1 | (* ********************************************************* *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file: SUSY-QCD ***** *)
|
---|
4 | (* ***** Author: B. Fuks ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* ********************************************************* *)
|
---|
7 |
|
---|
8 |
|
---|
9 | (* ************************** *)
|
---|
10 | (* ***** Information ***** *)
|
---|
11 | (* ************************** *)
|
---|
12 | M$ModelName = "SUSYQCD";
|
---|
13 |
|
---|
14 | M$Information = {
|
---|
15 | Authors -> {"Benjamin Fuks"},
|
---|
16 | Date -> "24.10.11",
|
---|
17 | Version -> "1.0.0",
|
---|
18 | Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},
|
---|
19 | Emails -> {"benjamin.fuks@iphc.cnrs.fr"}
|
---|
20 | };
|
---|
21 |
|
---|
22 |
|
---|
23 | (* ************************** *)
|
---|
24 | (* ***** Indices ***** *)
|
---|
25 | (* ************************** *)
|
---|
26 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a];
|
---|
27 | IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
|
---|
28 | IndexRange[Index[Colourb]]= NoUnfold[Range[3]]; IndexStyle[Colourb,m];
|
---|
29 | IndexRange[Index[Gen ]] = Range[3]; IndexStyle[Gen, f];
|
---|
30 | IndexRange[Index[Squark]] = Range[6]; IndexStyle[Squark, i];
|
---|
31 | (* ************************** *)
|
---|
32 | (* ***** Gauge groups ***** *)
|
---|
33 | (* ************************** *)
|
---|
34 | M$GaugeGroups = {
|
---|
35 | SU3C == {
|
---|
36 | Abelian -> False,
|
---|
37 | GaugeBoson -> G,
|
---|
38 | CouplingConstant -> gs,
|
---|
39 | StructureConstant -> f,
|
---|
40 | Representations -> {T,Colour}}
|
---|
41 | };
|
---|
42 |
|
---|
43 | (* ************************** *)
|
---|
44 | (* ***** Fields ***** *)
|
---|
45 | (* ************************** *)
|
---|
46 | M$ClassesDescription = {
|
---|
47 | (* Gluon field *)
|
---|
48 | V[1] == {
|
---|
49 | ClassName -> G,
|
---|
50 | SelfConjugate -> True,
|
---|
51 | Indices -> {Index[Gluon]},
|
---|
52 | Mass -> 0,
|
---|
53 | Width -> 0,
|
---|
54 | PDG -> 21
|
---|
55 | },
|
---|
56 |
|
---|
57 | (* gluino *)
|
---|
58 | W[1] == {
|
---|
59 | ClassName -> gow,
|
---|
60 | Unphysical -> True,
|
---|
61 | Chirality -> Left,
|
---|
62 | SelfConjugate -> False,
|
---|
63 | Indices -> {Index[Gluon]},
|
---|
64 | Definitions -> {gow[inds__]->-I*goww[inds]}
|
---|
65 | },
|
---|
66 | W[2] == {
|
---|
67 | ClassName -> goww,
|
---|
68 | Unphysical -> True,
|
---|
69 | Chirality -> Left,
|
---|
70 | SelfConjugate -> False,
|
---|
71 | Indices -> {Index[Gluon]}
|
---|
72 | },
|
---|
73 | F[1] == {
|
---|
74 | ClassName -> go,
|
---|
75 | WeylComponents -> goww,
|
---|
76 | SelfConjugate -> True,
|
---|
77 | Indices -> {Index[Gluon]},
|
---|
78 | Mass -> {Mgo,500},
|
---|
79 | Width -> {Wgo,10},
|
---|
80 | PDG -> 1000021
|
---|
81 | },
|
---|
82 |
|
---|
83 | (* up-type quarks *)
|
---|
84 | W[3] == {
|
---|
85 | ClassName -> uqLw,
|
---|
86 | Unphysical -> True,
|
---|
87 | Chirality -> Left,
|
---|
88 | SelfConjugate -> False,
|
---|
89 | Indices -> {Index[Gen],Index[Colour]},
|
---|
90 | FlavorIndex -> Gen,
|
---|
91 | QuantumNumbers -> {Q-> 2/3}
|
---|
92 | },
|
---|
93 | W[4] == {
|
---|
94 | ClassName -> uqRw,
|
---|
95 | Unphysical -> True,
|
---|
96 | Chirality -> Right,
|
---|
97 | SelfConjugate -> False,
|
---|
98 | Indices -> {Index[Gen],Index[Colour]},
|
---|
99 | FlavorIndex -> Gen,
|
---|
100 | QuantumNumbers -> {Q-> 2/3}
|
---|
101 | },
|
---|
102 | F[2] == {
|
---|
103 | ClassName -> uq,
|
---|
104 | WeylComponents -> {uqLw,uqRw},
|
---|
105 | SelfConjugate -> False,
|
---|
106 | Indices -> {Index[Gen], Index[Colour]},
|
---|
107 | FlavorIndex -> Gen,
|
---|
108 | QuantumNumbers -> {Q -> 2/3},
|
---|
109 | ClassMembers -> {u, c, t},
|
---|
110 | Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},
|
---|
111 | Width -> {0, 0, {WT, 1.50833649}},
|
---|
112 | PDG -> {2, 4, 6}
|
---|
113 | },
|
---|
114 |
|
---|
115 | (* left-handed up-type squarks *)
|
---|
116 | S[1] == {
|
---|
117 | ClassName -> sqL,
|
---|
118 | SelfConjugate -> False,
|
---|
119 | Indices -> {Index[Gen],Index[Colour]},
|
---|
120 | FlavorIndex -> Gen,
|
---|
121 | QuantumNumbers -> {Q -> 2/3},
|
---|
122 | ClassMembers -> {suL, scL, stL},
|
---|
123 | Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},
|
---|
124 | Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},
|
---|
125 | PDG -> {1000002, 1000004, 1000006}
|
---|
126 | },
|
---|
127 |
|
---|
128 | (* right-handed up-type squarks *)
|
---|
129 | S[2] == {
|
---|
130 | ClassName -> sqR,
|
---|
131 | SelfConjugate -> False,
|
---|
132 | Indices -> {Index[Gen],Index[Colour]},
|
---|
133 | FlavorIndex -> Gen,
|
---|
134 | QuantumNumbers -> {Q -> 2/3},
|
---|
135 | ClassMembers -> {suR, scR, stR},
|
---|
136 | Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},
|
---|
137 | Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},
|
---|
138 | PDG -> {2000002, 2000004, 2000006}
|
---|
139 | }
|
---|
140 | };
|
---|
141 |
|
---|
142 | (* ************************** *)
|
---|
143 | (* ***** Parameters ***** *)
|
---|
144 | (* ************************** *)
|
---|
145 | M$Parameters = {
|
---|
146 | aS == {
|
---|
147 | ParameterType -> External,
|
---|
148 | Value -> 0.1184,
|
---|
149 | InteractionOrder -> {QCD, 2}
|
---|
150 | },
|
---|
151 | gs == {
|
---|
152 | ParameterType -> Internal,
|
---|
153 | Value -> Sqrt[4 Pi aS],
|
---|
154 | InteractionOrder -> {QCD, 1},
|
---|
155 | ParameterName -> G
|
---|
156 | }
|
---|
157 | };
|
---|
158 |
|
---|
159 | (* ************************** *)
|
---|
160 | (* ***** Lagrangian ***** *)
|
---|
161 | (* ************************** *)
|
---|
162 | LVector := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +
|
---|
163 | I/2 si[mu,sp1,sp2] (
|
---|
164 | gow[sp1,a].DC[gowbar[sp2,a],mu] -
|
---|
165 | DC[gow[sp1,a],mu].gowbar[sp2,a]) -
|
---|
166 | 1/2 Mgo (goww[s1,a].goww[s1,a] + gowwbar[s1,a].gowwbar[s1,a]);
|
---|
167 |
|
---|
168 | Lkin := DC[sqLbar[cc,ff],mu] DC[sqL[cc,ff],mu] +
|
---|
169 | DC[sqRbar[cc,ff],mu] DC[sqR[cc,ff],mu] +
|
---|
170 | I/2 si[mu, sp1, sp2] (
|
---|
171 | uqLw[sp1, ff, cc].DC[uqLwbar[sp2, ff, cc], mu] -
|
---|
172 | DC[uqLw[sp1, ff, cc], mu].uqLwbar[sp2, ff, cc]) +
|
---|
173 | I/2 sibar[mu,sp1,sp2] (
|
---|
174 | uqRw[sp1, ff, cc].DC[uqRwbar[sp2, ff, cc], mu] -
|
---|
175 | DC[uqRw[sp1, ff, cc], mu].uqRwbar[sp2, ff, cc]) -
|
---|
176 | Mu[ff] (uqLw[sp, ff, cc].uqRwbar[sp, ff, cc] +
|
---|
177 | uqLwbar[sp, ff, cc].uqRw[sp, ff, cc]) -
|
---|
178 | MsqL[ff]^2 sqLbar[ff,cc] sqL[ff,cc] -
|
---|
179 | MsqR[ff]^2 sqRbar[ff,cc] sqR[ff,cc];
|
---|
180 |
|
---|
181 | LD := -1/2 gs^2 *
|
---|
182 | (sqRbar[ff1,cc1] T[a,cc1,cc2] sqR[ff1,cc2] -
|
---|
183 | sqLbar[ff1,cc1] T[a,cc1,cc2] sqL[ff1,cc2]) *
|
---|
184 | (sqRbar[ff2,cc3] T[a,cc3,cc4] sqR[ff2,cc4] -
|
---|
185 | sqLbar[ff2,cc3] T[a,cc3,cc4] sqL[ff2,cc4]);
|
---|
186 |
|
---|
187 | Lgosqq := I Sqrt[2] gs (
|
---|
188 | - sqLbar[ff, cc1] T[a,cc1,cc2] uqLw[s1,ff,cc2].gow[s1,a] +
|
---|
189 | sqR[ff,cc2] T[a,cc1,cc2] uqRwbar[s1,ff,cc1].gow[s1,a]);
|
---|
190 |
|
---|
191 |
|
---|
192 | LMatter := Lkin + LD + Lgosqq + HC[Lgosqq];
|
---|
193 |
|
---|
194 | Lagr:= WeylToDirac[LVector + LMatter];
|
---|