|
---|
60 | double precision x,q,f(-6:6),couplings(-6:6,5),couplings3(-6:6,5)
|
---|
61 | common/coupl/couplings
|
---|
62 | common/coupl3/couplings3
|
---|
63 | common/vect/v
|
---|
64 | common/f3call/f3c
|
---|
65 | call Evolvepdf(x,q,f)
|
---|
66 | if (f3c.eq.0) then
|
---|
67 | do i=-6,6
|
---|
68 | f(i)=f(i)*couplings(i,v)/x
|
---|
69 | end do
|
---|
70 | else if(f3c.eq.1) then
|
---|
71 | do i=-6,6
|
---|
72 | f(i)=f(i)*couplings3(i,v)/x
|
---|
73 | end do
|
---|
74 | endif
|
---|
75 |
|
---|
76 | return
|
---|
77 | end
|
---|
78 |
|
---|
79 | double precision function pdfg(z)
|
---|
80 | implicit none
|
---|
81 | double precision z,x,q,f(-6:6)
|
---|
82 | common/pdfpar/x,q
|
---|
83 | call pdf(x/z,q,f)
|
---|
84 | pdfg=f(0)/z
|
---|
85 | return
|
---|
86 | end
|
---|
87 |
|
---|
88 | double precision function Sing(z)
|
---|
89 | implicit none
|
---|
90 | integer i,nf
|
---|
91 | common/nflav/nf
|
---|
92 | double precision z,x,Q, quark, antiq, f(-6:6)
|
---|
93 | common/pdfpar/x,q
|
---|
94 | call PDF(x/z,q,f)
|
---|
95 | quark=0d0
|
---|
96 | antiq=0d0
|
---|
97 | do i=1,nf
|
---|
98 | quark=quark+f(i)
|
---|
99 | antiq=antiq+f(-i)
|
---|
100 | end do
|
---|
101 | sing=(quark+antiq)/z
|
---|
102 | return
|
---|
103 | end
|
---|
104 |
|
---|
105 | double precision function NSing(z)
|
---|
106 | implicit none
|
---|
107 | integer i,nf
|
---|
108 | common/nflav/nf
|
---|
109 | double precision z,x,Q, quark, antiq, f(-6:6)
|
---|
110 | common/pdfpar/x,q
|
---|
111 | call PDF(x/z,q,f)
|
---|
112 | quark=0d0
|
---|
113 | antiq=0d0
|
---|
114 | do i=1,nf
|
---|
115 | quark=quark+f(i)
|
---|
116 | antiq=antiq+f(-i)
|
---|
117 | end do
|
---|
118 | nsing=(quark-antiq)/z
|
---|
119 | return
|
---|
120 | end
|
---|
121 |
|
---|
122 | double precision function SingReg(z)
|
---|
123 | implicit none
|
---|
124 | integer i,nf
|
---|
125 | common/nflav/nf
|
---|
126 | double precision z,x,Q, quark, antiq, f(-6:6)
|
---|
127 | common/pdfpar/x,q
|
---|
128 | quark=0d0
|
---|
129 | antiq=0d0
|
---|
130 | call PDF(x/z,q,f)
|
---|
131 | do i=1,nf
|
---|
132 | quark=quark+f(i)
|
---|
133 | antiq=antiq+f(-i)
|
---|
134 | end do
|
---|
135 | singreg=(quark+antiq)/z
|
---|
136 |
|
---|
137 | quark=0d0
|
---|
138 | antiq=0d0
|
---|
139 | call PDF(x,q,f)
|
---|
140 | do i=1,nf
|
---|
141 | quark=quark+f(i)
|
---|
142 | antiq=antiq+f(-i)
|
---|
143 | end do
|
---|
144 | singreg=singreg-(quark+antiq)
|
---|
145 | return
|
---|
146 | end
|
---|
147 |
|
---|
148 | double precision function NSingReg(z)
|
---|
149 | implicit none
|
---|
150 | integer i,nf
|
---|
151 | common/nflav/nf
|
---|
152 | double precision z,x,Q, quark, antiq, f(-6:6)
|
---|
153 | common/pdfpar/x,q
|
---|
154 | quark=0d0
|
---|
155 | antiq=0d0
|
---|
156 | call PDF(x/z,q,f)
|
---|
157 | do i=1,nf
|
---|
158 | quark=quark+f(i)
|
---|
159 | antiq=antiq+f(-i)
|
---|
160 | end do
|
---|
161 | nsingreg=(quark-antiq)/z
|
---|
162 |
|
---|
163 | quark=0d0
|
---|
164 | antiq=0d0
|
---|
165 | call PDF(x,q,f)
|
---|
166 | do i=1,nf
|
---|
167 | quark=quark+f(i)
|
---|
168 | antiq=antiq+f(-i)
|
---|
169 | end do
|
---|
170 | nsingreg=nsingreg-(quark-antiq)
|
---|
171 | return
|
---|
172 | end
|
---|
173 |
|
---|
174 |
|
---|
175 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
---|
176 | c--------------------------------------------------------------------------
|
---|
177 | c------------------------ FL ------------------------------------------
|
---|
178 |
|
---|
179 | c-----NLO----------------------------------------------------------
|
---|
180 |
|
---|
181 | double precision function CLNLOa(z)
|
---|
182 | implicit none
|
---|
183 | double precision z
|
---|
184 | clnloa=8d0/3d0 *z
|
---|
185 | return
|
---|
186 | end
|
---|
187 |
|
---|
188 | double precision function cLNLOga(z)
|
---|
189 | implicit none
|
---|
190 | double precision z
|
---|
191 | clnloga=2d0*z*(1d0-z)
|
---|
192 | return
|
---|
193 | end
|
---|
194 |
|
---|
195 | c-----NNLO---------------------------------------------------------
|
---|
196 | c------------------------------------------------------------------
|
---|
197 | c----------SINGLET-------------------------------------------------
|
---|
198 |
|
---|
199 | DOUBLE PRECISION FUNCTION CLNNLOSA(Y)
|
---|
200 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
201 | INTEGER NF
|
---|
202 | COMMON/NFLAV/NF
|
---|
203 | DL = LOG (Y)
|
---|
204 | DL1 = LOG (1.D0-Y)
|
---|
205 | CLNNLOSA = NF * ( (15.94D0 - 5.212D0 * Y) * (1.D0-Y)**2 * DL1
|
---|
206 | 1 + (0.421D0 + 1.520D0 * Y) * DL**2 + 28.09D0 * (1.D0-Y) * DL
|
---|
207 | 2 - (2.370D0/Y - 19.27D0) * (1.D0-Y)**3 )
|
---|
208 | RETURN
|
---|
209 | END
|
---|
210 |
|
---|
211 | DOUBLE PRECISION FUNCTION CLNNLOGA (Y)
|
---|
212 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
213 | DL = LOG (Y)
|
---|
214 | DL1 = LOG (1.D0-Y)
|
---|
215 | CLNNLOGA = ( (94.74D0 - 49.20D0 * Y) * (1.D0-Y) * DL1**2
|
---|
216 | 1 + 864.8D0 * (1.D0-Y) * DL1 + 1161.D0* Y * DL * DL1
|
---|
217 | 2 + 60.060 * Y * DL**2 + 39.66D0 * (1.D0-Y) * DL
|
---|
218 | 3 - 5.333D0 * (1.D0/Y - 1.D0) )
|
---|
219 | RETURN
|
---|
220 | END
|
---|
221 |
|
---|
222 | c-------------------------------------------------------------------
|
---|
223 | c---------NON SINGLET-----------------------------------------------
|
---|
224 | C-----CHARGED CURRENT--------------
|
---|
225 | DOUBLE PRECISION FUNCTION CLNNLONSA(Y)
|
---|
226 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
227 | INTEGER NF
|
---|
228 | COMMON/NFLAV/NF
|
---|
229 | DL = LOG (Y)
|
---|
230 | DL1 = LOG (1.D0-Y)
|
---|
231 | CLNNLONSA =
|
---|
232 | 1 - 52.27D0 + 100.8D0 * Y
|
---|
233 | 2 + (23.29D0 * Y - 0.043D0) * DL**2 - 22.21D0 * DL
|
---|
234 | 3 + 13.30D0 * DL1**2 - 59.12D0 * DL1 - 141.7D0 * DL * DL1
|
---|
235 | 4 + NF * 16.D0/27.D0 *
|
---|
236 | 5 ( 6.D0* Y*DL1 - 12.D0* Y*DL - 25.D0* Y + 6.D0)
|
---|
237 | RETURN
|
---|
238 | END
|
---|
239 |
|
---|
240 |
|
---|
241 | c--------------neutral current---------------
|
---|
242 | DOUBLE PRECISION FUNCTION CLNNLONSA_nc (Y)
|
---|
243 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
244 | INTEGER NF
|
---|
245 | COMMON/NFLAV/NF
|
---|
246 | DL = LOG (Y)
|
---|
247 | DL1 = LOG (1.D0-Y)
|
---|
248 | CLNNLONSA_NC =
|
---|
249 | 1 - 40.41D0 + 97.48D0
|
---|
250 | 2 + (26.56D0 * Y - 0.031D0) * DL**2 - 14.85D0 * DL
|
---|
251 | 3 + 13.62D0 * DL1**2 - 55.79D0 * DL1 - 150.5D0 * DL * DL1
|
---|
252 | 4 + NF * 16.D0/27.D0 * ( 6.D0* Y*DL1 - 12.D0* Y*DL - 25.* Y + 6.D0)
|
---|
253 | RETURN
|
---|
254 | END
|
---|
255 |
|
---|
256 |
|
---|
257 | DOUBLE PRECISION FUNCTION CLNNLONSC (Y)
|
---|
258 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
259 | integer v
|
---|
260 | common/vect/v
|
---|
261 | if (v.le.2) then
|
---|
262 | CLNNLONSC = -0.150D0
|
---|
263 | else
|
---|
264 | CLNNLONSC=-0.164d0
|
---|
265 | end if
|
---|
266 | RETURN
|
---|
267 | END
|
---|
268 |
|
---|
269 | double precision function intLnloA(z)
|
---|
270 | implicit none
|
---|
271 | double precision z,cLnloa,sing
|
---|
272 | intLnloa=cLnloA(z)*sing(z)
|
---|
273 | return
|
---|
274 | end
|
---|
275 |
|
---|
276 | double precision function intLnlogA(z)
|
---|
277 | implicit none
|
---|
278 | double precision z,cLnloga, pdfg
|
---|
279 | intLnloga=cLnloga(z)*pdfg(z)
|
---|
280 | return
|
---|
281 | end
|
---|
282 |
|
---|
283 | double precision function IntLNNLOsa(z)
|
---|
284 | implicit none
|
---|
285 | double precision z, clnnlosa, sing
|
---|
286 | intlnnlosa=clnnlosa(z)*sing(z)
|
---|
287 | return
|
---|
288 | end
|
---|
289 |
|
---|
290 | double precision function IntLNNLOga(z)
|
---|
291 | implicit none
|
---|
292 | double precision z, clnnloga, pdfg
|
---|
293 | intlnnloGa=clnnloGa(z)*pdfg(z)
|
---|
294 | return
|
---|
295 | end
|
---|
296 |
|
---|
297 | double precision function IntLNNLOnsa(z)
|
---|
298 | implicit none
|
---|
299 | double precision z, clnnlonsa,clnnlonsa_nc, nsing
|
---|
300 | integer v
|
---|
301 | common/vect/v
|
---|
302 | if(v.le.2) then
|
---|
303 | intlnnlonsa=clnnlonsa(z)*nsing(z)
|
---|
304 | else
|
---|
305 | intlnnlonsa=clnnlonsa_nc(z)*nsing(z)
|
---|
306 | end if
|
---|
307 | return
|
---|
308 | end
|
---|
309 |
|
---|
310 |
|
---|
311 | double precision function FL(x,q,ord,v,zz)
|
---|
312 | implicit none
|
---|
313 | double precision x,q,zz, f(-6:6), quark, antiq,alphaspdf,pi,eps
|
---|
314 | integer ord, nf,v,i,vv,f2,f1
|
---|
315 | double precision intlnloa, intlnloga
|
---|
316 | double precision intlnnlosa, intlnnloga, intlnnlonsa
|
---|
317 | double precision clnnlonsc
|
---|
318 | common/prec/eps
|
---|
319 | double precision xx,qq
|
---|
320 | common/pdfpar/xx,qq
|
---|
321 | common/nflav/nf
|
---|
322 | common/vect/vv
|
---|
323 | integer f3c
|
---|
324 | common/f3call/f3c
|
---|
325 | double precision z,z0
|
---|
326 | z=(1d0-eps-x)*zz +x
|
---|
327 | z0=zz*x
|
---|
328 |
|
---|
329 | f3c=0
|
---|
330 |
|
---|
331 | xx=x
|
---|
332 | qq=q
|
---|
333 | vv=v
|
---|
334 | if(1d0-x.lt.eps) then
|
---|
335 | fl=0d0
|
---|
336 | else
|
---|
337 |
|
---|
338 | quark=0d0
|
---|
339 | antiq=0d0
|
---|
340 | call pdf(x,q,f)
|
---|
341 | do i=1,nf
|
---|
342 | quark=quark+f(i)
|
---|
343 | antiq=antiq+f(-i)
|
---|
344 | end do
|
---|
345 |
|
---|
346 | pi=3.1415926535
|
---|
347 |
|
---|
348 | if (ord.eq.1) then
|
---|
349 | FL=0d0
|
---|
350 |
|
---|
351 | else if (ord.eq.2) then
|
---|
352 | fL=x*alphaspdf(q)/(4d0*pi)*2d0*(1d0-eps-x)*
|
---|
353 | 1 (intlnloa(z)+intlnloga(z))
|
---|
354 |
|
---|
355 | else if (ord.eq.3) then
|
---|
356 | fl=x*(alphaspdf(q)/(4d0*pi))**2* (
|
---|
357 | 1 (1d0-x-eps)*(intlnnlosa(z)+intlnnloga(z)
|
---|
358 | 2 +intlnnlonsa(z))
|
---|
359 | 3 +(quark-antiq)*cLnnlonsc(x)
|
---|
360 | 4 )
|
---|
361 |
|
---|
362 | endif
|
---|
363 | endif
|
---|
364 |
|
---|
365 | return
|
---|
366 | end
|
---|
367 |
|
---|
368 |
|
---|
369 |
|
---|
370 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
---|
371 | c--------------------------------------------------------------------------
|
---|
372 | c------------------------ F1 ------------------------------------------
|
---|
373 | cccc need to correct for NC
|
---|
374 |
|
---|
375 |
|
---|
376 | double precision function F1(x,q,ord,v,zz)
|
---|
377 | implicit none
|
---|
378 | double precision x,q,zz, f(-6:6), quark, antiq,alphaspdf,pi,eps
|
---|
379 | integer ord, nf,v,i,vv
|
---|
380 | common/prec/eps
|
---|
381 | double precision xx,qq
|
---|
382 | common/pdfpar/xx,qq
|
---|
383 | common/nflav/nf
|
---|
384 | common/vect/vv
|
---|
385 | double precision f2,fl
|
---|
386 | integer f3c
|
---|
387 | common/f3call/f3c
|
---|
388 | double precision z, z0
|
---|
389 | z=(1d0-eps-x)*zz +x
|
---|
390 | z0=zz*x
|
---|
391 | f3c=0
|
---|
392 |
|
---|
393 | xx=x
|
---|
394 | qq=q
|
---|
395 | vv=v
|
---|
396 | if(1d0-x.lt.eps) then
|
---|
397 | f1=0d0
|
---|
398 | else
|
---|
399 |
|
---|
400 | quark=0d0
|
---|
401 | antiq=0d0
|
---|
402 | call pdf(x,q,f)
|
---|
403 | do i=1,nf
|
---|
404 | quark=quark+f(i)
|
---|
405 | antiq=antiq+f(-i)
|
---|
406 | end do
|
---|
407 |
|
---|
408 | pi=3.1415926535
|
---|
409 |
|
---|
410 | if (ord.eq.1) then
|
---|
411 | F1=(quark+antiq)/2d0
|
---|
412 |
|
---|
413 | else if (ord.eq.2) then
|
---|
414 | f1=(f2(x,q,ord,v,zz)-fl(x,q,ord,v,zz))/ (2d0*x)
|
---|
415 |
|
---|
416 | else if (ord.eq.3) then
|
---|
417 | f1=(f2(x,q,ord,v,zz)-fl(x,q,ord,v,zz))/ (2d0*x)
|
---|
418 | endif
|
---|
419 |
|
---|
420 | endif
|
---|
421 | return
|
---|
422 | end
|
---|
423 |
|
---|
424 |
|
---|
425 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
---|
426 | c--------------------------------------------------------------------------
|
---|
427 | c------------------------ F2 ------------------------------------------
|
---|
428 |
|
---|
429 | double precision function C2NLOa(z)
|
---|
430 | implicit none
|
---|
431 | double precision z
|
---|
432 | C2NLOa= 4d0/3d0*( 3d0+2d0*z-(1d0+z)*log(1-z)
|
---|
433 | 1 -(1d0+z**2)/(1d0-z)*log(z))
|
---|
434 | return
|
---|
435 | end
|
---|
436 |
|
---|
437 | double precision function C2NLOb(z)
|
---|
438 | implicit none
|
---|
439 | double precision z
|
---|
440 | C2NLOb= 4d0/3d0*(2d0*log(1d0-z)/(1d0-z)-3d0/2d0 /(1d0-z) )
|
---|
441 | return
|
---|
442 | end
|
---|
443 |
|
---|
444 | double precision function C2NLOc(z)
|
---|
445 | implicit none
|
---|
446 | double precision z,pi
|
---|
447 | pi=3.1415926535
|
---|
448 | C2NLOc= -4d0/3d0*(pi**2/3d0+9d0/2d0 )
|
---|
449 | return
|
---|
450 | end
|
---|
451 |
|
---|
452 | double precision function C2NLOg(z)
|
---|
453 | implicit none
|
---|
454 | double precision z
|
---|
455 | c C2NLOg=1d0/2d0*z*( (z**2+(1-z)**2)*log((1-z)/z)-1d0+8*z*(1-z) )
|
---|
456 | C2NLOg=1d0/2d0*( (z**2+(1-z)**2)*log((1-z)/z)-1d0+8*z*(1-z) )
|
---|
457 | return
|
---|
458 | end
|
---|
459 |
|
---|
460 |
|
---|
461 | double precision FUNCTION C2NNLOSA(Y)
|
---|
462 | IMPLICIT double precision (A-Z)
|
---|
463 | INTEGER NF
|
---|
464 | COMMON/NFLAV/NF
|
---|
465 | DL = LOG (Y)
|
---|
466 | DL1 = LOG (1.d0-Y)
|
---|
467 | C2NNLOSA = NF * ( 5.290d0 * (1.d0/Y-1.d0) + 4.310d0 * DL**3
|
---|
468 | 1 - 2.086d0 * DL**2 + 39.78d0 * DL - 0.101d0 * (1.d0-Y) * DL1**3
|
---|
469 | 2 - (24.75d0 - 13.80d0 * Y) * DL**2 * DL1 + 30.23d0 * DL * DL1 )
|
---|
470 | RETURN
|
---|
471 | END
|
---|
472 |
|
---|
473 |
|
---|
474 | double precision FUNCTION C2NNLOGA (Y)
|
---|
475 | IMPLICIT double precision (A-Z)
|
---|
476 | DL = LOG (Y)
|
---|
477 | DL1 = LOG (1.D0-Y)
|
---|
478 | C2NNLOGA =
|
---|
479 | 1 ( 1.d0/Y * (11.90d0 + 1494.d0* DL1) + 5.319d0 * DL**3
|
---|
480 | 1 - 59.48d0 * DL**2 - 284.8d0 * DL + 392.4d0 - 1483.d0* DL1
|
---|
481 | 2 + (6.445d0 + 209.4d0 * (1.d0-Y)) * DL1**3 - 24.00d0 * DL1**2
|
---|
482 | 3 - 724.1d0 * DL**2 * DL1 - 871.8d0 * DL * DL1**2 )
|
---|
483 | RETURN
|
---|
484 | END
|
---|
485 |
|
---|
486 | double precision FUNCTION C2NNLOGC (Y)
|
---|
487 | IMPLICIT double precision (A-Z)
|
---|
488 | C2NNLOGC=-0.28d0
|
---|
489 | RETURN
|
---|
490 | END
|
---|
491 | c------------------NON SINGLET----------------------
|
---|
492 | c---------------charged current-----------------------
|
---|
493 | double precision function C2NNLONSA(Y)
|
---|
494 | IMPLICIT double precision (A-Z)
|
---|
495 | INTEGER NF
|
---|
496 | COMMON/NFLAV/NF
|
---|
497 | DL = LOG (Y)
|
---|
498 | DL1 = LOG (1.D0-Y)
|
---|
499 | C2NNLONSA = - 84.18d0 - 1010.d0* Y
|
---|
500 | 2 -3.748d0 * DL**3 - 19.56d0 * DL**2 - 1.235d0 * DL
|
---|
501 | 3 - 17.19d0 * DL1**3 + 71.08d0 * DL1**2 - 663.0d0 * DL1
|
---|
502 | 4 - 192.4d0 * DL * DL1**2 + 80.41d0 * DL**2 * DL1
|
---|
503 | 5 + NF * ( - 5.691d0 - 37.91d0 *Y
|
---|
504 | 6 + 2.244d0 * DL**2 + 5.770d0 * DL
|
---|
505 | 7 - 1.707d0* DL1**2 + 22.95d0 * DL1
|
---|
506 | 8 + 3.036d0 * DL**2 * DL1 + 17.97d0 * DL * DL1 )
|
---|
507 | RETURN
|
---|
508 | END
|
---|
509 |
|
---|
510 | DOUBLE PRECISION FUNCTION C2NNLONSB (Y)
|
---|
511 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
512 | INTEGER NF
|
---|
513 | COMMON/NFLAV/NF
|
---|
514 | DL1 = LOG (1.D0-Y)
|
---|
515 | DM = 1./(1.D0-Y)
|
---|
516 | C2NNLONSB =
|
---|
517 | 1 + 14.2222d0 * DL1**3 - 61.3333d0 * DL1**2- 31.105d0 * DL1
|
---|
518 | 2 + 188.64d0
|
---|
519 | 3 + NF * ( 1.77778d0 * DL1**2 - 8.5926d0 * DL1 + 6.3489 )
|
---|
520 | C2NNLONSB = DM * C2NNLONSB
|
---|
521 | RETURN
|
---|
522 | END
|
---|
523 |
|
---|
524 | DOUBLE PRECISION FUNCTION C2NNLONSC (Y)
|
---|
525 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
526 | INTEGER NF
|
---|
527 | COMMON/NFLAV/NF
|
---|
528 | DL1 = LOG (1.D0-Y)
|
---|
529 | C2NNLONSC =
|
---|
530 | 1 + 3.55555D0 * DL1**4 - 20.4444D0 * DL1**3 - 15.5525D0 * DL1**2
|
---|
531 | 2 + 188.64D0 * DL1 - 338.531D0 + 0.537D0
|
---|
532 | 3 + NF * (0.592593D0 * DL1**3 - 4.2963D0 * DL1**2
|
---|
533 | 4 + 6.3489D0 * DL1 + 46.844D0 - 0.0035D0)
|
---|
534 | RETURN
|
---|
535 | END
|
---|
536 |
|
---|
537 | c------------------------ neutral current
|
---|
538 | DOUBLE PRECISION FUNCTION C2NNLONSA_NC (Y)
|
---|
539 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
540 | INTEGER NF
|
---|
541 | COMMON/NFLAV/NF
|
---|
542 | DL = LOG (Y)
|
---|
543 | DL1 = LOG (1.D0-Y)
|
---|
544 | C2NNLONSA_NC =
|
---|
545 | 1 - 69.59D0 - 1008.D0* Y
|
---|
546 | 2 - 2.835D0 * DL**3 - 17.08D0 * DL**2 + 5.986D0 * DL
|
---|
547 | 3 - 17.19D0 * DL1**3 + 71.08D0 * DL1**2 - 660.7D0 * DL1
|
---|
548 | 4 - 174.8D0 * DL * DL1**2 + 95.09D0 * DL**2 * DL1
|
---|
549 | 5 + NF * ( - 5.691D0 - 37.91D0 * Y
|
---|
550 | 6 + 2.244D0 * DL**2 + 5.770D0 * DL
|
---|
551 | 7 - 1.707D0 * DL1**2 + 22.95D0 * DL1
|
---|
552 | 8 + 3.036D0 * DL**2 * DL1 + 17.97D0 * DL * DL1 )
|
---|
553 | RETURN
|
---|
554 | END
|
---|
555 |
|
---|
556 |
|
---|
557 | DOUBLE PRECISION FUNCTION C2NNLONSC_NC (Y)
|
---|
558 | IMPLICIT REAL*8 (A-Z)
|
---|
559 | INTEGER NF
|
---|
560 | COMMON/NFLAV/NF
|
---|
561 | DL1 = LOG (1.D0-Y)
|
---|
562 | C2NNLONSC_NC =
|
---|
563 | 1 + 3.55555D0 * DL1**4 - 20.4444D0 * DL1**3 - 15.5525D0 * DL1**2
|
---|
564 | 2 + 188.64D0 * DL1 - 338.531D0 + 0.485D0
|
---|
565 | 3 + NF * (0.592593D0 * DL1**3 - 4.2963D0 * DL1**2
|
---|
566 | 4 + 6.3489D0 * DL1 + 46.844D0 - 0.0035D0)
|
---|
567 | RETURN
|
---|
568 | END
|
---|
569 |
|
---|
570 |
|
---|
571 | c--------------------------------
|
---|
572 | c--------------------------------
|
---|
573 | c--------------------------------
|
---|
574 | double precision function Int2NLOa(z)
|
---|
575 | implicit none
|
---|
576 | doubLe precision z,c2nloa,sing
|
---|
577 | int2nloa=c2nloa(z)*sing(z)
|
---|
578 | return
|
---|
579 | end
|
---|
580 |
|
---|
581 | double precision function Int2NLOb(z)
|
---|
582 | implicit none
|
---|
583 | doubLe precision z,c2nlob,singreg
|
---|
584 | int2nlob=c2nlob(z)*singreg(z)
|
---|
585 | return
|
---|
586 | end
|
---|
587 |
|
---|
588 | double precision function Int2NLOg(z)
|
---|
589 | implicit none
|
---|
590 | double precision z,c2nlog,pdfg
|
---|
591 | int2nlog=c2nlog(z)*pdfg(z)
|
---|
592 | return
|
---|
593 | end
|
---|
594 |
|
---|
595 | double precision function Int2NNLOsA(z)
|
---|
596 | implicit none
|
---|
597 | double precision z,sing, c2nnlosa
|
---|
598 | int2nnlosa=sing(z)*c2nnlosa(z)
|
---|
599 | return
|
---|
600 | end
|
---|
601 |
|
---|
602 | double precision function Int2NNLOgA(z)
|
---|
603 | implicit none
|
---|
604 | double precision z,pdfg, c2nnloga
|
---|
605 | int2nnloga=pdfg(z)*c2nnloga(z)
|
---|
606 | return
|
---|
607 | end
|
---|
608 |
|
---|
609 | double precision function Int2NNLOnsA(z)
|
---|
610 | implicit none
|
---|
611 | double precision z,nsing, c2nnlonsa, c2nnlonsa_nc
|
---|
612 | integer v
|
---|
613 | if (v.le.2) then
|
---|
614 | int2nnlonsa=nsing(z)*c2nnlonsa(z)
|
---|
615 | else
|
---|
616 | int2nnlonsa=nsing(z)*c2nnlonsa_nc(z)
|
---|
617 | end if
|
---|
618 | return
|
---|
619 | end
|
---|
620 |
|
---|
621 | double precision function Int2NNLOnsB(z)
|
---|
622 | implicit none
|
---|
623 | double precision z,nsingreg, c2nnlonsB
|
---|
624 | int2nnlonsb=nsingreg(z)*c2nnlonsB(z)
|
---|
625 | return
|
---|
626 | end
|
---|
627 |
|
---|
628 |
|
---|
629 | cccc need to correct for NC
|
---|
630 | double precision function F2(x,q,ord,v,zz)
|
---|
631 | implicit none
|
---|
632 | double precision x,q,zz, f(-6:6), quark, antiq,alphaspdf,pi,eps,
|
---|
633 | 1 c2nnlogc,c2nnlonsc,c2nnlonsc_nc,c2nnlonscVAL
|
---|
634 | integer ord, nf,v,i,vv
|
---|
635 | double precision int2nloa,int2nlob, c2nlob,c2nloc, int2nlog
|
---|
636 | double precision int2nnlosa,int2nnloga,
|
---|
637 | 1 int2nnlonsa, int2nnlonsb
|
---|
638 | common/prec/eps
|
---|
639 | double precision xx,qq
|
---|
640 | common/pdfpar/xx,qq
|
---|
641 | common/nflav/nf
|
---|
642 | common/vect/vv
|
---|
643 | integer f3c
|
---|
644 | common/f3call/f3c
|
---|
645 | double precision z,z0
|
---|
646 | z=(1d0-eps-x)*zz +x
|
---|
647 | z0=zz*x
|
---|
648 | f3c=0
|
---|
649 |
|
---|
650 |
|
---|
651 | xx=x
|
---|
652 | qq=q
|
---|
653 | vv=v
|
---|
654 | if(1d0-x.lt.eps) then
|
---|
655 | f2=0d0
|
---|
656 | else
|
---|
657 |
|
---|
658 | quark=0d0
|
---|
659 | antiq=0d0
|
---|
660 | call pdf(x,q,f)
|
---|
661 | do i=1,nf
|
---|
662 | quark=quark+f(i)
|
---|
663 | antiq=antiq+f(-i)
|
---|
664 | end do
|
---|
665 |
|
---|
666 | pi=3.1415926535
|
---|
667 |
|
---|
668 | if (ord.eq.1) then
|
---|
669 | F2=x*(quark+antiq)
|
---|
670 |
|
---|
671 | else if (ord.eq.2) then
|
---|
672 | f2=alphaspdf(q)/(4d0*pi)*2d0*x*((1d0-eps-x)*
|
---|
673 | 1 (int2nloa(z)+int2nlob(z) +int2nlog(z))
|
---|
674 | 2 -x*(quark+antiq)*c2nlob(z0)
|
---|
675 | 3 +(quark+antiq)*c2nloc(z)
|
---|
676 | 1 )
|
---|
677 |
|
---|
678 | else if (ord.eq.3) then
|
---|
679 | if (v.le.2) then
|
---|
680 | c2nnlonscVAL=c2nnlonsc(x)
|
---|
681 | else
|
---|
682 | c2nnlonscVAL=c2nnlonsc_nc(x)
|
---|
683 | end if
|
---|
684 | f2=(alphaspdf(q)/(4d0*pi))**2 *x*(
|
---|
685 | 1 (1d0-eps-x)*( int2nnlosa(z)+int2nnloga(z)
|
---|
686 | 2 + int2nnlonsa(z)+int2nnlonsb(z))
|
---|
687 | 3 + f(0)*c2nnlogc(x)
|
---|
688 | 4 + (quark-antiq)*c2nnlonscVAL
|
---|
689 | 5 )
|
---|
690 | endif
|
---|
691 |
|
---|
692 | endif
|
---|
693 | return
|
---|
694 | end
|
---|
695 |
|
---|
696 |
|
---|
697 |
|
---|
698 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc--------------------------------------------------------------------------
|
---|
699 | c------------------------ F3 ------------------------------------------
|
---|
700 |
|
---|
701 | double precision function C3NLOb(z)
|
---|
702 | implicit none
|
---|
703 | double precision z,c2nlob
|
---|
704 | c3nlob=c2nlob(z)
|
---|
705 | return
|
---|
706 | end
|
---|
707 |
|
---|
708 | double precision function C3NLOa(z)
|
---|
709 | implicit none
|
---|
710 | double precision z, c2nloa
|
---|
711 | c3nloa=c2nloa(z)-4d0/3d0 *(1d0+z)
|
---|
712 | return
|
---|
713 | end
|
---|
714 |
|
---|
715 | DOUBLE PRECISION FUNCTION C3NNLOSUMA (Y)
|
---|
716 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
717 | INTEGER NF
|
---|
718 | COMMON/NFLAV/NF
|
---|
719 | DL = LOG (Y)
|
---|
720 | DL1 = LOG (1.D0-Y)
|
---|
721 | C3NNLOSUMA =
|
---|
722 | 1 - 206.1D0 - 576.8D0 * Y
|
---|
723 | 2 - 3.922D0 * DL**3 - 33.31D0 * DL**2 - 67.60D0 * DL
|
---|
724 | 3 - 15.20D0 * DL1**3 + 94.61D0 * DL1**2 - 409.6D0 * DL1
|
---|
725 | 4 - 147.9D0 * DL * DL1**2
|
---|
726 | 5 + NF * ( - 6.337D0 - 14.97D0 * Y
|
---|
727 | 6 + 2.207D0 * DL**2 + 8.683D0 * DL
|
---|
728 | 7 + 0.042D0 * DL1**3 - 0.808D0 * DL1**2 + 25.00D0 * DL1
|
---|
729 | 8 + 9.684D0 * DL * DL1 )
|
---|
730 | RETURN
|
---|
731 | END
|
---|
732 |
|
---|
733 |
|
---|
734 | DOUBLE PRECISION FUNCTION C3NNLODIFA (Y)
|
---|
735 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
736 | INTEGER NF
|
---|
737 | COMMON/NFLAV/NF
|
---|
738 | DL = LOG (Y)
|
---|
739 | DL1 = LOG (1.-Y)
|
---|
740 | C3NNLODIFA =
|
---|
741 | 1 - 242.9D0 - 467.2D0 * Y
|
---|
742 | 2 - 3.049D0 * DL**3 - 30.14D0 * DL**2 - 79.14D0 * DL
|
---|
743 | 3 - 15.20D0 * DL1**3 + 94.61D0 * DL1**2 - 396.1D0 * DL1
|
---|
744 | 4 - 92.43D0 * DL * DL1**2
|
---|
745 | 5 + NF * ( - 6.337D0 - 14.97D0 * Y
|
---|
746 | 6 + 2.207D0 * DL**2 + 8.683D0 * DL
|
---|
747 | 7 + 0.042D0 * DL1**3 - 0.808D0 * DL1**2 + 25.00D0 * DL1
|
---|
748 | 8 + 9.684D0 * DL * DL1 )
|
---|
749 | RETURN
|
---|
750 | END
|
---|
751 |
|
---|
752 | DOUBLE PRECISION FUNCTION C3NNLOSUMC (Y)
|
---|
753 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
754 | INTEGER NF
|
---|
755 | COMMON/NFLAV/NF
|
---|
756 | DL1 = LOG (1.D0-Y)
|
---|
757 | C3NNLOSUMC =
|
---|
758 | 1 + 3.55555D0 * DL1**4 - 20.4444D0 * DL1**3 - 15.5525D0 * DL1**2
|
---|
759 | 2 + 188.64D0 * DL1 - 338.531D0 - 0.104D0
|
---|
760 | 3 + NF * (0.592593D0 * DL1**3 - 4.2963D0 * DL1**2
|
---|
761 | 4 + 6.3489D0 * DL1 + 46.844D0 + 0.013D0)
|
---|
762 | RETURN
|
---|
763 | END
|
---|
764 |
|
---|
765 |
|
---|
766 | DOUBLE PRECISION FUNCTION C3NNLODIFC (Y)
|
---|
767 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
768 | INTEGER NF
|
---|
769 | COMMON/NFLAV/NF
|
---|
770 | DL1 = LOG (1D0-Y)
|
---|
771 | C3NNLODIFC =
|
---|
772 | 1 + 3.55555D0 * DL1**4 - 20.4444D0 * DL1**3 - 15.5525D0 * DL1**2
|
---|
773 | 2 + 188.64D0 * DL1 - 338.531D0 - 0.104D0
|
---|
774 | 3 + NF * (0.592593D0 * DL1**3 - 4.2963D0 * DL1**2
|
---|
775 | 4 + 6.3489D0 * DL1 + 46.844D0 + 0.013D0)
|
---|
776 | RETURN
|
---|
777 | END
|
---|
778 |
|
---|
779 | DOUBLE PRECISION FUNCTION C3NNLOB(Y)
|
---|
780 | IMPLICIT DOUBLE PRECISION (A-Z)
|
---|
781 | INTEGER NF
|
---|
782 | COMMON/NFLAV/NF
|
---|
783 | DL1 = LOG (1.-Y)
|
---|
784 | DM = 1./(1.-Y)
|
---|
785 | C3NNLOB =
|
---|
786 | 1 + 14.2222D0 * DL1**3 - 61.3333D0 * DL1**2 - 31.105D0 * DL1
|
---|
787 | 2 + 188.64D0
|
---|
788 | 3 + NF * ( 1.77778D0 * DL1**2 - 8.5926D0 * DL1 + 6.3489D0 )
|
---|
789 | C3NNLOB = DM * C3NNLOB
|
---|
790 | RETURN
|
---|
791 | END
|
---|
792 |
|
---|
793 | double precision function int3nloB(z)
|
---|
794 | implicit none
|
---|
795 | double precision z,c3nlob,nsingreg
|
---|
796 | int3nlob=c3nlob(z)*nsingreg(z)
|
---|
797 | return
|
---|
798 | end
|
---|
799 |
|
---|
800 | double precision function int3nloA(z)
|
---|
801 | implicit none
|
---|
802 | double precision z,c3nloa,nsing
|
---|
803 | int3nloa=c3nloA(z)*nsing(z)
|
---|
804 | return
|
---|
805 | end
|
---|
806 |
|
---|
807 | double precision function int3nnloB(z)
|
---|
808 | implicit none
|
---|
809 | double precision z,c3nnlob,nsingreg
|
---|
810 | int3nnlob=c3nnlob(z)*nsingreg(z)
|
---|
811 | return
|
---|
812 | end
|
---|
813 |
|
---|
814 | double precision function int3nnloA(z)
|
---|
815 | implicit none
|
---|
816 | integer v
|
---|
817 | double precision z,c3nnloa,c3nnlosuma, c3nnlodifa,nsing
|
---|
818 | common/vect/v
|
---|
819 | if ((v.eq.1).or.(v.ge.3)) then
|
---|
820 | c3nnloa=(c3nnlosuma(z)+c3nnlodifa(z))/2d0
|
---|
821 | else if(v.eq.2) then
|
---|
822 | c3nnloa=(c3nnlosuma(z)-c3nnlodifa(z))/2d0
|
---|
823 | end if
|
---|
824 | int3nnloa=c3nnloA*nsing(z)
|
---|
825 | return
|
---|
826 | end
|
---|
827 |
|
---|
828 |
|
---|
829 |
|
---|
830 | cccc need to correct for NC
|
---|
831 | double precision function F3(x,q,ord,v,zz)
|
---|
832 | implicit none
|
---|
833 | double precision x,q,zz,f(-6:6),quark,antiq,alphaspdf,pi,eps,
|
---|
834 | 1 c3nnloc, c3nnlodifc, c3nnlosumc
|
---|
835 | integer ord, nf,v,i,vv
|
---|
836 | double precision int3nloa, int3nlob, c3nlob,c2nloc
|
---|
837 | double precision int3nnloa, int3nnlob
|
---|
838 | common/prec/eps
|
---|
839 | double precision xx,qq
|
---|
840 | common/pdfpar/xx,qq
|
---|
841 | common/nflav/nf
|
---|
842 | common/vect/vv
|
---|
843 | integer f3c
|
---|
844 | common/f3call/f3c
|
---|
845 | double precision z,z0
|
---|
846 | z=(1d0-eps-x)*zz +x
|
---|
847 | z0=zz*x
|
---|
848 | f3c=1
|
---|
849 |
|
---|
850 |
|
---|
851 | xx=x
|
---|
852 | qq=q
|
---|
853 | vv=v
|
---|
854 | if(1d0-x.lt.eps) then
|
---|
855 | f3=0d0
|
---|
856 | else
|
---|
857 |
|
---|
858 | if (v.eq.4) then
|
---|
859 | f3=0d0
|
---|
860 | else
|
---|
861 |
|
---|
862 | quark=0d0
|
---|
863 | antiq=0d0
|
---|
864 | call pdf(x,q,f)
|
---|
865 | do i=1,nf
|
---|
866 | quark=quark+f(i)
|
---|
867 | antiq=antiq+f(-i)
|
---|
868 | end do
|
---|
869 |
|
---|
870 | pi=3.1415926535
|
---|
871 |
|
---|
872 | if (ord.eq.1) then
|
---|
873 | F3=(quark-antiq)
|
---|
874 |
|
---|
875 | else if (ord.eq.2) then
|
---|
876 | f3=alphaspdf(q)/(4d0*pi)*2d0*(
|
---|
877 | 1 (1d0-eps-x)*(int3nloa(z)+int3nlob(z))
|
---|
878 | 2 -x*(quark-antiq)*c3nlob(z0)
|
---|
879 | 3 +(quark-antiq)*c2nloc(z)
|
---|
880 | 4 )
|
---|
881 |
|
---|
882 | else if (ord.eq.3) then
|
---|
883 | if ((v.eq.1).or.(v.ge.3)) then
|
---|
884 | c3nnloc=(c3nnlosumc(x)+c3nnlodifc(x))/2d0
|
---|
885 | else if(v.eq.2) then
|
---|
886 | c3nnloc=(c3nnlosumc(x)-c3nnlodifc(x))/2d0
|
---|
887 | end if
|
---|
888 | f3=(alphaspdf(q)/(4d0*pi))**2 *(
|
---|
889 | 1 (1d0-eps-x)*(int3nnloa(z) +int3nnlob(z))
|
---|
890 | 2 + (quark-antiq)*c3nnloc
|
---|
891 | 3 )
|
---|
892 |
|
---|
893 |
|
---|
894 | c 1 daind(x,1d0, int3nnloa,eps,key,maxcnt,cnt, err )
|
---|
895 | c 2 +daind(x,1d0, int3nnlob,eps,key,maxcnt,cnt, err )
|
---|
896 | c 3 + (quark-antiq)*c3nnloc
|
---|
897 | c 4 )
|
---|
898 | endif
|
---|
899 |
|
---|
900 | endif
|
---|
901 | endif
|
---|
902 | return
|
---|
903 | end
|
---|