1 | (**********************************************************************************)
|
---|
2 | (**********************************************************************************)
|
---|
3 | (* Model files for Taipei FeynRules MadGraph school 2013 *)
|
---|
4 | (**********************************************************************************)
|
---|
5 | (**********************************************************************************)
|
---|
6 |
|
---|
7 |
|
---|
8 |
|
---|
9 |
|
---|
10 | (**********************************************************************************)
|
---|
11 | (* New Model Info *)
|
---|
12 | (**********************************************************************************)
|
---|
13 |
|
---|
14 | M$ModelName = "Taipei-FR-MG-2013";
|
---|
15 |
|
---|
16 | M$Information = {Authors -> {"C. Duhr", "N. Christensen"},
|
---|
17 | Version -> "1.1",
|
---|
18 | Date -> "Sept. 5, 2013",
|
---|
19 | Institutions -> {"ETH Zurich","PITT PACC"},
|
---|
20 | Emails -> {"duhrc@itp.phys.ethz.ch","neilc@pitt.edu"}
|
---|
21 | };
|
---|
22 |
|
---|
23 | (* Changes *)
|
---|
24 | (* 1.1 : Added flavor indices for new scalars. *)
|
---|
25 | (* Added QED gauge group. *)
|
---|
26 |
|
---|
27 | (**********************************************************************************)
|
---|
28 | (* QED *)
|
---|
29 | (**********************************************************************************)
|
---|
30 | (*
|
---|
31 | M$GaugeGroups = {
|
---|
32 | U1QED == {
|
---|
33 | Abelian -> True,
|
---|
34 | CouplingConstant -> ee,
|
---|
35 | GaugeBoson -> A,
|
---|
36 | Charge -> Q
|
---|
37 | }
|
---|
38 | };
|
---|
39 | *)
|
---|
40 | (**********************************************************************************)
|
---|
41 | (* New Indices *)
|
---|
42 | (**********************************************************************************)
|
---|
43 |
|
---|
44 | IndexRange[Index[scInd]] = Unfold[Range[2]];
|
---|
45 | IndexStyle[scInd, s];
|
---|
46 |
|
---|
47 | (**********************************************************************************)
|
---|
48 | (* New Parameters *)
|
---|
49 | (**********************************************************************************)
|
---|
50 |
|
---|
51 | M$Parameters = {
|
---|
52 | lambda == {
|
---|
53 | ParameterType -> External,
|
---|
54 | ComplexParameter -> False,
|
---|
55 | Indices -> {Index[scInd]},
|
---|
56 | Value -> {lambda[1]->1,lambda[2]->1},
|
---|
57 | InteractionOrder -> {NP,1}
|
---|
58 | },
|
---|
59 | lambdap == {
|
---|
60 | ParameterType -> External,
|
---|
61 | ComplexParameter -> False,
|
---|
62 | Indices -> {Index[scInd]},
|
---|
63 | Value -> {lambdap[1]->1,lambdap[2]->1},
|
---|
64 | InteractionOrder -> {NP,1}
|
---|
65 | },
|
---|
66 | sina == {
|
---|
67 | ParameterType -> External,
|
---|
68 | ComplexParameter -> False,
|
---|
69 | Value -> 0.35
|
---|
70 | },
|
---|
71 | cosa == {
|
---|
72 | ParameterType -> Internal,
|
---|
73 | ComplexParameter -> False,
|
---|
74 | Value -> Sqrt[1-sina^2]
|
---|
75 | },
|
---|
76 | MassM == {
|
---|
77 | ParamterType -> Internal,
|
---|
78 | ComplexParameter -> False,
|
---|
79 | Indices -> {Index[scInd],Index[scInd]},
|
---|
80 | Definitions -> {MassM[1, 1] -> cosa^2*MphiM1^2 + MphiM2^2*sina^2,
|
---|
81 | MassM[1, 2] -> -cosa*(MphiM1^2 - MphiM2^2)*sina,
|
---|
82 | MassM[2, 1] -> -cosa*(MphiM1^2 - MphiM2^2)*sina,
|
---|
83 | MassM[2, 2] -> cosa^2*MphiM2^2 + MphiM1^2*sina^2}
|
---|
84 | }
|
---|
85 | };
|
---|
86 |
|
---|
87 | (**********************************************************************************)
|
---|
88 | (* New Fields *)
|
---|
89 | (**********************************************************************************)
|
---|
90 |
|
---|
91 | M$ClassesDescription = {
|
---|
92 | F[20] == {
|
---|
93 | ClassName -> uv,
|
---|
94 | SelfConjugate -> False,
|
---|
95 | Indices -> {Index[Colour]},
|
---|
96 | QuantumNumbers -> {Q->2/3, Y->2/3},
|
---|
97 | Mass -> {Muv, 500},
|
---|
98 | Width -> {Wuv, 1}
|
---|
99 | },
|
---|
100 | F[21] == {
|
---|
101 | ClassName -> ev,
|
---|
102 | SelfConjugate -> False,
|
---|
103 | Indices -> {},
|
---|
104 | QuantumNumbers -> {Q->-1, Y->-1, LeptonNumber->1},
|
---|
105 | Mass -> {Mev, 300},
|
---|
106 | Width -> {Wev, 1}
|
---|
107 | },
|
---|
108 | S[20] == {
|
---|
109 | ClassName -> phiT,
|
---|
110 | Unphysical -> True,
|
---|
111 | SelfConjugate -> True,
|
---|
112 | Indices -> {Index[scInd]},
|
---|
113 | FlavorIndex -> scInd,
|
---|
114 | Definitions -> {phiT[1]-> cosa phiM[1] + sina phiM[2],
|
---|
115 | phiT[2]->-sina phiM[1] + cosa phiM[2]}
|
---|
116 | },
|
---|
117 | S[21] == {
|
---|
118 | ClassName -> phiM,
|
---|
119 | SelfConjugate -> True,
|
---|
120 | Indices -> {Index[scInd]},
|
---|
121 | FlavorIndex -> scInd,
|
---|
122 | ClassMembers -> {phiM1,phiM2},
|
---|
123 | Mass -> {MphiM, {MphiM1,200},{MphiM2,400}},
|
---|
124 | Width -> {WphiM, {WphiM1,1},{WphiM2,1}}
|
---|
125 | }
|
---|
126 | };
|
---|
127 |
|
---|
128 | (**********************************************************************************)
|
---|
129 | (* New Lagrangian *)
|
---|
130 | (**********************************************************************************)
|
---|
131 |
|
---|
132 | Lsq = 1/2 del[phiT[ii],mu] del[phiT[ii],mu] - 1/2 phiT[ii] MassM[ii,jj] phiT[jj];
|
---|
133 |
|
---|
134 | Lfq = I uvbar.Ga[mu].DC[uv,mu] - Muv uvbar.uv + I evbar.Ga[mu].DC[ev,mu] - Mev evbar.ev;
|
---|
135 |
|
---|
136 | Lyuk = lambda[ii] phiT[ii] uvbar.ProjP.u + lambdap[ii] phiT[ii] evbar.ProjP.e;
|
---|
137 |
|
---|
138 | Lnew = Lsq + Lfq + Lyuk + HC[Lyuk];
|
---|