Lecce: HiggsGG-LO-mtfinite.nb

File HiggsGG-LO-mtfinite.nb, 12.4 KB (added by trac, 13 years ago)
Line 
1(************** Content-type: application/mathematica **************
2
3 Mathematica-Compatible Notebook
4
5This notebook can be used with any Mathematica-compatible
6application, such as Mathematica, MathReader or Publicon. The data
7for the notebook starts with the line containing stars above.
8
9To get the notebook into a Mathematica-compatible application, do
10one of the following:
11
12* Save the data starting with the line of stars above into a file
13 with a name ending in .nb, then open the file inside the
14 application;
15
16* Copy the data starting with the line of stars above to the
17 clipboard, then use the Paste menu command inside the application.
18
19Data for notebooks contains only printable 7-bit ASCII and can be
20sent directly in email or through ftp in text mode. Newlines can be
21CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
22
23NOTE: If you modify the data for this notebook not in a Mathematica-
24compatible application, you must delete the line below containing
25the word CacheID, otherwise Mathematica-compatible applications may
26try to use invalid cache data.
27
28For more information on notebooks and Mathematica-compatible
29applications, contact Wolfram Research:
30 web: http://www.wolfram.com
31 email: info@wolfram.com
32 phone: +1-217-398-0700 (U.S.)
33
34Notebook reader applications are available free of charge from
35Wolfram Research.
36*******************************************************************)
37
38(*CacheID: 232*)
39
40
41(*NotebookFileLineBreakTest
42NotebookFileLineBreakTest*)
43(*NotebookOptionsPosition[ 10709, 318]*)
44(*NotebookOutlinePosition[ 11346, 340]*)
45(* CellTagsIndexPosition[ 11302, 336]*)
46(*WindowFrame->Normal*)
47
48
49
50Notebook[{
51
52Cell[CellGroupData[{
53Cell[TextData[{
54 "Calculation for ",
55 StyleBox["gg > Higgs at LO with full top-mass dependence",
56 "DisplayFormula"]
57}], "Title"],
58
59Cell[CellGroupData[{
60
61Cell["Input FeynCalc", "Subsection"],
62
63Cell[BoxData[
64 \(\(<< HighEnergyPhysics`fc`;\)\)], "Input"],
65
66Cell[TextData[{
67 StyleBox["FeynCalc",
68 FontWeight->"Bold"],
69 " ",
70 "4.1.0.3b",
71 " ",
72 " Evaluate ?FeynCalc for help or visit ",
73 ButtonBox["www.feyncalc.org",
74 ButtonData:>{
75 URL[ "http://www.feyncalc.org"], None},
76 ButtonStyle->"Hyperlink",
77 ButtonNote->"http://www.feyncalc.org"]
78}], "Text",
79 GeneratedCell->True,
80 CellAutoOverwrite->True]
81}, Closed]],
82
83Cell[CellGroupData[{
84
85Cell["Preliminaries", "Subsection"],
86
87Cell[CellGroupData[{
88
89Cell["Kinematics 2->1 ", "Subsubsection"],
90
91Cell[BoxData[
92 \(\(\(\[IndentingNewLine]\)\(\(ScalarProduct[q1, q1] =
93 0;\)\[IndentingNewLine]
94 \(ScalarProduct[q2, q2] = 0;\)\[IndentingNewLine]
95 \(ScalarProduct[q1, q2] = mh2/2;\)\[IndentingNewLine]
96 \(ScalarProduct[q, q1] = mh2/2;\)\[IndentingNewLine]
97 \(ScalarProduct[q, q2] = mh2/2;\)\[IndentingNewLine]
98 \(ScalarProduct[q, q] = mh2;\)\[IndentingNewLine]
99 \)\)\)], "Input"]
100}, Open ]]
101}, Closed]],
102
103Cell[CellGroupData[{
104
105Cell["Amplitude (2 diagrams)", "Subsection"],
106
107Cell[CellGroupData[{
108
109Cell[BoxData[
110 \(\(\(\[IndentingNewLine]\)\(\(Amp = \((\(-I\))\) \((\(\((\(-\((\(-I\)\ \
111gs)\)^2\)\ \ \((\(-\ I\)\ mt\ /v)\)\ *\ I^3*deltaAB/2*
112 Tr[\((GSD[l + q1] + mt)\) .
113 GAD[mu] . \((GSD[l] + mt)\) .
114 GAD[nu] . \((GSD[l - q2] +
115 mt)\) + \((GSD[l + q2] + mt)\) .
116 GAD[nu] . \((GSD[l] + mt)\) .
117 GAD[mu] . \((GSD[l - q1] + mt)\)]\ //
118 DiracSimplify)\) /. \
119 Pair[Momentum[q2], LorentzIndex[nu]] \[Rule] 0\) /. \
120 Pair[Momentum[q1], LorentzIndex[mu]] \[Rule] 0)\)\ //
121 Simplify\)\(\[IndentingNewLine]\)
122 \)\)\)], "Input"],
123
124Cell[BoxData[
125 FormBox[
126 RowBox[{\(1\/v\),
127 RowBox[{"(",
128 RowBox[{
129 "2", " ", "\[ImaginaryI]", " ", "deltaAB", " ", \(gs\^2\),
130 " ", \(mt\^2\), " ",
131 RowBox[{"(",
132 RowBox[{
133 RowBox[{"8", " ",
134 SuperscriptBox[
135 FormBox["l",
136 "TraditionalForm"],
137 FormBox[
138 FormBox["mu",
139 "TraditionalForm"],
140 "TraditionalForm"]], " ",
141 SuperscriptBox[
142 FormBox["l",
143 "TraditionalForm"],
144 FormBox[
145 FormBox["nu",
146 "TraditionalForm"],
147 "TraditionalForm"]]}], "+",
148 RowBox[{"2", " ",
149 SuperscriptBox[
150 FormBox["q2",
151 "TraditionalForm"],
152 FormBox[
153 FormBox["mu",
154 "TraditionalForm"],
155 "TraditionalForm"]], " ",
156 SuperscriptBox[
157 FormBox["q1",
158 "TraditionalForm"],
159 FormBox[
160 FormBox["nu",
161 "TraditionalForm"],
162 "TraditionalForm"]]}], "-",
163 RowBox[{"2", " ",
164 SuperscriptBox[
165 FormBox["q1",
166 "TraditionalForm"],
167 FormBox[
168 FormBox["mu",
169 "TraditionalForm"],
170 "TraditionalForm"]], " ",
171 SuperscriptBox[
172 FormBox["q2",
173 "TraditionalForm"],
174 FormBox[
175 FormBox["nu",
176 "TraditionalForm"],
177 "TraditionalForm"]]}], "-",
178 RowBox[{
179 SuperscriptBox["g",
180 RowBox[{
181 FormBox[
182 FormBox["mu",
183 "TraditionalForm"],
184 "TraditionalForm"], "\[NoBreak]",
185 FormBox[
186 FormBox["nu",
187 "TraditionalForm"],
188 "TraditionalForm"]}]], " ",
189 RowBox[{"(",
190 RowBox[{\(\(-2\)\ mt\^2\), "+", "mh2", "+",
191 RowBox[{"2", " ",
192 SuperscriptBox[
193 FormBox["l",
194 "TraditionalForm"], "2"]}]}], ")"}]}]}], ")"}]}],
195 ")"}]}], TraditionalForm]], "Output"]
196}, Open ]]
197}, Closed]],
198
199Cell[CellGroupData[{
200
201Cell["Let's ask FeynCalc to do the tensor reduction", "Subsection"],
202
203Cell[CellGroupData[{
204
205Cell[BoxData[
206 \(\(\(\[IndentingNewLine]\)\(\(res = \(\(1/\((2\ Pi)\)^4*
207 OneLoop[l,
208 FAD[{l, mt}, {l + q1, mt}, {l - q2, mt}]\ Amp // Contract] //
209 PaVeReduce\) // Factor\) // Simplify;\)\[IndentingNewLine]
210 res = \((\(res /. \ Pair[Momentum[q2], LorentzIndex[nu]] \[Rule] 0\) /. \
211 Pair[Momentum[q1], LorentzIndex[mu]] \[Rule] 0\ )\) //
212 Simplify\)\)\)], "Input"],
213
214Cell[BoxData[
215 FormBox[
216 RowBox[{\(1\/\(8\ mh2\ \[Pi]\^2\ v\)\),
217 RowBox[{"(",
218 RowBox[{"deltaAB", " ", \(gs\^2\), " ", \(mt\^2\), " ",
219 RowBox[{"(",
220 RowBox[{
221 RowBox[{\((mh2 - 4\ mt\^2)\), " ",
222 RowBox[{
223 FormBox[\("C"\_"0"\),
224 "TraditionalForm"], "\[NoBreak]", "(", "\[NoBreak]",
225 "mh2", "\[NoBreak]", ",", "\[NoBreak]",
226 FormBox["0",
227 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
228 FormBox["0",
229 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
230 FormBox[\(mt\^2\),
231 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
232 FormBox[\(mt\^2\),
233 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
234 FormBox[\(mt\^2\),
235 "TraditionalForm"], "\[NoBreak]", ")"}]}], "-", "2"}],
236 ")"}], " ",
237 RowBox[{"(",
238 RowBox[{\(mh2\ g\^\(mu\[NoBreak]nu\)\), "-",
239 RowBox[{"2", " ",
240 SuperscriptBox[
241 FormBox["q2",
242 "TraditionalForm"],
243 FormBox[
244 FormBox["mu",
245 "TraditionalForm"],
246 "TraditionalForm"]], " ",
247 SuperscriptBox[
248 FormBox["q1",
249 "TraditionalForm"],
250 FormBox[
251 FormBox["nu",
252 "TraditionalForm"],
253 "TraditionalForm"]]}]}], ")"}]}], ")"}]}],
254 TraditionalForm]], "Output"]
255}, Open ]]
256}, Closed]],
257
258Cell[CellGroupData[{
259
260Cell["\<\
261The scalar integral C0, can be evaluated with the help of the \
262Feynman parameters (by hand) and the result is:\
263\>", "Subsection"],
264
265Cell["\<\
266c0=-I/(16 Pi^2)*1/mt^2*Integrate[1/(1-4 \[Tau] x \
267y),{x,0,1},{y,0,1-x}, Assumptions \[Rule] {\[Tau]<1}]//Simplify;
268c0FC=(2 Pi)^4/(I Pi^2) c0;\
269\>", "Input"]
270}, Closed]],
271
272Cell[CellGroupData[{
273
274Cell["\<\
275Let's take the mt->Infinity limit and see that the amplitude does \
276not depend on m_top:\
277\>", "Subsection"],
278
279Cell[CellGroupData[{
280
281Cell[BoxData[
282 \(myamp =
283 Normal[Series[\(\(\(\((\
284 res\ /. \ C0[x__]\ \[Rule] c0FC // Simplify)\) /. \
285 gs^2\ \[Rule] \ as\ 4\ Pi\) /. \
286 mh2 \[Rule] mh^2\) /. \ \[Tau] \[Rule] \ \(mh^2/4\)/mt^2 //
287 PowerExpand\) // FullSimplify, {mt, Infinity, 4}]] //
288 Simplify\)], "Input"],
289
290Cell[BoxData[
291 FormBox[
292 RowBox[{"-",
293 FractionBox[
294 RowBox[{"as", " ", "deltaAB", " ",
295 RowBox[{"(",
296 RowBox[{\(mh\^2\ g\^\(mu\[NoBreak]nu\)\), "-",
297 RowBox[{"2", " ",
298 SuperscriptBox[
299 FormBox["q2",
300 "TraditionalForm"],
301 FormBox[
302 FormBox["mu",
303 "TraditionalForm"],
304 "TraditionalForm"]], " ",
305 SuperscriptBox[
306 FormBox["q1",
307 "TraditionalForm"],
308 FormBox[
309 FormBox["nu",
310 "TraditionalForm"],
311 "TraditionalForm"]]}]}], ")"}]}], \(6\ \[Pi]\ v\)]}],
312 TraditionalForm]], "Output"]
313}, Open ]],
314
315Cell[BoxData[""], "Input"]
316}, Closed]]
317}, Open ]]
318},
319FrontEndVersion->"4.1 for Macintosh",
320ScreenRectangle->{{0, 1280}, {0, 832}},
321WindowSize->{710, 706},
322WindowMargins->{{Automatic, 230}, {Automatic, 4}}
323]
324
325(*******************************************************************
326Cached data follows. If you edit this Notebook file directly, not
327using Mathematica, you must remove the line containing CacheID at
328the top of the file. The cache data will then be recreated when
329you save this file from within Mathematica.
330*******************************************************************)
331
332(*CellTagsOutline
333CellTagsIndex->{}
334*)
335
336(*CellTagsIndex
337CellTagsIndex->{}
338*)
339
340(*NotebookFileOutline
341Notebook[{
342
343Cell[CellGroupData[{
344Cell[1727, 52, 134, 4, 156, "Title"],
345
346Cell[CellGroupData[{
347Cell[1886, 60, 36, 0, 46, "Subsection"],
348Cell[1925, 62, 62, 1, 27, "Input"],
349Cell[1990, 65, 369, 14, 70, "Text"]
350}, Closed]],
351
352Cell[CellGroupData[{
353Cell[2396, 84, 35, 0, 30, "Subsection"],
354
355Cell[CellGroupData[{
356Cell[2456, 88, 41, 0, 42, "Subsubsection"],
357Cell[2500, 90, 407, 8, 139, "Input"]
358}, Open ]]
359}, Closed]],
360
361Cell[CellGroupData[{
362Cell[2956, 104, 44, 0, 30, "Subsection"],
363
364Cell[CellGroupData[{
365Cell[3025, 108, 753, 13, 219, "Input"],
366Cell[3781, 123, 2747, 71, 62, "Output"]
367}, Open ]]
368}, Closed]],
369
370Cell[CellGroupData[{
371Cell[6577, 200, 67, 0, 30, "Subsection"],
372
373Cell[CellGroupData[{
374Cell[6669, 204, 438, 7, 155, "Input"],
375Cell[7110, 213, 1772, 40, 62, "Output"]
376}, Open ]]
377}, Closed]],
378
379Cell[CellGroupData[{
380Cell[8931, 259, 141, 3, 48, "Subsection"],
381Cell[9075, 264, 167, 4, 57, "Input"]
382}, Closed]],
383
384Cell[CellGroupData[{
385Cell[9279, 273, 118, 3, 30, "Subsection"],
386
387Cell[CellGroupData[{
388Cell[9422, 280, 378, 7, 123, "Input"],
389Cell[9803, 289, 837, 22, 46, "Output"]
390}, Open ]],
391Cell[10655, 314, 26, 0, 27, "Input"]
392}, Closed]]
393}, Open ]]
394}
395]
396*)
397
398
399
400(*******************************************************************
401End of Mathematica Notebook file.
402*******************************************************************)
403