SchoolTaipei2: Taipei-FR-MG-2013-diagonalized.fr

File Taipei-FR-MG-2013-diagonalized.fr, 5.0 KB (added by Johan Alwall, 11 years ago)

FeynRules model file for model used in FeynRules tutorial

Line 
1(**********************************************************************************)
2(**********************************************************************************)
3(* Model files for Taipei FeynRules MadGraph school 2013 *)
4(**********************************************************************************)
5(**********************************************************************************)
6
7
8
9
10(**********************************************************************************)
11(* New Model Info *)
12(**********************************************************************************)
13
14M$ModelName = "Taipei-FR-MG-2013";
15
16M$Information = {Authors -> {"C. Duhr", "N. Christensen"},
17 Version -> "1.1",
18 Date -> "Sept. 5, 2013",
19 Institutions -> {"ETH Zurich","PITT PACC"},
20 Emails -> {"duhrc@itp.phys.ethz.ch","neilc@pitt.edu"}
21};
22
23(* Changes *)
24(* 1.1 : Added flavor indices for new scalars. *)
25(* Added QED gauge group. *)
26
27(**********************************************************************************)
28(* QED *)
29(**********************************************************************************)
30(*
31M$GaugeGroups = {
32 U1QED == {
33 Abelian -> True,
34 CouplingConstant -> ee,
35 GaugeBoson -> A,
36 Charge -> Q
37 }
38};
39*)
40(**********************************************************************************)
41(* New Indices *)
42(**********************************************************************************)
43
44IndexRange[Index[scInd]] = Unfold[Range[2]];
45IndexStyle[scInd, s];
46
47(**********************************************************************************)
48(* New Parameters *)
49(**********************************************************************************)
50
51M$Parameters = {
52 lambda == {
53 ParameterType -> External,
54 ComplexParameter -> False,
55 Indices -> {Index[scInd]},
56 Value -> {lambda[1]->1,lambda[2]->1},
57 InteractionOrder -> {NP,1}
58 },
59 lambdap == {
60 ParameterType -> External,
61 ComplexParameter -> False,
62 Indices -> {Index[scInd]},
63 Value -> {lambdap[1]->1,lambdap[2]->1},
64 InteractionOrder -> {NP,1}
65 },
66 sina == {
67 ParameterType -> External,
68 ComplexParameter -> False,
69 Value -> 0.35
70 },
71 cosa == {
72 ParameterType -> Internal,
73 ComplexParameter -> False,
74 Value -> Sqrt[1-sina^2]
75 },
76 MassM == {
77 ParamterType -> Internal,
78 ComplexParameter -> False,
79 Indices -> {Index[scInd],Index[scInd]},
80 Definitions -> {MassM[1, 1] -> cosa^2*MphiM1^2 + MphiM2^2*sina^2,
81 MassM[1, 2] -> -cosa*(MphiM1^2 - MphiM2^2)*sina,
82 MassM[2, 1] -> -cosa*(MphiM1^2 - MphiM2^2)*sina,
83 MassM[2, 2] -> cosa^2*MphiM2^2 + MphiM1^2*sina^2}
84 }
85};
86
87(**********************************************************************************)
88(* New Fields *)
89(**********************************************************************************)
90
91M$ClassesDescription = {
92 F[20] == {
93 ClassName -> uv,
94 SelfConjugate -> False,
95 Indices -> {Index[Colour]},
96 QuantumNumbers -> {Q->2/3, Y->2/3},
97 Mass -> {Muv, 500},
98 Width -> {Wuv, 1}
99 },
100 F[21] == {
101 ClassName -> ev,
102 SelfConjugate -> False,
103 Indices -> {},
104 QuantumNumbers -> {Q->-1, Y->-1, LeptonNumber->1},
105 Mass -> {Mev, 300},
106 Width -> {Wev, 1}
107 },
108 S[20] == {
109 ClassName -> phiT,
110 Unphysical -> True,
111 SelfConjugate -> True,
112 Indices -> {Index[scInd]},
113 FlavorIndex -> scInd,
114 Definitions -> {phiT[1]-> cosa phiM[1] + sina phiM[2],
115 phiT[2]->-sina phiM[1] + cosa phiM[2]}
116 },
117 S[21] == {
118 ClassName -> phiM,
119 SelfConjugate -> True,
120 Indices -> {Index[scInd]},
121 FlavorIndex -> scInd,
122 ClassMembers -> {phiM1,phiM2},
123 Mass -> {MphiM, {MphiM1,200},{MphiM2,400}},
124 Width -> {WphiM, {WphiM1,1},{WphiM2,1}}
125 }
126};
127
128(**********************************************************************************)
129(* New Lagrangian *)
130(**********************************************************************************)
131
132Lsq = 1/2 del[phiT[ii],mu] del[phiT[ii],mu] - 1/2 phiT[ii] MassM[ii,jj] phiT[jj];
133
134Lfq = I uvbar.Ga[mu].DC[uv,mu] - Muv uvbar.uv + I evbar.Ga[mu].DC[ev,mu] - Mev evbar.ev;
135
136Lyuk = lambda[ii] phiT[ii] uvbar.ProjP.u + lambdap[ii] phiT[ii] evbar.ProjP.e;
137
138Lnew = Lsq + Lfq + Lyuk + HC[Lyuk];