SchoolKias/FeynRules: susyqcd_weyl.fr

File susyqcd_weyl.fr, 5.9 KB (added by Benjamin Fuks, 13 years ago)

SUSY-QCD with Weyl fermions

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: SUSY-QCD ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8
9(* ************************** *)
10(* ***** Information ***** *)
11(* ************************** *)
12M$ModelName = "SUSYQCD";
13
14M$Information = {
15 Authors -> {"Benjamin Fuks"},
16 Date -> "24.10.11",
17 Version -> "1.0.0",
18 Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},
19 Emails -> {"benjamin.fuks@iphc.cnrs.fr"}
20};
21
22
23(* ************************** *)
24(* ***** Indices ***** *)
25(* ************************** *)
26IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a];
27IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
28IndexRange[Index[Colourb]]= NoUnfold[Range[3]]; IndexStyle[Colourb,m];
29IndexRange[Index[Gen ]] = Range[3]; IndexStyle[Gen, f];
30IndexRange[Index[Squark]] = Range[6]; IndexStyle[Squark, i];
31(* ************************** *)
32(* ***** Gauge groups ***** *)
33(* ************************** *)
34M$GaugeGroups = {
35 SU3C == {
36 Abelian -> False,
37 GaugeBoson -> G,
38 CouplingConstant -> gs,
39 StructureConstant -> f,
40 Representations -> {T,Colour}}
41};
42
43(* ************************** *)
44(* ***** Fields ***** *)
45(* ************************** *)
46M$ClassesDescription = {
47 (* Gluon field *)
48 V[1] == {
49 ClassName -> G,
50 SelfConjugate -> True,
51 Indices -> {Index[Gluon]},
52 Mass -> 0,
53 Width -> 0,
54 PDG -> 21
55 },
56
57 (* gluino *)
58 W[1] == {
59 ClassName -> gow,
60 Unphysical -> True,
61 Chirality -> Left,
62 SelfConjugate -> False,
63 Indices -> {Index[Gluon]},
64 Definitions -> {gow[inds__]->-I*goww[inds]}
65 },
66 W[2] == {
67 ClassName -> goww,
68 Unphysical -> True,
69 Chirality -> Left,
70 SelfConjugate -> False,
71 Indices -> {Index[Gluon]}
72 },
73 F[1] == {
74 ClassName -> go,
75 WeylComponents -> goww,
76 SelfConjugate -> True,
77 Indices -> {Index[Gluon]},
78 Mass -> {Mgo,500},
79 Width -> {Wgo,10},
80 PDG -> 1000021
81 },
82
83 (* up-type quarks *)
84 W[3] == {
85 ClassName -> uqLw,
86 Unphysical -> True,
87 Chirality -> Left,
88 SelfConjugate -> False,
89 Indices -> {Index[Gen],Index[Colour]},
90 FlavorIndex -> Gen,
91 QuantumNumbers -> {Q-> 2/3}
92 },
93 W[4] == {
94 ClassName -> uqRw,
95 Unphysical -> True,
96 Chirality -> Right,
97 SelfConjugate -> False,
98 Indices -> {Index[Gen],Index[Colour]},
99 FlavorIndex -> Gen,
100 QuantumNumbers -> {Q-> 2/3}
101 },
102 F[2] == {
103 ClassName -> uq,
104 WeylComponents -> {uqLw,uqRw},
105 SelfConjugate -> False,
106 Indices -> {Index[Gen], Index[Colour]},
107 FlavorIndex -> Gen,
108 QuantumNumbers -> {Q -> 2/3},
109 ClassMembers -> {u, c, t},
110 Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},
111 Width -> {0, 0, {WT, 1.50833649}},
112 PDG -> {2, 4, 6}
113 },
114
115 (* left-handed up-type squarks *)
116 S[1] == {
117 ClassName -> sqL,
118 SelfConjugate -> False,
119 Indices -> {Index[Gen],Index[Colour]},
120 FlavorIndex -> Gen,
121 QuantumNumbers -> {Q -> 2/3},
122 ClassMembers -> {suL, scL, stL},
123 Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},
124 Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},
125 PDG -> {1000002, 1000004, 1000006}
126 },
127
128 (* right-handed up-type squarks *)
129 S[2] == {
130 ClassName -> sqR,
131 SelfConjugate -> False,
132 Indices -> {Index[Gen],Index[Colour]},
133 FlavorIndex -> Gen,
134 QuantumNumbers -> {Q -> 2/3},
135 ClassMembers -> {suR, scR, stR},
136 Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},
137 Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},
138 PDG -> {2000002, 2000004, 2000006}
139 }
140};
141
142(* ************************** *)
143(* ***** Parameters ***** *)
144(* ************************** *)
145M$Parameters = {
146 aS == {
147 ParameterType -> External,
148 Value -> 0.1184,
149 InteractionOrder -> {QCD, 2}
150 },
151 gs == {
152 ParameterType -> Internal,
153 Value -> Sqrt[4 Pi aS],
154 InteractionOrder -> {QCD, 1},
155 ParameterName -> G
156 }
157};
158
159(* ************************** *)
160(* ***** Lagrangian ***** *)
161(* ************************** *)
162LVector := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +
163 I/2 si[mu,sp1,sp2] (
164 gow[sp1,a].DC[gowbar[sp2,a],mu] -
165 DC[gow[sp1,a],mu].gowbar[sp2,a]) -
166 1/2 Mgo (goww[s1,a].goww[s1,a] + gowwbar[s1,a].gowwbar[s1,a]);
167
168Lkin := DC[sqLbar[cc,ff],mu] DC[sqL[cc,ff],mu] +
169 DC[sqRbar[cc,ff],mu] DC[sqR[cc,ff],mu] +
170 I/2 si[mu, sp1, sp2] (
171 uqLw[sp1, ff, cc].DC[uqLwbar[sp2, ff, cc], mu] -
172 DC[uqLw[sp1, ff, cc], mu].uqLwbar[sp2, ff, cc]) +
173 I/2 sibar[mu,sp1,sp2] (
174 uqRw[sp1, ff, cc].DC[uqRwbar[sp2, ff, cc], mu] -
175 DC[uqRw[sp1, ff, cc], mu].uqRwbar[sp2, ff, cc]) -
176 Mu[ff] (uqLw[sp, ff, cc].uqRwbar[sp, ff, cc] +
177 uqLwbar[sp, ff, cc].uqRw[sp, ff, cc]) -
178 MsqL[ff]^2 sqLbar[ff,cc] sqL[ff,cc] -
179 MsqR[ff]^2 sqRbar[ff,cc] sqR[ff,cc];
180
181LD := -1/2 gs^2 *
182 (sqRbar[ff1,cc1] T[a,cc1,cc2] sqR[ff1,cc2] -
183 sqLbar[ff1,cc1] T[a,cc1,cc2] sqL[ff1,cc2]) *
184 (sqRbar[ff2,cc3] T[a,cc3,cc4] sqR[ff2,cc4] -
185 sqLbar[ff2,cc3] T[a,cc3,cc4] sqL[ff2,cc4]);
186
187Lgosqq := I Sqrt[2] gs (
188 - sqLbar[ff, cc1] T[a,cc1,cc2] uqLw[s1,ff,cc2].gow[s1,a] +
189 sqR[ff,cc2] T[a,cc1,cc2] uqRwbar[s1,ff,cc1].gow[s1,a]);
190
191
192LMatter := Lkin + LD + Lgosqq + HC[Lgosqq];
193
194Lagr:= WeylToDirac[LVector + LMatter];