SchoolKias/FeynRules: susyqcd_dirac.fr

File susyqcd_dirac.fr, 4.5 KB (added by Benjamin Fuks, 13 years ago)

SUSY-QCD with Dirac fermions

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: SUSY-QCD ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8
9(* ************************** *)
10(* ***** Information ***** *)
11(* ************************** *)
12M$ModelName = "SUSYQCD";
13
14M$Information = {
15 Authors -> {"Benjamin Fuks"},
16 Date -> "24.10.11",
17 Version -> "1.0.0",
18 Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},
19 Emails -> {"benjamin.fuks@iphc.cnrs.fr"}
20};
21
22
23(* ************************** *)
24(* ***** Indices ***** *)
25(* ************************** *)
26IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a];
27IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
28IndexRange[Index[Gen ]] = Range[3]; IndexStyle[Gen, f];
29
30(* ************************** *)
31(* ***** Gauge groups ***** *)
32(* ************************** *)
33M$GaugeGroups = {
34 SU3C == {
35 Abelian -> False,
36 GaugeBoson -> G,
37 CouplingConstant -> gs,
38 StructureConstant -> f,
39 Representations -> {T,Colour} }
40};
41
42(* ************************** *)
43(* ***** Fields ***** *)
44(* ************************** *)
45M$ClassesDescription = {
46 (* Gluon field *)
47 V[1] == {
48 ClassName -> G,
49 SelfConjugate -> True,
50 Indices -> {Index[Gluon]},
51 Mass -> 0,
52 Width -> 0,
53 PDG -> 21
54 },
55
56 (* gluino *)
57 F[1] == {
58 ClassName -> go,
59 SelfConjugate -> True,
60 Indices -> {Index[Gluon]},
61 Mass -> {Mgo,500},
62 Width -> {Wgo,10},
63 PDG -> 1000021
64 },
65
66 (* up-type quarks *)
67 F[2] == {
68 ClassName -> uq,
69 SelfConjugate -> False,
70 Indices -> {Index[Gen], Index[Colour]},
71 FlavorIndex -> Gen,
72 QuantumNumbers -> {Q -> 2/3},
73 ClassMembers -> {u, c, t},
74 Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},
75 Width -> {0, 0, {WT, 1.50833649}},
76 PDG -> {2, 4, 6}
77 },
78
79 (* left-handed up-type squarks *)
80 S[1] == {
81 ClassName -> sqL,
82 SelfConjugate -> False,
83 Indices -> {Index[Gen],Index[Colour]},
84 FlavorIndex -> Gen,
85 QuantumNumbers -> {Q -> 2/3},
86 ClassMembers -> {suL, scL, stL},
87 Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},
88 Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},
89 PDG -> {1000002, 1000004, 1000006}
90 },
91
92 (* right-handed up-type squarks *)
93 S[2] == {
94 ClassName -> sqR,
95 SelfConjugate -> False,
96 Indices -> {Index[Gen],Index[Colour]},
97 FlavorIndex -> Gen,
98 QuantumNumbers -> {Q -> 2/3},
99 ClassMembers -> {suR, scR, stR},
100 Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},
101 Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},
102 PDG -> {2000002, 2000004, 2000006}
103 }
104};
105
106(* ************************** *)
107(* ***** Parameters ***** *)
108(* ************************** *)
109M$Parameters = {
110 aS == {
111 ParameterType -> External,
112 Value -> 0.1184,
113 InteractionOrder -> {QCD, 2}
114 },
115 gs == {
116 ParameterType -> Internal,
117 Value -> Sqrt[4 Pi aS],
118 InteractionOrder -> {QCD, 1},
119 ParameterName -> G
120 }
121};
122
123(* ************************** *)
124(* ***** Lagrangian ***** *)
125(* ************************** *)
126LVector := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +
127 I/2 Ga[mu,s1,s2] gobar[s1,a].DC[go[s2,a],mu] -
128 1/2 Mgo gobar[s1,a].go[s1,a];
129
130Lkin := DC[sqLbar[cc,ff],mu] DC[sqL[cc,ff],mu] +
131 DC[sqRbar[cc,ff],mu] DC[sqR[cc,ff],mu] +
132 I Ga[mu,s1,s2] uqbar[s1,ff,cc].DC[uq[s2,ff,cc],mu] -
133 Mu[ff] uqbar[s1,ff,cc].uq[s1,ff,cc] -
134 MsqL[ff]^2 sqLbar[ff,cc] sqL[ff,cc] -
135 MsqR[ff]^2 sqRbar[ff,cc] sqR[ff,cc];
136
137LD := -1/2 gs^2 *
138 (sqRbar[ff1,cc1] T[a,cc1,cc2] sqR[ff1,cc2] -
139 sqLbar[ff1,cc1] T[a,cc1,cc2] sqL[ff1,cc2]) *
140 (sqRbar[ff2,cc3] T[a,cc3,cc4] sqR[ff2,cc4] -
141 sqLbar[ff2,cc3] T[a,cc3,cc4] sqL[ff2,cc4]);
142
143Lgosqq := Sqrt[2] gs ProjM[s1,s2] * (
144 - sqLbar[ff, cc1] T[a,cc1,cc2] gobar[s1,a].uq[s2,ff,cc2] +
145 uqbar[s1,ff,cc1].go[s2,a] T[a,cc1,cc2] sqR[ff,cc2]);
146
147LMatter := Lkin + LD + Lgosqq + HC[Lgosqq];
148
149Lagr := LVector + LMatter;