SchoolKias/FeynRules: susyqcd_sf.fr

File susyqcd_sf.fr, 6.2 KB (added by Benjamin Fuks, 13 years ago)

SUSY-QCD with superfields

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: SUSY-QCD ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8
9(* ************************** *)
10(* ***** Information ***** *)
11(* ************************** *)
12M$ModelName = "SUSYQCD";
13
14M$Information = {
15 Authors -> {"Benjamin Fuks"},
16 Date -> "24.10.11",
17 Version -> "1.0.0",
18 Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},
19 Emails -> {"benjamin.fuks@iphc.cnrs.fr"}
20};
21
22
23(* ************************** *)
24(* ***** Indices ***** *)
25(* ************************** *)
26IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a];
27IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
28IndexRange[Index[Colourb]]= NoUnfold[Range[3]]; IndexStyle[Colourb,m];
29IndexRange[Index[Gen ]] = Range[3]; IndexStyle[Gen, f];
30IndexRange[Index[Squark]] = Range[6]; IndexStyle[Squark, i];
31
32
33(* ************************** *)
34(* ***** Gauge groups ***** *)
35(* ************************** *)
36M$GaugeGroups = {
37 SU3C == {
38 Abelian -> False,
39 Superfield -> GSF,
40 CouplingConstant -> gs,
41 StructureConstant -> f,
42 Representations -> {{T,Colour}, {Tb,Colourb}}
43 }
44};
45
46(* ************************** *)
47(* ***** Superfields ***** *)
48(* ************************** *)
49M$Superfields = {
50 CSF[1] == {
51 ClassName -> QL,
52 Chirality -> Left,
53 Weyl -> uqLw,
54 Scalar -> sqL,
55 QuantumNumbers -> {Q->2/3},
56 Indices -> {Index[Gen], Index[Colour]}
57 },
58 CSF[2] == {
59 ClassName -> UR,
60 Chirality -> Left,
61 Weyl -> UQRw,
62 Scalar -> SQR,
63 QuantumNumbers -> {Q->-2/3},
64 Indices -> {Index[Gen], Index[Colourb]}
65 },
66 VSF[1] == {
67 ClassName -> GSF,
68 GaugeBoson -> G,
69 Gaugino -> gow,
70 Indices -> {Index[Gluon]}
71 }
72};
73
74(* ************************** *)
75(* ***** Fields ***** *)
76(* ************************** *)
77M$ClassesDescription = {
78 (* Gluon field *)
79 V[1] == {
80 ClassName -> G,
81 SelfConjugate -> True,
82 Indices -> {Index[Gluon]},
83 Mass -> 0,
84 Width -> 0,
85 PDG -> 21
86 },
87
88 (* gluino *)
89 W[1] == {
90 ClassName -> gow,
91 Unphysical -> True,
92 Chirality -> Left,
93 SelfConjugate -> False,
94 Indices -> {Index[Gluon]},
95 Definitions -> {gow[inds__]->-I*goww[inds]}
96 },
97 W[2] == {
98 ClassName -> goww,
99 Unphysical -> True,
100 Chirality -> Left,
101 SelfConjugate -> False,
102 Indices -> {Index[Gluon]}
103 },
104 F[1] == {
105 ClassName -> go,
106 WeylComponents -> goww,
107 SelfConjugate -> True,
108 Indices -> {Index[Gluon]},
109 Mass -> {Mgo,500},
110 Width -> {Wgo,10},
111 PDG -> 1000021
112 },
113
114 (* up-type quarks *)
115 W[3] == {
116 ClassName -> uqLw,
117 Unphysical -> True,
118 Chirality -> Left,
119 SelfConjugate -> False,
120 Indices -> {Index[Gen],Index[Colour]},
121 FlavorIndex -> Gen,
122 QuantumNumbers -> {Q-> 2/3}
123 },
124 W[4]== {
125 ClassName -> UQRw,
126 Unphysical -> True,
127 Chirality -> Left,
128 SelfConjugate -> False,
129 Indices -> {Index[Gen],Index[Colourb]},
130 FlavorIndex -> Gen,
131 QuantumNumbers -> {Q->-2/3}
132 },
133 F[2] == {
134 ClassName -> uq,
135 WeylComponents -> {uqLw,UQRwbar},
136 SelfConjugate -> False,
137 Indices -> {Index[Gen], Index[Colour]},
138 FlavorIndex -> Gen,
139 QuantumNumbers -> {Q -> 2/3},
140 ClassMembers -> {u, c, t},
141 Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},
142 Width -> {0, 0, {WT, 1.50833649}},
143 PDG -> {2, 4, 6}
144 },
145
146 (* left-handed up-type squarks *)
147 S[1] == {
148 ClassName -> sqL,
149 SelfConjugate -> False,
150 Indices -> {Index[Gen],Index[Colour]},
151 FlavorIndex -> Gen,
152 QuantumNumbers -> {Q -> 2/3},
153 ClassMembers -> {suL, scL, stL},
154 Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},
155 Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},
156 PDG -> {1000002, 1000004, 1000006}
157 },
158
159 (* right-handed up-type squarks *)
160 S[2] == {
161 ClassName -> sqR,
162 SelfConjugate -> False,
163 Indices -> {Index[Gen],Index[Colour]},
164 FlavorIndex -> Gen,
165 QuantumNumbers -> {Q -> 2/3},
166 ClassMembers -> {suR, scR, stR},
167 Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},
168 Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},
169 PDG -> {2000002, 2000004, 2000006}
170 },
171 S[3] == {
172 ClassName -> SQR,
173 Unphysical -> True,
174 SelfConjugate -> False,
175 Indices -> {Index[Gen],Index[Colourb]},
176 FlavorIndex -> Gen,
177 QuantumNumbers -> {Q -> -2/3},
178 Definitions -> { SQR[ff_,cc_] -> sqRbar[ff,cc] }
179 }
180};
181
182(* ************************** *)
183(* ***** Parameters ***** *)
184(* ************************** *)
185M$Parameters = {
186 aS == {
187 ParameterType -> External,
188 Value -> 0.1184,
189 InteractionOrder -> {QCD, 2}
190 },
191 gs == {
192 ParameterType -> Internal,
193 Value -> Sqrt[4 Pi aS],
194 InteractionOrder -> {QCD, 1},
195 ParameterName -> G
196 }
197};
198
199(* ************************** *)
200(* ***** Lagrangian ***** *)
201(* ************************** *)
202LMatter := Theta2Thetabar2Component[CSFKineticTerms[]];
203LVector := Module[{tmp=Theta2Component[VSFKineticTerms[]]}, tmp+HC[tmp]];
204LSoft := -Mu[ff] (uqLw[sp, ff, cc].UQRw[sp, ff, cc] +
205 uqLwbar[sp, ff, cc].UQRwbar[sp, ff, cc]) -
206 MsqL[ff]^2 sqLbar[ff, cc] sqL[ff, cc] -
207 MsqR[ff]^2 SQRbar[ff, cc] SQR[ff, cc] -
208 1/2 Mgo (goww[s1, a].goww[s1, a] + gowwbar[s1, a].gowwbar[s1, a]);
209
210Lagr := Module[{tmp=LMatter + LVector + LSoft},
211 tmp = SolveEqMotionD[tmp];
212 tmp = SolveEqMotionF[Expand[tmp]];
213 tmp = tmp//.{Tb[a_,i_,j_]->-T[a,j,i]};
214 Colourb=Colour;
215 tmp = WeylToDirac[Expand[tmp]];
216 tmp];
217