1 | %\documentclass[twocolumn,superscriptaddress,showpacs,showkeys]{revtex4}
|
---|
2 | \documentclass[a4paper,12pt]{article} % JHEP3
|
---|
3 |
|
---|
4 | \usepackage{graphicx}
|
---|
5 | \usepackage[latin1]{inputenc}
|
---|
6 | %\usepackage[english]{babel}
|
---|
7 | \usepackage{amssymb}
|
---|
8 | \usepackage{amsmath}
|
---|
9 | \usepackage{epsfig}
|
---|
10 |
|
---|
11 |
|
---|
12 | %\parskip 2mm plus 2mm minus 1mm % Add space between paragraphs
|
---|
13 | %\renewcommand{\topfraction}{1.0} % These three commands assure that floats
|
---|
14 | %\renewcommand{\bottomfraction}{1.0} % (figures, tables) can cover a whole page
|
---|
15 | %\renewcommand{\textfraction}{0.0} % and no text is required
|
---|
16 |
|
---|
17 | %\def\lsim{\mathrel{\rlap{\lower4pt\hbox{\hskip1pt$\sim$}}
|
---|
18 | % \raise1pt\hbox{$<$}}} %less than or approx. symbol
|
---|
19 | %\def\gsim{\mathrel{\rlap{\lower4pt\hbox{\hskip1pt$\sim$}}
|
---|
20 | % \raise1pt\hbox{$>$}}} %greater than or approx. symbol
|
---|
21 |
|
---|
22 | \def\lsim{\:\raisebox{-0.5ex}{$\stackrel{\textstyle<}{\sim}$}\:}
|
---|
23 | \def\gsim{\:\raisebox{-0.5ex}{$\stackrel{\textstyle>}{\sim}$}\:}
|
---|
24 |
|
---|
25 | \newcommand{\ie}{{\it i.e.}}
|
---|
26 | \newcommand{\eg}{{\it e.g.}}
|
---|
27 | \newcommand{\etal}{{\it et al.}}
|
---|
28 | \newcommand{\pythia}{{\sc Pythia}}
|
---|
29 | \newcommand{\herwig}{{\sc Herwig}}
|
---|
30 |
|
---|
31 | \newcommand{\be}{\begin{equation}}
|
---|
32 | \newcommand{\ee}{\end{equation}}
|
---|
33 | \newcommand{\ba}{\begin{eqnarray}}
|
---|
34 | \newcommand{\ea}{\end{eqnarray}}
|
---|
35 | \newcommand{\bt}{\begin{tabular}}
|
---|
36 | \newcommand{\et}{\end{tabular}}
|
---|
37 | \newcommand{\bfig}{\begin{figure}}
|
---|
38 | \newcommand{\efig}{\end{figure}}
|
---|
39 |
|
---|
40 | \newcommand{\bbar}{\bar b}
|
---|
41 | \newcommand{\tbar}{\bar t}
|
---|
42 | \newcommand{\pT}{p_{\perp}}
|
---|
43 | \newcommand{\pt}[1]{p_{\perp, #1}}
|
---|
44 | \newcommand{\mt}[1]{m_{\perp, #1}}
|
---|
45 | \newcommand{\abs}[1]{\left|#1\right|}
|
---|
46 | \newcommand{\gives}{\ensuremath\Longrightarrow}
|
---|
47 | \newcommand{\bigfrac}{\displaystyle\frac}
|
---|
48 | \newcommand{\smallfrac}{\textstyle\frac}
|
---|
49 |
|
---|
50 | \newcommand{\GeV}{\mathrm{\;GeV}}
|
---|
51 | \newcommand{\MeV}{\mathrm{\;MeV}}
|
---|
52 |
|
---|
53 |
|
---|
54 | %\preprint{TSL/ISV-2004-0282\\
|
---|
55 | %September 2004}
|
---|
56 |
|
---|
57 | \title{Effects of jet matching in production of new heavy particles at
|
---|
58 | the LHC}
|
---|
59 | \date{\today}
|
---|
60 | \author{Johan Alwall\footnote{Research supported by the Swedish Research Council}\\
|
---|
61 | Stanford Linear Accelerator Center, 2575 Sand Hill Rd, Menlo Park,
|
---|
62 | CA 94025, USA\\
|
---|
63 | E-mail: \email{awall@slac.stanford.edu}}
|
---|
64 | \author{Simon de Visscher\\
|
---|
65 | Universit\'e de Louvain\\
|
---|
66 | E-mail: \email{simon.devisscher@ulouvain.be}}
|
---|
67 | \author{Fabio Maltoni\\
|
---|
68 | Universit\'e de Louvain\\
|
---|
69 | E-mail: \email{fabio.maltoni@ulouvain.be}}
|
---|
70 |
|
---|
71 | %\abstract{
|
---|
72 | %
|
---|
73 | %}
|
---|
74 |
|
---|
75 |
|
---|
76 | %\keywords{Supersymmetry, Beyond the Standard Model, LHC, QCD, jet matching}
|
---|
77 |
|
---|
78 |
|
---|
79 | \begin{document}
|
---|
80 | %%%%%%%%%%%%%%%%%%%%%%%
|
---|
81 | \section{Introduction}
|
---|
82 | %%%%%%%%%%%%%%%%%%%%%%%
|
---|
83 |
|
---|
84 | Many models for physics beyond the Standard Model, notably
|
---|
85 | Supersymmetry, Little Higgs models, many models for extra dimensions
|
---|
86 | and many versions of technicolor models, contain new strongly
|
---|
87 | interacting particles with masses below or near the TeV scale. Such
|
---|
88 | particles, if they exist, will be copiously produced at the LHC, and
|
---|
89 | will be the first and most important sign of new physics. By analyzing
|
---|
90 | the production and decay of these particles, we might already in the
|
---|
91 | first few years of the LHC be able to determine many properties of the
|
---|
92 | new physics present in nature, including parts of the particle
|
---|
93 | spectrum, spin structure and the existance of new stable particles.
|
---|
94 |
|
---|
95 | One additional difficulty in the simulation of production of heavy
|
---|
96 | particles at hadron colliders is the presence of additional QCD
|
---|
97 | radiation. This radiation, which is even more important in the
|
---|
98 | production of strongly interacting particles than for color neutral
|
---|
99 | particles, affects the event kinematics by giving transverse boosts to
|
---|
100 | the produced particle system. It also produces additional jets besides
|
---|
101 | the jets originating from the decay of the heavy particles.
|
---|
102 |
|
---|
103 | Additional jet production has traditionally been simulated using
|
---|
104 | parton shower Monte Carlo programs such as \pythia\ and \herwig, which
|
---|
105 | describe parton radiation as successive parton emissions using the
|
---|
106 | soft and collinear limit. This description is formally correct only in
|
---|
107 | the limit of soft and collinear emissions, but has been shown to give
|
---|
108 | a good description of much data also relatively far away from this
|
---|
109 | limit. However, for the production of hard and widely separated extra
|
---|
110 | jets, this description breaks down due to the lack of subleading terms
|
---|
111 | and interference. For that case, it is necessary to use the full
|
---|
112 | matrix element for the heavy particle production plus additional
|
---|
113 | jets.
|
---|
114 |
|
---|
115 | The matrix element description diverges
|
---|
116 | as jets become soft or collinear, while the parton shower description
|
---|
117 | breaks down when jets become hard and widely separated. In order to
|
---|
118 | describe both these areas in phase space, these two desriptions must
|
---|
119 | be combined, without double counting between different jet
|
---|
120 | multiplicities. An additional requirement is that this procedure gives
|
---|
121 | smooth distributions, and interpolates between the parton shower
|
---|
122 | description in the soft and collinear limits and the matrix element
|
---|
123 | description in the limit of hard and widely separated jets. Several
|
---|
124 | such procedures have been produced, including the CKKW, L\"onnblad and
|
---|
125 | Mangano schemes. These different procedures seem to all give
|
---|
126 | consistent results (see comparison).
|
---|
127 |
|
---|
128 | For Standard Model processes, in particular the production of
|
---|
129 | weak vector bosons and top quark pairs plus additional jets, such
|
---|
130 | matching has been used extensively since several years.
|
---|
131 |
|
---|
132 | In this paper we will argue that there are many situations in which it
|
---|
133 | is necessary to use jet matching also for the production of new heavy
|
---|
134 | particles, in order to get a sufficiently precise description. We will
|
---|
135 | study the impact of additional jet radiation on the kinematical
|
---|
136 | distributions traditionally used to determine mass scales of the new
|
---|
137 | physics, as well as extract the ...
|
---|
138 |
|
---|
139 |
|
---|
140 | Wishlist: Effect of additional radiation on
|
---|
141 | \begin{itemize}
|
---|
142 | \item
|
---|
143 | Variation of effect depending on masses of strong particles
|
---|
144 | \item
|
---|
145 | Variation of effect depending on type of strong particles ($\tilde
|
---|
146 | g\tilde g$, $\tilde q-\tilde q$, $\tilde q-\tilde q*$, $\tilde q-\tilde g$
|
---|
147 | \item
|
---|
148 | Variation of effect depending on masses of decay products (including
|
---|
149 | the degenerate limit)
|
---|
150 | \item
|
---|
151 | Possibility to make one tune of Pythia to describe all particle masses
|
---|
152 | \item
|
---|
153 | $H_T$, $m_{T2}$
|
---|
154 | \item
|
---|
155 | Edges and endpoints (for mass determination)
|
---|
156 | \item
|
---|
157 | Possibility for radiation to mimic strongly decaying particles
|
---|
158 | (gluinos \gives squarks, squarks \gives gluinos)
|
---|
159 | \end{itemize}
|
---|
160 |
|
---|
161 |
|
---|
162 | \section{Jet matching methods}
|
---|
163 |
|
---|
164 | \section{Extra jet radiation in different scenarios}
|
---|
165 |
|
---|
166 | \section{Effects on inclusive observables}
|
---|
167 |
|
---|
168 | \section{Mimicking of decays by extra jets}
|
---|
169 |
|
---|
170 | \section{Conclusions}
|
---|
171 |
|
---|
172 | \end{document}
|
---|
173 |
|
---|