| 1 | (* ********************************************************* *)
|
|---|
| 2 | (* ***** ***** *)
|
|---|
| 3 | (* ***** FeynRules model file: SUSY-QCD ***** *)
|
|---|
| 4 | (* ***** Author: B. Fuks ***** *)
|
|---|
| 5 | (* ***** ***** *)
|
|---|
| 6 | (* ********************************************************* *)
|
|---|
| 7 |
|
|---|
| 8 |
|
|---|
| 9 | (* ************************** *)
|
|---|
| 10 | (* ***** Information ***** *)
|
|---|
| 11 | (* ************************** *)
|
|---|
| 12 | M$ModelName = "SUSYQCD";
|
|---|
| 13 |
|
|---|
| 14 | M$Information = {
|
|---|
| 15 | Authors -> {"Benjamin Fuks"},
|
|---|
| 16 | Date -> "24.10.11",
|
|---|
| 17 | Version -> "1.0.0",
|
|---|
| 18 | Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},
|
|---|
| 19 | Emails -> {"benjamin.fuks@iphc.cnrs.fr"}
|
|---|
| 20 | };
|
|---|
| 21 |
|
|---|
| 22 |
|
|---|
| 23 | (* ************************** *)
|
|---|
| 24 | (* ***** Indices ***** *)
|
|---|
| 25 | (* ************************** *)
|
|---|
| 26 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a];
|
|---|
| 27 | IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
|
|---|
| 28 | IndexRange[Index[Colourb]]= NoUnfold[Range[3]]; IndexStyle[Colourb,m];
|
|---|
| 29 | IndexRange[Index[Gen ]] = Range[3]; IndexStyle[Gen, f];
|
|---|
| 30 | IndexRange[Index[Squark]] = Range[6]; IndexStyle[Squark, i];
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 | (* ************************** *)
|
|---|
| 34 | (* ***** Gauge groups ***** *)
|
|---|
| 35 | (* ************************** *)
|
|---|
| 36 | M$GaugeGroups = {
|
|---|
| 37 | SU3C == {
|
|---|
| 38 | Abelian -> False,
|
|---|
| 39 | Superfield -> GSF,
|
|---|
| 40 | CouplingConstant -> gs,
|
|---|
| 41 | StructureConstant -> f,
|
|---|
| 42 | Representations -> {{T,Colour}, {Tb,Colourb}}
|
|---|
| 43 | }
|
|---|
| 44 | };
|
|---|
| 45 |
|
|---|
| 46 | (* ************************** *)
|
|---|
| 47 | (* ***** Superfields ***** *)
|
|---|
| 48 | (* ************************** *)
|
|---|
| 49 | M$Superfields = {
|
|---|
| 50 | CSF[1] == {
|
|---|
| 51 | ClassName -> QL,
|
|---|
| 52 | Chirality -> Left,
|
|---|
| 53 | Weyl -> uqLw,
|
|---|
| 54 | Scalar -> sqL,
|
|---|
| 55 | QuantumNumbers -> {Q->2/3},
|
|---|
| 56 | Indices -> {Index[Gen], Index[Colour]}
|
|---|
| 57 | },
|
|---|
| 58 | CSF[2] == {
|
|---|
| 59 | ClassName -> UR,
|
|---|
| 60 | Chirality -> Left,
|
|---|
| 61 | Weyl -> UQRw,
|
|---|
| 62 | Scalar -> SQR,
|
|---|
| 63 | QuantumNumbers -> {Q->-2/3},
|
|---|
| 64 | Indices -> {Index[Gen], Index[Colourb]}
|
|---|
| 65 | },
|
|---|
| 66 | VSF[1] == {
|
|---|
| 67 | ClassName -> GSF,
|
|---|
| 68 | GaugeBoson -> G,
|
|---|
| 69 | Gaugino -> gow,
|
|---|
| 70 | Indices -> {Index[Gluon]}
|
|---|
| 71 | }
|
|---|
| 72 | };
|
|---|
| 73 |
|
|---|
| 74 | (* ************************** *)
|
|---|
| 75 | (* ***** Fields ***** *)
|
|---|
| 76 | (* ************************** *)
|
|---|
| 77 | M$ClassesDescription = {
|
|---|
| 78 | (* Gluon field *)
|
|---|
| 79 | V[1] == {
|
|---|
| 80 | ClassName -> G,
|
|---|
| 81 | SelfConjugate -> True,
|
|---|
| 82 | Indices -> {Index[Gluon]},
|
|---|
| 83 | Mass -> 0,
|
|---|
| 84 | Width -> 0,
|
|---|
| 85 | PDG -> 21
|
|---|
| 86 | },
|
|---|
| 87 |
|
|---|
| 88 | (* gluino *)
|
|---|
| 89 | W[1] == {
|
|---|
| 90 | ClassName -> gow,
|
|---|
| 91 | Unphysical -> True,
|
|---|
| 92 | Chirality -> Left,
|
|---|
| 93 | SelfConjugate -> False,
|
|---|
| 94 | Indices -> {Index[Gluon]},
|
|---|
| 95 | Definitions -> {gow[inds__]->-I*goww[inds]}
|
|---|
| 96 | },
|
|---|
| 97 | W[2] == {
|
|---|
| 98 | ClassName -> goww,
|
|---|
| 99 | Unphysical -> True,
|
|---|
| 100 | Chirality -> Left,
|
|---|
| 101 | SelfConjugate -> False,
|
|---|
| 102 | Indices -> {Index[Gluon]}
|
|---|
| 103 | },
|
|---|
| 104 | F[1] == {
|
|---|
| 105 | ClassName -> go,
|
|---|
| 106 | WeylComponents -> goww,
|
|---|
| 107 | SelfConjugate -> True,
|
|---|
| 108 | Indices -> {Index[Gluon]},
|
|---|
| 109 | Mass -> {Mgo,500},
|
|---|
| 110 | Width -> {Wgo,10},
|
|---|
| 111 | PDG -> 1000021
|
|---|
| 112 | },
|
|---|
| 113 |
|
|---|
| 114 | (* up-type quarks *)
|
|---|
| 115 | W[3] == {
|
|---|
| 116 | ClassName -> uqLw,
|
|---|
| 117 | Unphysical -> True,
|
|---|
| 118 | Chirality -> Left,
|
|---|
| 119 | SelfConjugate -> False,
|
|---|
| 120 | Indices -> {Index[Gen],Index[Colour]},
|
|---|
| 121 | FlavorIndex -> Gen,
|
|---|
| 122 | QuantumNumbers -> {Q-> 2/3}
|
|---|
| 123 | },
|
|---|
| 124 | W[4]== {
|
|---|
| 125 | ClassName -> UQRw,
|
|---|
| 126 | Unphysical -> True,
|
|---|
| 127 | Chirality -> Left,
|
|---|
| 128 | SelfConjugate -> False,
|
|---|
| 129 | Indices -> {Index[Gen],Index[Colourb]},
|
|---|
| 130 | FlavorIndex -> Gen,
|
|---|
| 131 | QuantumNumbers -> {Q->-2/3}
|
|---|
| 132 | },
|
|---|
| 133 | F[2] == {
|
|---|
| 134 | ClassName -> uq,
|
|---|
| 135 | WeylComponents -> {uqLw,UQRwbar},
|
|---|
| 136 | SelfConjugate -> False,
|
|---|
| 137 | Indices -> {Index[Gen], Index[Colour]},
|
|---|
| 138 | FlavorIndex -> Gen,
|
|---|
| 139 | QuantumNumbers -> {Q -> 2/3},
|
|---|
| 140 | ClassMembers -> {u, c, t},
|
|---|
| 141 | Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},
|
|---|
| 142 | Width -> {0, 0, {WT, 1.50833649}},
|
|---|
| 143 | PDG -> {2, 4, 6}
|
|---|
| 144 | },
|
|---|
| 145 |
|
|---|
| 146 | (* left-handed up-type squarks *)
|
|---|
| 147 | S[1] == {
|
|---|
| 148 | ClassName -> sqL,
|
|---|
| 149 | SelfConjugate -> False,
|
|---|
| 150 | Indices -> {Index[Gen],Index[Colour]},
|
|---|
| 151 | FlavorIndex -> Gen,
|
|---|
| 152 | QuantumNumbers -> {Q -> 2/3},
|
|---|
| 153 | ClassMembers -> {suL, scL, stL},
|
|---|
| 154 | Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},
|
|---|
| 155 | Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},
|
|---|
| 156 | PDG -> {1000002, 1000004, 1000006}
|
|---|
| 157 | },
|
|---|
| 158 |
|
|---|
| 159 | (* right-handed up-type squarks *)
|
|---|
| 160 | S[2] == {
|
|---|
| 161 | ClassName -> sqR,
|
|---|
| 162 | SelfConjugate -> False,
|
|---|
| 163 | Indices -> {Index[Gen],Index[Colour]},
|
|---|
| 164 | FlavorIndex -> Gen,
|
|---|
| 165 | QuantumNumbers -> {Q -> 2/3},
|
|---|
| 166 | ClassMembers -> {suR, scR, stR},
|
|---|
| 167 | Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},
|
|---|
| 168 | Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},
|
|---|
| 169 | PDG -> {2000002, 2000004, 2000006}
|
|---|
| 170 | },
|
|---|
| 171 | S[3] == {
|
|---|
| 172 | ClassName -> SQR,
|
|---|
| 173 | Unphysical -> True,
|
|---|
| 174 | SelfConjugate -> False,
|
|---|
| 175 | Indices -> {Index[Gen],Index[Colourb]},
|
|---|
| 176 | FlavorIndex -> Gen,
|
|---|
| 177 | QuantumNumbers -> {Q -> -2/3},
|
|---|
| 178 | Definitions -> { SQR[ff_,cc_] -> sqRbar[ff,cc] }
|
|---|
| 179 | }
|
|---|
| 180 | };
|
|---|
| 181 |
|
|---|
| 182 | (* ************************** *)
|
|---|
| 183 | (* ***** Parameters ***** *)
|
|---|
| 184 | (* ************************** *)
|
|---|
| 185 | M$Parameters = {
|
|---|
| 186 | aS == {
|
|---|
| 187 | ParameterType -> External,
|
|---|
| 188 | Value -> 0.1184,
|
|---|
| 189 | InteractionOrder -> {QCD, 2}
|
|---|
| 190 | },
|
|---|
| 191 | gs == {
|
|---|
| 192 | ParameterType -> Internal,
|
|---|
| 193 | Value -> Sqrt[4 Pi aS],
|
|---|
| 194 | InteractionOrder -> {QCD, 1},
|
|---|
| 195 | ParameterName -> G
|
|---|
| 196 | }
|
|---|
| 197 | };
|
|---|
| 198 |
|
|---|
| 199 | (* ************************** *)
|
|---|
| 200 | (* ***** Lagrangian ***** *)
|
|---|
| 201 | (* ************************** *)
|
|---|
| 202 | LMatter := Theta2Thetabar2Component[CSFKineticTerms[]];
|
|---|
| 203 | LVector := Module[{tmp=Theta2Component[VSFKineticTerms[]]}, tmp+HC[tmp]];
|
|---|
| 204 | LSoft := -Mu[ff] (uqLw[sp, ff, cc].UQRw[sp, ff, cc] +
|
|---|
| 205 | uqLwbar[sp, ff, cc].UQRwbar[sp, ff, cc]) -
|
|---|
| 206 | MsqL[ff]^2 sqLbar[ff, cc] sqL[ff, cc] -
|
|---|
| 207 | MsqR[ff]^2 SQRbar[ff, cc] SQR[ff, cc] -
|
|---|
| 208 | 1/2 Mgo (goww[s1, a].goww[s1, a] + gowwbar[s1, a].gowwbar[s1, a]);
|
|---|
| 209 |
|
|---|
| 210 | Lagr := Module[{tmp=LMatter + LVector + LSoft},
|
|---|
| 211 | tmp = SolveEqMotionD[tmp];
|
|---|
| 212 | tmp = SolveEqMotionF[Expand[tmp]];
|
|---|
| 213 | tmp = tmp//.{Tb[a_,i_,j_]->-T[a,j,i]};
|
|---|
| 214 | Colourb=Colour;
|
|---|
| 215 | tmp = WeylToDirac[Expand[tmp]];
|
|---|
| 216 | tmp];
|
|---|
| 217 |
|
|---|