| 1 | (************** Content-type: application/mathematica **************
|
|---|
| 2 |
|
|---|
| 3 | Mathematica-Compatible Notebook
|
|---|
| 4 |
|
|---|
| 5 | This notebook can be used with any Mathematica-compatible
|
|---|
| 6 | application, such as Mathematica, MathReader or Publicon. The data
|
|---|
| 7 | for the notebook starts with the line containing stars above.
|
|---|
| 8 |
|
|---|
| 9 | To get the notebook into a Mathematica-compatible application, do
|
|---|
| 10 | one of the following:
|
|---|
| 11 |
|
|---|
| 12 | * Save the data starting with the line of stars above into a file
|
|---|
| 13 | with a name ending in .nb, then open the file inside the
|
|---|
| 14 | application;
|
|---|
| 15 |
|
|---|
| 16 | * Copy the data starting with the line of stars above to the
|
|---|
| 17 | clipboard, then use the Paste menu command inside the application.
|
|---|
| 18 |
|
|---|
| 19 | Data for notebooks contains only printable 7-bit ASCII and can be
|
|---|
| 20 | sent directly in email or through ftp in text mode. Newlines can be
|
|---|
| 21 | CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
|
|---|
| 22 |
|
|---|
| 23 | NOTE: If you modify the data for this notebook not in a Mathematica-
|
|---|
| 24 | compatible application, you must delete the line below containing
|
|---|
| 25 | the word CacheID, otherwise Mathematica-compatible applications may
|
|---|
| 26 | try to use invalid cache data.
|
|---|
| 27 |
|
|---|
| 28 | For more information on notebooks and Mathematica-compatible
|
|---|
| 29 | applications, contact Wolfram Research:
|
|---|
| 30 | web: http://www.wolfram.com
|
|---|
| 31 | email: info@wolfram.com
|
|---|
| 32 | phone: +1-217-398-0700 (U.S.)
|
|---|
| 33 |
|
|---|
| 34 | Notebook reader applications are available free of charge from
|
|---|
| 35 | Wolfram Research.
|
|---|
| 36 | *******************************************************************)
|
|---|
| 37 |
|
|---|
| 38 | (*CacheID: 232*)
|
|---|
| 39 |
|
|---|
| 40 |
|
|---|
| 41 | (*NotebookFileLineBreakTest
|
|---|
| 42 | NotebookFileLineBreakTest*)
|
|---|
| 43 | (*NotebookOptionsPosition[ 32589, 988]*)
|
|---|
| 44 | (*NotebookOutlinePosition[ 33288, 1012]*)
|
|---|
| 45 | (* CellTagsIndexPosition[ 33244, 1008]*)
|
|---|
| 46 | (*WindowFrame->Normal*)
|
|---|
| 47 |
|
|---|
| 48 |
|
|---|
| 49 |
|
|---|
| 50 | Notebook[{
|
|---|
| 51 |
|
|---|
| 52 | Cell[CellGroupData[{
|
|---|
| 53 | Cell["gg \[Rule] H at NLO in the EFT", "Title",
|
|---|
| 54 | PageWidth->PaperWidth],
|
|---|
| 55 |
|
|---|
| 56 | Cell[CellGroupData[{
|
|---|
| 57 |
|
|---|
| 58 | Cell["Input FeynCalc", "Subsection",
|
|---|
| 59 | PageWidth->PaperWidth],
|
|---|
| 60 |
|
|---|
| 61 | Cell[BoxData[
|
|---|
| 62 | \(<< HighEnergyPhysics`fc`\)], "Input",
|
|---|
| 63 | PageWidth->PaperWidth],
|
|---|
| 64 |
|
|---|
| 65 | Cell[TextData[{
|
|---|
| 66 | StyleBox["FeynCalc",
|
|---|
| 67 | FontWeight->"Bold"],
|
|---|
| 68 | " ",
|
|---|
| 69 | "4.1.0.3b",
|
|---|
| 70 | " ",
|
|---|
| 71 | " Evaluate ?FeynCalc for help or visit ",
|
|---|
| 72 | ButtonBox["www.feyncalc.org",
|
|---|
| 73 | ButtonData:>{
|
|---|
| 74 | URL[ "http://www.feyncalc.org"], None},
|
|---|
| 75 | ButtonStyle->"Hyperlink",
|
|---|
| 76 | ButtonNote->"http://www.feyncalc.org"]
|
|---|
| 77 | }], "Text",
|
|---|
| 78 | GeneratedCell->True,
|
|---|
| 79 | CellAutoOverwrite->True],
|
|---|
| 80 |
|
|---|
| 81 | Cell[BoxData[
|
|---|
| 82 | \(\($LimitTo4 = False;\)\)], "Input",
|
|---|
| 83 | PageWidth->PaperWidth]
|
|---|
| 84 | }, Closed]],
|
|---|
| 85 |
|
|---|
| 86 | Cell[CellGroupData[{
|
|---|
| 87 |
|
|---|
| 88 | Cell["Virtual diagrams :preliminaries", "Section",
|
|---|
| 89 | PageWidth->PaperWidth],
|
|---|
| 90 |
|
|---|
| 91 | Cell[CellGroupData[{
|
|---|
| 92 |
|
|---|
| 93 | Cell["Kinematics", "Subsection",
|
|---|
| 94 | PageWidth->PaperWidth],
|
|---|
| 95 |
|
|---|
| 96 | Cell["\<\
|
|---|
| 97 | -----I take all momenta outgoing
|
|---|
| 98 |
|
|---|
| 99 | p1 + p2 + p3 = 0
|
|---|
| 100 |
|
|---|
| 101 | p1^2=0
|
|---|
| 102 | p2^2=0
|
|---|
| 103 | p3^3=Q^2
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | \
|
|---|
| 107 | \>", "Text",
|
|---|
| 108 | PageWidth->PaperWidth],
|
|---|
| 109 |
|
|---|
| 110 | Cell[BoxData[{
|
|---|
| 111 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 112 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 113 | \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
|
|---|
| 114 | \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
|
|---|
| 115 | \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
|
|---|
| 116 | \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
|
|---|
| 117 | \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 118 | \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 119 | \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 120 | \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
|
|---|
| 121 | \)\), "\[IndentingNewLine]",
|
|---|
| 122 | \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
|
|---|
| 123 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 124 | \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
|
|---|
| 125 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 126 | \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
|
|---|
| 127 | Q2;\)\), "\[IndentingNewLine]",
|
|---|
| 128 | \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
|
|---|
| 129 | 2;\)\), "\[IndentingNewLine]",
|
|---|
| 130 | \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
|
|---|
| 131 | Q2/2;\)\), "\[IndentingNewLine]",
|
|---|
| 132 | \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
|
|---|
| 133 | 2;\)\), "\[IndentingNewLine]",
|
|---|
| 134 | \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
|
|---|
| 135 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 136 | \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
|
|---|
| 137 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 138 | \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
|
|---|
| 139 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 140 | \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
|
|---|
| 141 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 142 | \(\)}], "Input",
|
|---|
| 143 | PageWidth->PaperWidth]
|
|---|
| 144 | }, Closed]],
|
|---|
| 145 |
|
|---|
| 146 | Cell[CellGroupData[{
|
|---|
| 147 |
|
|---|
| 148 | Cell["Verteces and Propagators", "Subsection",
|
|---|
| 149 | PageWidth->PaperWidth],
|
|---|
| 150 |
|
|---|
| 151 | Cell[TextData[{
|
|---|
| 152 | StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
|
|---|
| 153 | outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
|
|---|
| 154 | FontSize->14],
|
|---|
| 155 | Cell[BoxData[
|
|---|
| 156 | \(TraditionalForm\`g\_s\)],
|
|---|
| 157 | FontSize->14],
|
|---|
| 158 | StyleBox[" ) (\[ImaginaryI] ",
|
|---|
| 159 | FontSize->14],
|
|---|
| 160 | Cell[BoxData[
|
|---|
| 161 | \(TraditionalForm\`f\^abc\)],
|
|---|
| 162 | FontSize->14],
|
|---|
| 163 | StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
|
|---|
| 164 | FontSize->14],
|
|---|
| 165 | Cell[BoxData[
|
|---|
| 166 | \(TraditionalForm\`g\_s\)],
|
|---|
| 167 | FontSize->14],
|
|---|
| 168 | ")",
|
|---|
| 169 | StyleBox[" ",
|
|---|
| 170 | FontSize->14],
|
|---|
| 171 | Cell[BoxData[
|
|---|
| 172 | \(TraditionalForm\`\((T\^a)\)\_ij\)],
|
|---|
| 173 | FontSize->14],
|
|---|
| 174 | StyleBox[" ",
|
|---|
| 175 | FontSize->14],
|
|---|
| 176 | Cell[BoxData[
|
|---|
| 177 | \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
|
|---|
| 178 | FontSize->14],
|
|---|
| 179 | StyleBox["\nGluon Propagator= ",
|
|---|
| 180 | FontSize->14],
|
|---|
| 181 | Cell[BoxData[
|
|---|
| 182 | FormBox[
|
|---|
| 183 | FractionBox[
|
|---|
| 184 | StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
|
|---|
| 185 | FontSize->16], \(p\^2\)], TraditionalForm]],
|
|---|
| 186 | FontSize->14],
|
|---|
| 187 | "\nQuark ",
|
|---|
| 188 | StyleBox["Propagator= ",
|
|---|
| 189 | FontSize->14],
|
|---|
| 190 | Cell[BoxData[
|
|---|
| 191 | FormBox[
|
|---|
| 192 | FractionBox[
|
|---|
| 193 | StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
|
|---|
| 194 | FontSize->16], \(p\&^\)], TraditionalForm]],
|
|---|
| 195 | FontSize->14]
|
|---|
| 196 | }], "Text",
|
|---|
| 197 | PageWidth->PaperWidth],
|
|---|
| 198 |
|
|---|
| 199 | Cell[BoxData[{
|
|---|
| 200 | \(\(GGG[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
|---|
| 201 | FV[p1 - p2, m3]\ MT[m1, m2] + FV[p2 - p3, m1]\ MT[m2, m3] +
|
|---|
| 202 | FV[p3 - p1, m2]\ MT[m1, m3];\)\), "\[IndentingNewLine]",
|
|---|
| 203 | \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
|---|
| 204 | FVD[p1 - p2, m3]\ MTD[m1, m2] + FVD[p2 - p3, m1]\ MTD[m2, m3] +
|
|---|
| 205 | FVD[p3 - p1, m2]\ MTD[m1, m3];\)\), "\[IndentingNewLine]",
|
|---|
| 206 | \(\(GGGG[m1_, m2_, m3_, m4_] :=
|
|---|
| 207 | 2\ MT[m1, m2]\ MT[m3, m4] - MT[m1, m3]\ MT[m2, m4] -
|
|---|
| 208 | MT[m1, m4]\ MT[m2, m3];\)\), "\[IndentingNewLine]",
|
|---|
| 209 | \(\(GGGGD[m1_, m2_, m3_, m4_] :=
|
|---|
| 210 | 2\ MTD[m1, m2]\ MTD[m3, m4] - MTD[m1, m3]\ MTD[m2, m4] -
|
|---|
| 211 | MTD[m1, m4]\ MTD[m2, m3];\)\), "\[IndentingNewLine]",
|
|---|
| 212 | \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
|
|---|
| 213 | \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
|
|---|
| 214 | \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
|
|---|
| 215 | PageWidth->PaperWidth]
|
|---|
| 216 | }, Closed]],
|
|---|
| 217 |
|
|---|
| 218 | Cell[CellGroupData[{
|
|---|
| 219 |
|
|---|
| 220 | Cell["Born Matrix element ", "Subsection",
|
|---|
| 221 | PageWidth->PaperWidth],
|
|---|
| 222 |
|
|---|
| 223 | Cell[CellGroupData[{
|
|---|
| 224 |
|
|---|
| 225 | Cell[BoxData[{
|
|---|
| 226 | \(factborn = gs2\), "\[IndentingNewLine]",
|
|---|
| 227 | \(\(Born =
|
|---|
| 228 | factborn \((\
|
|---|
| 229 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ FVD[e1,
|
|---|
| 230 | mu]\ FVD[e2, nu] // Contract;\)\), "\[IndentingNewLine]",
|
|---|
| 231 | \(\(Born4 = Born /. \ D \[Rule] 4;\)\), "\[IndentingNewLine]",
|
|---|
| 232 | \(Born = Born\)}], "Input",
|
|---|
| 233 | PageWidth->PaperWidth],
|
|---|
| 234 |
|
|---|
| 235 | Cell[BoxData[
|
|---|
| 236 | \(TraditionalForm\`gs2\)], "Output"],
|
|---|
| 237 |
|
|---|
| 238 | Cell[BoxData[
|
|---|
| 239 | FormBox[
|
|---|
| 240 | RowBox[{\(1\/2\), " ", "gs2", " ", "Q2", " ",
|
|---|
| 241 | RowBox[{
|
|---|
| 242 | FormBox["e1",
|
|---|
| 243 | "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]",
|
|---|
| 244 | FormBox["e2",
|
|---|
| 245 | "TraditionalForm"]}]}], TraditionalForm]], "Output"]
|
|---|
| 246 | }, Open ]],
|
|---|
| 247 |
|
|---|
| 248 | Cell[CellGroupData[{
|
|---|
| 249 |
|
|---|
| 250 | Cell[BoxData[{
|
|---|
| 251 | \(BornSq =
|
|---|
| 252 | Normal[Series[\((\[IndentingNewLine]gs2^2\ /\((D - 2)\)^2*\((\
|
|---|
| 253 | MTD[mu, nu]\ SPD[p1, p2] -
|
|---|
| 254 | FVD[p1, nu]\ FVD[p2, mu])\) \((\
|
|---|
| 255 | MTD[mu, nu]\ SPD[p1, p2] -
|
|---|
| 256 | FVD[p1, nu]\ FVD[p2, mu])\)\ // Contract)\)\ /. \
|
|---|
| 257 | D \[Rule] 4 - 2 e, {e, 0, 2}]] //
|
|---|
| 258 | Simplify\), "\[IndentingNewLine]",
|
|---|
| 259 | \(\(BornSq4 = BornSq /. \ e \[Rule] 0;\)\)}], "Input"],
|
|---|
| 260 |
|
|---|
| 261 | Cell[BoxData[
|
|---|
| 262 | \(TraditionalForm\`1\/8\ \((e\^2 + e + 1)\)\ gs2\^2\ Q2\^2\)], "Output"]
|
|---|
| 263 | }, Open ]]
|
|---|
| 264 | }, Closed]],
|
|---|
| 265 |
|
|---|
| 266 | Cell[CellGroupData[{
|
|---|
| 267 |
|
|---|
| 268 | Cell["My Scalar Integrals", "Subsection",
|
|---|
| 269 | PageWidth->PaperWidth],
|
|---|
| 270 |
|
|---|
| 271 | Cell[BoxData[{
|
|---|
| 272 | \(\(subInt[expr_] :=
|
|---|
| 273 | expr /. \ {\[IndentingNewLine]B0[x__] \[Rule] \
|
|---|
| 274 | DUPI/\((I\ Pi^2)\)\ MyB0[x], \[IndentingNewLine]C0[
|
|---|
| 275 | x__] \[Rule] \
|
|---|
| 276 | DUPI/\((I\ Pi^2)\)\ MyC0[x], \[IndentingNewLine]D0[
|
|---|
| 277 | x__] \[Rule] \
|
|---|
| 278 | DUPI/\((I\ Pi^2)\)\ MyD0[x]};\)\), "\[IndentingNewLine]",
|
|---|
| 279 | \(\(MyC0[0, 0, Q2, 0, 0,
|
|---|
| 280 | 0] = \((c\[CapitalGamma]*\((2/e^2 - Pi^2 - 2/e*Log[Q2/mu2] +
|
|---|
| 281 | Log[Q2/mu2]^2)\))\)/\((2*
|
|---|
| 282 | Q2)\);\)\), "\[IndentingNewLine]",
|
|---|
| 283 | \(\(MyB0[0, 0, 0] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 284 | \(\(MyB0[Q2, 0, 0] =
|
|---|
| 285 | c\[CapitalGamma]\ \((1/e + 2 - Log[Q2/mu2])\);\)\), "\n",
|
|---|
| 286 | \(\)}], "Input",
|
|---|
| 287 | PageWidth->PaperWidth],
|
|---|
| 288 |
|
|---|
| 289 | Cell[BoxData[""], "Input"],
|
|---|
| 290 |
|
|---|
| 291 | Cell[BoxData[""], "Input"]
|
|---|
| 292 | }, Closed]]
|
|---|
| 293 | }, Closed]],
|
|---|
| 294 |
|
|---|
| 295 | Cell[CellGroupData[{
|
|---|
| 296 |
|
|---|
| 297 | Cell["CDR", "Section"],
|
|---|
| 298 |
|
|---|
| 299 | Cell[CellGroupData[{
|
|---|
| 300 |
|
|---|
| 301 | Cell["Vertex Diagram ", "Subsection",
|
|---|
| 302 | PageWidth->PaperWidth],
|
|---|
| 303 |
|
|---|
| 304 | Cell[CellGroupData[{
|
|---|
| 305 |
|
|---|
| 306 | Cell[BoxData[{
|
|---|
| 307 | \(\(\(colorvtx = SUNF[b, x, y] SUNF[y, a, x]\ // SUNSimplify\)\(\n\)
|
|---|
| 308 | \)\), "\[IndentingNewLine]",
|
|---|
| 309 | \(\(num =
|
|---|
| 310 | gs2^2*\((\(-gs2\))\)*
|
|---|
| 311 | I*\[IndentingNewLine]\((\
|
|---|
| 312 | MTD[al, be]\ SPD[\(-l\) + p1, p2 + l] - \ \ FVD[\(-l\) + p1,
|
|---|
| 313 | be]\ FVD[p2 + l, al])\)\ *\
|
|---|
| 314 | GGGD[\(-l\), p1, l - p1, ro, mu, al]*\[IndentingNewLine]GGGD[p2,
|
|---|
| 315 | l, \(-l\) - p2, nu, ro, be]*\((\
|
|---|
| 316 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
|
|---|
| 317 | Contract;\)\), "\n",
|
|---|
| 318 | \(\(dens = FAD[l, p1 - l, l + p2];\)\), "\[IndentingNewLine]",
|
|---|
| 319 | \(\(amp = CA\ dens*\ num/\((D - 2)\)^2;\)\), "\n",
|
|---|
| 320 | \(inte1 = \((\(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
|
|---|
| 321 | Factor\) // Simplify)\) /. \ B0[0, 0, 0] \[Rule] 0\ //
|
|---|
| 322 | Simplify\)}], "Input",
|
|---|
| 323 | PageWidth->PaperWidth],
|
|---|
| 324 |
|
|---|
| 325 | Cell[BoxData[
|
|---|
| 326 | FormBox[
|
|---|
| 327 | RowBox[{\(C\_A\), " ",
|
|---|
| 328 | SubscriptBox["\[Delta]",
|
|---|
| 329 | RowBox[{
|
|---|
| 330 | FormBox[
|
|---|
| 331 | FormBox["a",
|
|---|
| 332 | "TraditionalForm"],
|
|---|
| 333 | "TraditionalForm"], "\[NoBreak]",
|
|---|
| 334 | FormBox[
|
|---|
| 335 | FormBox["b",
|
|---|
| 336 | "TraditionalForm"],
|
|---|
| 337 | "TraditionalForm"]}]]}], TraditionalForm]], "Output"],
|
|---|
| 338 |
|
|---|
| 339 | Cell[BoxData[
|
|---|
| 340 | FormBox[
|
|---|
| 341 | RowBox[{"-",
|
|---|
| 342 | RowBox[{
|
|---|
| 343 | RowBox[{"(",
|
|---|
| 344 |
|
|---|
| 345 | RowBox[{\(C\_A\), " ", \(gs2\^3\), " ", \(\[Pi]\^2\),
|
|---|
| 346 | " ", \(Q2\^2\), " ",
|
|---|
| 347 | RowBox[{"(",
|
|---|
| 348 |
|
|---|
| 349 | RowBox[{\(\((\(-20\)\ D\^2 + 73\ D - 52)\)\ \(\(B\_0\)(Q2, 0,
|
|---|
| 350 | 0)\)\), "+",
|
|---|
| 351 | RowBox[{"8", " ", \((D\^2 - 3\ D + 2)\), " ", "Q2", " ",
|
|---|
| 352 | RowBox[{
|
|---|
| 353 | FormBox[\("C"\_"0"\),
|
|---|
| 354 | "TraditionalForm"], "\[NoBreak]", "(", "\[NoBreak]",
|
|---|
| 355 | FormBox["0",
|
|---|
| 356 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
|---|
| 357 | FormBox["0",
|
|---|
| 358 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
|---|
| 359 | "Q2", "\[NoBreak]", ",", "\[NoBreak]",
|
|---|
| 360 | FormBox["0",
|
|---|
| 361 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
|---|
| 362 | FormBox["0",
|
|---|
| 363 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
|---|
| 364 | FormBox["0",
|
|---|
| 365 | "TraditionalForm"], "\[NoBreak]", ")"}]}]}], ")"}]}],
|
|---|
| 366 | ")"}], "/", \((16\ \((D - 2)\)\^2\ \((D - 1)\)\ DUPI)\)}]}],
|
|---|
| 367 | TraditionalForm]], "Output"]
|
|---|
| 368 | }, Open ]],
|
|---|
| 369 |
|
|---|
| 370 | Cell[BoxData[""], "Input"]
|
|---|
| 371 | }, Open ]],
|
|---|
| 372 |
|
|---|
| 373 | Cell[CellGroupData[{
|
|---|
| 374 |
|
|---|
| 375 | Cell["4-gluon Diagram ", "Subsection",
|
|---|
| 376 | PageWidth->PaperWidth],
|
|---|
| 377 |
|
|---|
| 378 | Cell[CellGroupData[{
|
|---|
| 379 |
|
|---|
| 380 | Cell[BoxData[{
|
|---|
| 381 | \(\(color = SUNF[b, c, y] SUNF[y, a, c]\ // SUNSimplify;\)\), "\n",
|
|---|
| 382 | \(\(num =
|
|---|
| 383 | gs2^2*I*\
|
|---|
| 384 | gs2*\((\ MTD[ro, si]\ SPD[l, \(-l\) + p1 + p2] - \ \ FVD[l,
|
|---|
| 385 | si]\ FVD[\(-l\) + p1 + p2, ro])\)\ *\
|
|---|
| 386 | GGGGD[nu, mu, ro, si]\ *\((\
|
|---|
| 387 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
|
|---|
| 388 | Contract;\)\), "\n",
|
|---|
| 389 | \(\(dens = FAD[l, l - p1 - p2];\)\), "\n",
|
|---|
| 390 | \(\(amp = CA/2\ \ dens*num/\((D - 2)\)^2;\)\), "\[IndentingNewLine]",
|
|---|
| 391 | \(inte2 = \(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
|
|---|
| 392 | Factor\) // Simplify\)}], "Input",
|
|---|
| 393 | PageWidth->PaperWidth],
|
|---|
| 394 |
|
|---|
| 395 | Cell[BoxData[
|
|---|
| 396 | \(TraditionalForm\`\(-\(\(C\_A\ \((2\ D - 3)\)\ \((2\ D\^2 - 5\ D +
|
|---|
| 397 | 4)\)\ gs2\^3\ \[Pi]\^2\ Q2\^2\ \(\(B\_0\)(Q2, 0,
|
|---|
| 398 | 0)\)\)\/\(16\ \((D - 2)\)\^2\ \((D -
|
|---|
| 399 | 1)\)\ DUPI\)\)\)\)], "Output"]
|
|---|
| 400 | }, Open ]]
|
|---|
| 401 | }, Open ]],
|
|---|
| 402 |
|
|---|
| 403 | Cell[CellGroupData[{
|
|---|
| 404 |
|
|---|
| 405 | Cell["Sum the virtuals", "Subsection"],
|
|---|
| 406 |
|
|---|
| 407 | Cell[CellGroupData[{
|
|---|
| 408 |
|
|---|
| 409 | Cell[BoxData[
|
|---|
| 410 | \(\(\(\[IndentingNewLine]\)\(res = \ \(\(\(-1\)/
|
|---|
| 411 | 2*\[IndentingNewLine]Normal[
|
|---|
| 412 | Series[\(\(\((inte1 + inte2)\)/BornSq\)/
|
|---|
| 413 | I\)/\((mu2/Q2)\)^\((e)\)\ /. \
|
|---|
| 414 | D \[Rule] 4 - 2 e // \ subInt, {e, 0, 0}]] //
|
|---|
| 415 | Simplify\) // PowerExpand\) // Expand\)\)\)], "Input",
|
|---|
| 416 | PageWidth->PaperWidth],
|
|---|
| 417 |
|
|---|
| 418 | Cell[BoxData[
|
|---|
| 419 | \(TraditionalForm\`1\/2\ C\_A\ c\[CapitalGamma]\ gs2\ \[Pi]\^2 - \(C\_A\ \
|
|---|
| 420 | c\[CapitalGamma]\ gs2\)\/e\^2\)], "Output"]
|
|---|
| 421 | }, Open ]],
|
|---|
| 422 |
|
|---|
| 423 | Cell[CellGroupData[{
|
|---|
| 424 |
|
|---|
| 425 | Cell[BoxData[{
|
|---|
| 426 | \(\(add =
|
|---|
| 427 | 1/2 \((Normal[
|
|---|
| 428 | Series[\((\((1 + \ \(19/
|
|---|
| 429 | 4\)/\[Pi]\ gs2/\((4 \[Pi])\)\ )\)/\((1 +
|
|---|
| 430 | 2\ \(gs2/\((4 \[Pi])\)\)/\[Pi])\))\), {gs2, 0,
|
|---|
| 431 | 1}]] - 1)\) c\[CapitalGamma]\ CA/3\ 16
|
|---|
| 432 | Pi^2\ ;\)\), "\[IndentingNewLine]",
|
|---|
| 433 | \(\(virt = add + res;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
|
|---|
| 434 | \(add\)}], "Input",
|
|---|
| 435 | PageWidth->PaperWidth],
|
|---|
| 436 |
|
|---|
| 437 | Cell[BoxData[
|
|---|
| 438 | \(TraditionalForm\`11\/6\ C\_A\ c\[CapitalGamma]\ gs2\)], "Output"]
|
|---|
| 439 | }, Open ]],
|
|---|
| 440 |
|
|---|
| 441 | Cell[CellGroupData[{
|
|---|
| 442 |
|
|---|
| 443 | Cell[BoxData[
|
|---|
| 444 | \(virt = \(\((\((virt*\(2/gs2\)/c\[CapitalGamma])\) //
|
|---|
| 445 | Expand)\)\(*\)\(as\/\(2 \[Pi]\)\) \(c\[CapitalGamma]\)\(\ \
|
|---|
| 446 | \)\)\)], "Input"],
|
|---|
| 447 |
|
|---|
| 448 | Cell[BoxData[
|
|---|
| 449 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(-\(\(2\ C\_A\)\/e\^2\)\) \
|
|---|
| 450 | + \[Pi]\^2\ C\_A + \(11\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
|---|
| 451 | }, Open ]],
|
|---|
| 452 |
|
|---|
| 453 | Cell[BoxData[
|
|---|
| 454 | \(\[IndentingNewLine]\)], "Input"],
|
|---|
| 455 |
|
|---|
| 456 | Cell[CellGroupData[{
|
|---|
| 457 |
|
|---|
| 458 | Cell[BoxData[
|
|---|
| 459 | \(\(\(32/256\)/3\)/\((1 - e)\)^2\)], "Input"],
|
|---|
| 460 |
|
|---|
| 461 | Cell[BoxData[
|
|---|
| 462 | \(TraditionalForm\`1\/\(24\ \((1 - e)\)\^2\)\)], "Output"]
|
|---|
| 463 | }, Open ]]
|
|---|
| 464 | }, Open ]]
|
|---|
| 465 | }, Closed]],
|
|---|
| 466 |
|
|---|
| 467 | Cell[CellGroupData[{
|
|---|
| 468 |
|
|---|
| 469 | Cell["The real contributions", "Section",
|
|---|
| 470 | PageWidth->PaperWidth],
|
|---|
| 471 |
|
|---|
| 472 | Cell[CellGroupData[{
|
|---|
| 473 |
|
|---|
| 474 | Cell["Kinematics", "Subsection",
|
|---|
| 475 | PageWidth->PaperWidth],
|
|---|
| 476 |
|
|---|
| 477 | Cell["\<\
|
|---|
| 478 | -----I take all momenta outgoing
|
|---|
| 479 |
|
|---|
| 480 | p1 + p2 + p3 + p4 = 0
|
|---|
| 481 |
|
|---|
| 482 | p1^2=0
|
|---|
| 483 | p2^2=0
|
|---|
| 484 | p3^3=0
|
|---|
| 485 | p4^2=mh^2
|
|---|
| 486 |
|
|---|
| 487 | -----invariants
|
|---|
| 488 |
|
|---|
| 489 | s = (p1 + p2)^2 = (p3 + p4)^2=2 p1.p2=mh^2+2 p3.p4
|
|---|
| 490 | t = (p1 + p3)^2 = (p2+ p4)^2 =2 p1.p3=mh^2+2 p2.p4
|
|---|
| 491 | u = (p2 + p3)^2 = (p1 + p4)^2=2 p1.p4+mh^2=+2 p2.p3
|
|---|
| 492 |
|
|---|
| 493 | s + t + u = mh^2
|
|---|
| 494 |
|
|---|
| 495 | \[Sigma]+\[Tau]+\[Upsilon]=1
|
|---|
| 496 |
|
|---|
| 497 | -----scalar products
|
|---|
| 498 |
|
|---|
| 499 | p1.p2=s/2
|
|---|
| 500 | p1.p3=(t)/2
|
|---|
| 501 | p1.p4= (u-mh^2)/2
|
|---|
| 502 | p2.p3= (u)/2
|
|---|
| 503 | p2.p4=(t-mh^2)/2
|
|---|
| 504 | p3.p4=(s-mh^2)/2
|
|---|
| 505 |
|
|---|
| 506 | -----physical region for production p1+p2=-p3-p4
|
|---|
| 507 |
|
|---|
| 508 | s>(mh)^2 ;
|
|---|
| 509 | t<0;
|
|---|
| 510 | u<0;
|
|---|
| 511 |
|
|---|
| 512 | \
|
|---|
| 513 | \>", "Text",
|
|---|
| 514 | PageWidth->PaperWidth],
|
|---|
| 515 |
|
|---|
| 516 | Cell[BoxData[{
|
|---|
| 517 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 518 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 519 | \(\(ScalarProduct[p3, p3] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 520 | \(\(ScalarProduct[q, p3] = u/2;\)\ (*q =
|
|---|
| 521 | p2 + p3*) \), "\[IndentingNewLine]",
|
|---|
| 522 | \(\(ScalarProduct[q, p2] = u/2;\)\ (*q =
|
|---|
| 523 | p2 + p3*) \), "\[IndentingNewLine]",
|
|---|
| 524 | \(\(ScalarProduct[q, q] = u;\)\ (*q =
|
|---|
| 525 | p2 + p3*) \), "\[IndentingNewLine]",
|
|---|
| 526 | \(\(ScalarProduct[p4, p4] = mh2;\)\), "\[IndentingNewLine]",
|
|---|
| 527 | \(\(ScalarProduct[p1, p2] = s/2;\)\), "\[IndentingNewLine]",
|
|---|
| 528 | \(\(ScalarProduct[p1, p3] = t/2;\)\), "\[IndentingNewLine]",
|
|---|
| 529 | \(\(ScalarProduct[p1, p4] = \((u - mh2)\)/2;\)\), "\[IndentingNewLine]",
|
|---|
| 530 | \(\(ScalarProduct[p2, p3] = u/2;\)\), "\[IndentingNewLine]",
|
|---|
| 531 | \(\(ScalarProduct[p2, p4] = \ \((t - mh2)\)/
|
|---|
| 532 | 2;\)\), "\[IndentingNewLine]",
|
|---|
| 533 | \(\(ScalarProduct[p3, p4] = \((s - mh2)\)/
|
|---|
| 534 | 2\ \ ;\)\), "\[IndentingNewLine]",
|
|---|
| 535 | \(\(ScalarProduct[p3, e3] = 0\ ;\)\), "\[IndentingNewLine]",
|
|---|
| 536 | \(\(ScalarProduct[p1, e1] = 0\ ;\)\), "\[IndentingNewLine]",
|
|---|
| 537 | \(\(ScalarProduct[p2, e2] = 0\ ;\)\), "\[IndentingNewLine]",
|
|---|
| 538 | \(\(s13 = t;\)\), "\[IndentingNewLine]",
|
|---|
| 539 | \(\(s23 = u;\)\)}], "Input",
|
|---|
| 540 | PageWidth->PaperWidth]
|
|---|
| 541 | }, Open ]],
|
|---|
| 542 |
|
|---|
| 543 | Cell[CellGroupData[{
|
|---|
| 544 |
|
|---|
| 545 | Cell["Verteces and Propagators", "Subsection",
|
|---|
| 546 | PageWidth->PaperWidth],
|
|---|
| 547 |
|
|---|
| 548 | Cell[TextData[{
|
|---|
| 549 | StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
|
|---|
| 550 | outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
|
|---|
| 551 | FontSize->14],
|
|---|
| 552 | Cell[BoxData[
|
|---|
| 553 | \(TraditionalForm\`g\_s\)],
|
|---|
| 554 | FontSize->14],
|
|---|
| 555 | StyleBox[" ) (\[ImaginaryI] ",
|
|---|
| 556 | FontSize->14],
|
|---|
| 557 | Cell[BoxData[
|
|---|
| 558 | \(TraditionalForm\`f\^abc\)],
|
|---|
| 559 | FontSize->14],
|
|---|
| 560 | StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
|
|---|
| 561 | FontSize->14],
|
|---|
| 562 | Cell[BoxData[
|
|---|
| 563 | \(TraditionalForm\`g\_s\)],
|
|---|
| 564 | FontSize->14],
|
|---|
| 565 | ")",
|
|---|
| 566 | StyleBox[" ",
|
|---|
| 567 | FontSize->14],
|
|---|
| 568 | Cell[BoxData[
|
|---|
| 569 | \(TraditionalForm\`\((T\^a)\)\_ij\)],
|
|---|
| 570 | FontSize->14],
|
|---|
| 571 | StyleBox[" ",
|
|---|
| 572 | FontSize->14],
|
|---|
| 573 | Cell[BoxData[
|
|---|
| 574 | \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
|
|---|
| 575 | FontSize->14],
|
|---|
| 576 | StyleBox["\nGluon Propagator= ",
|
|---|
| 577 | FontSize->14],
|
|---|
| 578 | Cell[BoxData[
|
|---|
| 579 | FormBox[
|
|---|
| 580 | FractionBox[
|
|---|
| 581 | StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
|
|---|
| 582 | FontSize->16], \(p\^2\)], TraditionalForm]],
|
|---|
| 583 | FontSize->14],
|
|---|
| 584 | "\nQuark ",
|
|---|
| 585 | StyleBox["Propagator= ",
|
|---|
| 586 | FontSize->14],
|
|---|
| 587 | Cell[BoxData[
|
|---|
| 588 | FormBox[
|
|---|
| 589 | FractionBox[
|
|---|
| 590 | StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
|
|---|
| 591 | FontSize->16], \(p\&^\)], TraditionalForm]],
|
|---|
| 592 | FontSize->14]
|
|---|
| 593 | }], "Text",
|
|---|
| 594 | PageWidth->PaperWidth],
|
|---|
| 595 |
|
|---|
| 596 | Cell[BoxData[{
|
|---|
| 597 | \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
|---|
| 598 | FourVector[p1 - p2, m3, \ Dimension\ \[Rule] D]\ MTD[m1, m2] +
|
|---|
| 599 | FourVector[p2 - p3, m1, \ Dimension\ \[Rule] \ D]\ MTD[m2, m3] +
|
|---|
| 600 | FourVector[p3 - p1, m2, \ Dimension\ \[Rule] \ D]\ MTD[m1,
|
|---|
| 601 | m3];\)\), "\[IndentingNewLine]",
|
|---|
| 602 | \(\(H[p1_, p2_, m1_, m2_] :=
|
|---|
| 603 | MTD[m1, m2]\ SPD[p1, p2]\ - \
|
|---|
| 604 | FourVector[p1, m2, \ Dimension \[Rule] D]*\[IndentingNewLine]\
|
|---|
| 605 | FourVector[p2, m1, \
|
|---|
| 606 | Dimension\ \[Rule] D];\)\), "\[IndentingNewLine]",
|
|---|
| 607 | \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
|
|---|
| 608 | \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
|
|---|
| 609 | \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
|
|---|
| 610 | PageWidth->PaperWidth]
|
|---|
| 611 | }, Open ]],
|
|---|
| 612 |
|
|---|
| 613 | Cell[CellGroupData[{
|
|---|
| 614 |
|
|---|
| 615 | Cell["Sum over the four Feynman diagrams", "Subsection"],
|
|---|
| 616 |
|
|---|
| 617 | Cell["\<\
|
|---|
| 618 |
|
|---|
| 619 | uno= - gs (-f123) GGGD[p1,p2,-p1-p2,m1,m2,mu] (-I MTD[mu,nu]/s) (I A) \
|
|---|
| 620 | H[p3,p1+p2,m3,nu]//Contract;
|
|---|
| 621 | tre= - gs (-f123) GGGD[p3,p1,-p3-p1,m3,m1,mu] (-I MTD[mu,nu]/t) (I A) \
|
|---|
| 622 | H[p2,p1+p3,m2,nu]//Contract;
|
|---|
| 623 | qua= - gs (-f123) GGGD[p2,p3,-p3-p2,m2,m3,mu] (-I MTD[mu,nu]/u) (I A) \
|
|---|
| 624 | H[p1,p2+p3,m1,nu]//Contract;
|
|---|
| 625 | due= - A gs (-f123) GGGD[p1,p2,p3,m1,m2,m3];
|
|---|
| 626 | res=uno+due+tre+qua//ExpandScalarProduct;\
|
|---|
| 627 | \>", "Input"]
|
|---|
| 628 | }, Open ]],
|
|---|
| 629 |
|
|---|
| 630 | Cell[CellGroupData[{
|
|---|
| 631 |
|
|---|
| 632 | Cell["\<\
|
|---|
| 633 | Now I have to square the amplitude. The sum is performed over the physical \
|
|---|
| 634 | polarizations of the gluons:\
|
|---|
| 635 | \>", "Subsection"],
|
|---|
| 636 |
|
|---|
| 637 | Cell["\<\
|
|---|
| 638 | res1=res;
|
|---|
| 639 | res2=res /. m1->m1p /. m2->m2p /. m3-> m3p;
|
|---|
| 640 | tot=res1*(-MTD[m1,m1p]+(FVD[p1,m1] FVD[p2,m1p]+FVD[p1,m1p] \
|
|---|
| 641 | FVD[p2,m1])/SPD[p1,p2])//Contract;
|
|---|
| 642 | tot=tot*(-MTD[m2,m2p]+(FVD[p2,m2] FVD[p3,m2p]+FVD[p2,m2p] \
|
|---|
| 643 | FVD[p3,m2])/SPD[p3,p2])//Contract;
|
|---|
| 644 | tot=tot*(-MTD[m3,m3p]+(FVD[p1,m3] FVD[p3,m3p]+FVD[p1,m3p] \
|
|---|
| 645 | FVD[p3,m3])/SPD[p3,p1])//Contract;
|
|---|
| 646 | tot=tot*res2//Contract//Expand;\
|
|---|
| 647 | \>", "Input"],
|
|---|
| 648 |
|
|---|
| 649 | Cell[CellGroupData[{
|
|---|
| 650 |
|
|---|
| 651 | Cell["\<\
|
|---|
| 652 | Amp2=((tot//Contract//Factor)/. A-> as/3/Pi/v /. gs^2-> 4 Pi as/. f123^2-> 24 \
|
|---|
| 653 | //Simplify)//Factor\
|
|---|
| 654 | \>", "Input"],
|
|---|
| 655 |
|
|---|
| 656 | Cell[BoxData[
|
|---|
| 657 | \(TraditionalForm\`\(\(1\/\(3\ \[Pi]\ s\ t\ u\ v\^2\)\)\((32\ as\^3\ \((D\
|
|---|
| 658 | \ s\^4 - 2\ s\^4 + 2\ D\ t\ s\^3 - 4\ t\ s\^3 + 2\ D\ u\ s\^3 - 4\ u\ s\^3 +
|
|---|
| 659 | 3\ D\ t\^2\ s\^2 - 6\ t\^2\ s\^2 + 3\ D\ u\^2\ s\^2 -
|
|---|
| 660 | 6\ u\^2\ s\^2 + 8\ D\ t\ u\ s\^2 - 20\ t\ u\ s\^2 +
|
|---|
| 661 | 2\ D\ t\^3\ s - 4\ t\^3\ s + 2\ D\ u\^3\ s - 4\ u\^3\ s +
|
|---|
| 662 | 8\ D\ t\ u\^2\ s - 20\ t\ u\^2\ s + 8\ D\ t\^2\ u\ s -
|
|---|
| 663 | 20\ t\^2\ u\ s + D\ t\^4 - 2\ t\^4 + D\ u\^4 - 2\ u\^4 +
|
|---|
| 664 | 2\ D\ t\ u\^3 - 4\ t\ u\^3 + 3\ D\ t\^2\ u\^2 - 6\ t\^2\ u\^2 +
|
|---|
| 665 | 2\ D\ t\^3\ u - 4\ t\^3\ u)\))\)\)\)], "Output"]
|
|---|
| 666 | }, Open ]],
|
|---|
| 667 |
|
|---|
| 668 | Cell["\<\
|
|---|
| 669 |
|
|---|
| 670 | Amp2=Amp2 /. D->4-2e//Simplify;\
|
|---|
| 671 | \>", "Input"]
|
|---|
| 672 | }, Open ]],
|
|---|
| 673 |
|
|---|
| 674 | Cell[CellGroupData[{
|
|---|
| 675 |
|
|---|
| 676 | Cell["Real Amplitude Squared in D dimensions", "Subsection",
|
|---|
| 677 | PageWidth->PaperWidth],
|
|---|
| 678 |
|
|---|
| 679 | Cell[BoxData[
|
|---|
| 680 | \(\(\(\[IndentingNewLine]\)\(\(Emme =
|
|---|
| 681 | 1/s \(\(\((\((mh2^4 + s^4 + t^4 + u^4)\)\ \((1 - 2\ e)\) + \
|
|---|
| 682 | e/2\ \((mh2^2 + s^2 + t^2 + u^2)\)^2)\)/s\)/t\)/
|
|---|
| 683 | u;\)\[IndentingNewLine]
|
|---|
| 684 | \(RealD = Emme/\((1 - e)\)^2;\)\[IndentingNewLine]
|
|---|
| 685 | \(Real4 = RealD /. \ e \[Rule] 0;\)\)\)\)], "Input",
|
|---|
| 686 | PageWidth->PaperWidth]
|
|---|
| 687 | }, Open ]],
|
|---|
| 688 |
|
|---|
| 689 | Cell[CellGroupData[{
|
|---|
| 690 |
|
|---|
| 691 | Cell["Phase space in D dimensions", "Subsection",
|
|---|
| 692 | PageWidth->PaperWidth],
|
|---|
| 693 |
|
|---|
| 694 | Cell[BoxData[{
|
|---|
| 695 | \(\[IndentingNewLine]\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\
|
|---|
| 696 | \)\(\ \)\)\/mh2)\)\^e\)
|
|---|
| 697 | 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
|
|---|
| 698 | v\^\(-e\)\ \((omv)\)\^\(-e\);\)\), "\[IndentingNewLine]",
|
|---|
| 699 | \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((omv)\), \
|
|---|
| 700 | u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
|
|---|
| 701 | s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
|
|---|
| 702 | \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
|
|---|
| 703 | 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
|
|---|
| 704 | \(\(pgg =
|
|---|
| 705 | 2 \((z\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\)/z +
|
|---|
| 706 | z \((1 - z)\) +
|
|---|
| 707 | 11/12\ DeltaFunction[1 - z])\);\)\), "\[IndentingNewLine]",
|
|---|
| 708 | \(\(s0 = z;\)\)}], "Input",
|
|---|
| 709 | PageWidth->PaperWidth]
|
|---|
| 710 | }, Closed]],
|
|---|
| 711 |
|
|---|
| 712 | Cell[CellGroupData[{
|
|---|
| 713 |
|
|---|
| 714 | Cell["CDR", "Subsection",
|
|---|
| 715 | PageWidth->PaperWidth],
|
|---|
| 716 |
|
|---|
| 717 | Cell[CellGroupData[{
|
|---|
| 718 |
|
|---|
| 719 | Cell[BoxData[{
|
|---|
| 720 | \(intando =
|
|---|
| 721 | FullSimplify[
|
|---|
| 722 | FullSimplify[\(RealD\ PS\ c\[CapitalGamma]\)\/cGamma] \
|
|---|
| 723 | //. \[InvisibleSpace]substu] /. \[InvisibleSpace]omv \[Rule]
|
|---|
| 724 | 1 - v; \), "\n",
|
|---|
| 725 | \(intando = intando\/\((1 - z)\)\^\(\(-2\)\ e - 1\)\)}], "Input"],
|
|---|
| 726 |
|
|---|
| 727 | Cell[BoxData[
|
|---|
| 728 | \(TraditionalForm\`\(-\(\((c\[CapitalGamma]\ \((1\/mh2)\)\^e\ mh2\^e\ \
|
|---|
| 729 | \[Pi]\ \((1 - v)\)\^\(\(-e\) - 1\)\ v\^\(\(-e\) - 1\)\ z\^e\ \((e\ \((3\ \((1 \
|
|---|
| 730 | - v)\)\^4\ \((z - 1)\)\^4 + 3\ v\^4\ \((z - 1)\)\^4 -
|
|---|
| 731 | 2\ v\^2\ \((z\^2 + 1)\)\ \((z - 1)\)\^2 -
|
|---|
| 732 | 2\ \((1 - v)\)\^2\ \((v\^2\ \((z - 1)\)\^2 + z\^2 +
|
|---|
| 733 | 1)\)\ \((z - 1)\)\^2 + 3\ z\^4 - 2\ z\^2 + 3)\) -
|
|---|
| 734 | 2\ \((\((1 - v)\)\^4\ \((z - 1)\)\^4 + v\^4\ \((z - 1)\)\^4 +
|
|---|
| 735 | z\^4 + 1)\))\)\ \(\[CapitalGamma](
|
|---|
| 736 | 1 - 2\ e)\))\)/\((\((e - 1)\)\^2\ \(\[CapitalGamma](1 - e)\)\^3\
|
|---|
| 737 | \ \(\[CapitalGamma](e + 1)\))\)\)\)\)], "Output"]
|
|---|
| 738 | }, Open ]],
|
|---|
| 739 |
|
|---|
| 740 | Cell[BoxData[{
|
|---|
| 741 | \(\(\[Sigma]r =
|
|---|
| 742 | Integrate[intando, {v, 0, 1}, \ GenerateConditions \[Rule] False] //
|
|---|
| 743 | PowerExpand;\)\), "\n",
|
|---|
| 744 | \(\(\[Sigma]r = \(Normal[Series[\[Sigma]r, {e, 0, 1}]] // Factor\) //
|
|---|
| 745 | FullSimplify;\)\), "\n",
|
|---|
| 746 | \(\(\[Sigma]r\ = \[Sigma]r\ \ *\((\(\(-1\)\/\(2 e\)\)
|
|---|
| 747 | DeltaFunction[1 - z] + PlusDistribution[1/\((1 - z)\)] -
|
|---|
| 748 | 2\ e\ PlusDistribution[Log[1 - z]/\((1 - z)\)])\);\)\), "\n",
|
|---|
| 749 | \(\(\[Sigma]r =
|
|---|
| 750 | Normal[Series[\[Sigma]r/\((1 + e + e^2)\), {e, 0, 0}]] //
|
|---|
| 751 | Expand;\)\)}], "Input",
|
|---|
| 752 | PageWidth->PaperWidth]
|
|---|
| 753 | }, Closed]]
|
|---|
| 754 | }, Closed]],
|
|---|
| 755 |
|
|---|
| 756 | Cell[CellGroupData[{
|
|---|
| 757 |
|
|---|
| 758 | Cell["Results", "Section"],
|
|---|
| 759 |
|
|---|
| 760 | Cell[CellGroupData[{
|
|---|
| 761 |
|
|---|
| 762 | Cell["Virtual+Real+Counterterms in CDR", "Subsection"],
|
|---|
| 763 |
|
|---|
| 764 | Cell[BoxData[{
|
|---|
| 765 | \(\(\[Sigma]rn = \(\(\[Sigma]r/c\[CapitalGamma]\)/\[Pi]\)/2\ CA -
|
|---|
| 766 | 1/e\ 2\ Pgg\ z\ CA + 1/e\ 2\ pgg\ z\ CA;\)\), "\n",
|
|---|
| 767 | \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn, DeltaFunction[1 - z]] /.
|
|---|
| 768 | z \[Rule] 1 // FullSimplify)\)*
|
|---|
| 769 | DeltaFunction[
|
|---|
| 770 | 1 - z])\) + \((\((\((Coefficient[\[Sigma]rn,
|
|---|
| 771 | PlusDistribution[1/\((1 - z)\)]] //
|
|---|
| 772 | FullSimplify)\))\)
|
|---|
| 773 | PlusDistribution[
|
|---|
| 774 | 1/\((1 - z)\)])\) + \((\((\((Coefficient[\[Sigma]rn,
|
|---|
| 775 | PlusDistribution[Log[1 - z]/\((1 - z)\)]] //
|
|---|
| 776 | FullSimplify)\))\)
|
|---|
| 777 | PlusDistribution[
|
|---|
| 778 | Log[1 - z]/\((1 - z)\)])\) + \((\(\(\[Sigma]rn /.
|
|---|
| 779 | DeltaFunction[x_] \[Rule] 0\) /.
|
|---|
| 780 | PlusDistribution[Log[1 - z]/\((1 - z)\)] \[Rule] 0\) /.
|
|---|
| 781 | PlusDistribution[1/\((1 - z)\)] \[Rule] 0)\))\);\)\), "\n",
|
|---|
| 782 | \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn,
|
|---|
| 783 | 1/e\ PlusDistribution[1/\((1 - z)\)]]/\((1 - z)\) //
|
|---|
| 784 | FullSimplify)\))\) 1/e)\) + \((\[Sigma]rn -
|
|---|
| 785 | Coefficient[\[Sigma]rn, 1/e\ PlusDistribution[1/\((1 - z)\)]]
|
|---|
| 786 | 1/e\ PlusDistribution[1/\((1 - z)\)])\) //
|
|---|
| 787 | Expand;\)\)}], "Input",
|
|---|
| 788 | PageWidth->PaperWidth],
|
|---|
| 789 |
|
|---|
| 790 | Cell[CellGroupData[{
|
|---|
| 791 |
|
|---|
| 792 | Cell[BoxData[
|
|---|
| 793 | \(divD =
|
|---|
| 794 | Coefficient[\[Sigma]rn,
|
|---|
| 795 | DeltaFunction[1 - z]]*\(as/2\)/\[Pi]\ c\[CapitalGamma]\)], "Input"],
|
|---|
| 796 |
|
|---|
| 797 | Cell[BoxData[
|
|---|
| 798 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(11\ C\_A\)\/\(3\ e\) + \
|
|---|
| 799 | \(2\ C\_A\)\/e\^2 - \(\[Pi]\^2\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
|---|
| 800 | }, Open ]],
|
|---|
| 801 |
|
|---|
| 802 | Cell[CellGroupData[{
|
|---|
| 803 |
|
|---|
| 804 | Cell[BoxData[
|
|---|
| 805 | \(UVC = \ \(\(1/
|
|---|
| 806 | e\)\(\ \)\(4\)\(*\)\(\(-11\)\/6\) \(CA\)\(\ \)\(as\/\(4 \[Pi]\)\) \
|
|---|
| 807 | \(c\[CapitalGamma]\)\(\ \)\)\)], "Input"],
|
|---|
| 808 |
|
|---|
| 809 | Cell[BoxData[
|
|---|
| 810 | \(TraditionalForm\`\(-\(\(11\ as\ C\_A\ c\[CapitalGamma]\)\/\(6\ e\ \[Pi]\
|
|---|
| 811 | \)\)\)\)], "Output"]
|
|---|
| 812 | }, Open ]],
|
|---|
| 813 |
|
|---|
| 814 | Cell[CellGroupData[{
|
|---|
| 815 |
|
|---|
| 816 | Cell[BoxData[
|
|---|
| 817 | \(\((\(\((divD + UVC)\)/as\)/c\[CapitalGamma]\ 2\ \[Pi] //
|
|---|
| 818 | Expand)\)\ as\ \(c\[CapitalGamma]/2\)/\[Pi]\)], "Input"],
|
|---|
| 819 |
|
|---|
| 820 | Cell[BoxData[
|
|---|
| 821 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(2\ C\_A\)\/e\^2 - \(\[Pi]\
|
|---|
| 822 | \^2\ C\_A\)\/3 + C\_A\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
|---|
| 823 | }, Open ]],
|
|---|
| 824 |
|
|---|
| 825 | Cell[BoxData[
|
|---|
| 826 | \(\(sally =
|
|---|
| 827 | as/\[Pi]\ \((\(-11\)/2\ \((1 - z)\)^3 +
|
|---|
| 828 | 6\ \((1 + z^4 + \((1 - z)\)^4)\)\ PlusDistribution[
|
|---|
| 829 | Log[1 - z]/\((1 - z)\)] -
|
|---|
| 830 | 6\ \((z^2\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\) +
|
|---|
| 831 | z^2 \((1 - z)\))\) Log[z])\);\)\)], "Input"],
|
|---|
| 832 |
|
|---|
| 833 | Cell[BoxData[
|
|---|
| 834 | \(\((\(\(\((\[Sigma]rn*\(as/2\)/\[Pi] /. DeltaFunction[x_] \[Rule] 0)\) -
|
|---|
| 835 | sally /. CA \[Rule] 3\) /. Pgg \[Rule] 0 // Expand\) //
|
|---|
| 836 | Simplify)\) /.
|
|---|
| 837 | PlusDistribution[1/\((1 - z)\)] \[Rule] 1/\((1 - z)\) //
|
|---|
| 838 | Factor\)], "Input"]
|
|---|
| 839 | }, Open ]]
|
|---|
| 840 | }, Closed]],
|
|---|
| 841 |
|
|---|
| 842 | Cell[CellGroupData[{
|
|---|
| 843 |
|
|---|
| 844 | Cell["Gluon initiated process", "Section",
|
|---|
| 845 | PageWidth->PaperWidth],
|
|---|
| 846 |
|
|---|
| 847 | Cell[CellGroupData[{
|
|---|
| 848 |
|
|---|
| 849 | Cell["Kinematics for the Born", "Subsection",
|
|---|
| 850 | PageWidth->PaperWidth],
|
|---|
| 851 |
|
|---|
| 852 | Cell["\<\
|
|---|
| 853 | -----I take all momenta outgoing
|
|---|
| 854 |
|
|---|
| 855 | p1 + p2 + p3 = 0
|
|---|
| 856 |
|
|---|
| 857 | p1^2=0
|
|---|
| 858 | p2^2=0
|
|---|
| 859 | p3^3=Q^2
|
|---|
| 860 |
|
|---|
| 861 |
|
|---|
| 862 | \
|
|---|
| 863 | \>", "Text",
|
|---|
| 864 | PageWidth->PaperWidth],
|
|---|
| 865 |
|
|---|
| 866 | Cell[BoxData[{
|
|---|
| 867 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 868 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 869 | \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
|
|---|
| 870 | \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
|
|---|
| 871 | \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
|
|---|
| 872 | \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
|
|---|
| 873 | \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 874 | \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 875 | \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
|
|---|
| 876 | \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
|
|---|
| 877 | \)\), "\[IndentingNewLine]",
|
|---|
| 878 | \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
|
|---|
| 879 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 880 | \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
|
|---|
| 881 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 882 | \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
|
|---|
| 883 | Q2;\)\), "\[IndentingNewLine]",
|
|---|
| 884 | \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
|
|---|
| 885 | 2;\)\), "\[IndentingNewLine]",
|
|---|
| 886 | \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
|
|---|
| 887 | Q2/2;\)\), "\[IndentingNewLine]",
|
|---|
| 888 | \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
|
|---|
| 889 | 2;\)\), "\[IndentingNewLine]",
|
|---|
| 890 | \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
|
|---|
| 891 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 892 | \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
|
|---|
| 893 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 894 | \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
|
|---|
| 895 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 896 | \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
|
|---|
| 897 | 0;\)\), "\[IndentingNewLine]",
|
|---|
| 898 | \(\)}], "Input",
|
|---|
| 899 | PageWidth->PaperWidth]
|
|---|
| 900 | }, Open ]],
|
|---|
| 901 |
|
|---|
| 902 | Cell[CellGroupData[{
|
|---|
| 903 |
|
|---|
| 904 | Cell["Real Amplitude", "Subsection",
|
|---|
| 905 | PageWidth->PaperWidth],
|
|---|
| 906 |
|
|---|
| 907 | Cell[BoxData[{
|
|---|
| 908 | \(\(Emme =
|
|---|
| 909 | CF\ 1/s \((\((s^2 + u^2)\)\ - e\ \((s + u)\)^2)\)/
|
|---|
| 910 | t;\)\), "\[IndentingNewLine]",
|
|---|
| 911 | \(\(RealD = Emme/\((1 - e)\);\)\), "\[IndentingNewLine]",
|
|---|
| 912 | \(\(Real4 = RealD /. \ e \[Rule] 0;\)\)}], "Input"]
|
|---|
| 913 | }, Open ]],
|
|---|
| 914 |
|
|---|
| 915 | Cell[CellGroupData[{
|
|---|
| 916 |
|
|---|
| 917 | Cell["Integration over the phase space in D dimensions", "Subsection",
|
|---|
| 918 | PageWidth->PaperWidth],
|
|---|
| 919 |
|
|---|
| 920 | Cell[BoxData[{
|
|---|
| 921 | \(\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\)\(\ \
|
|---|
| 922 | \)\)\/mh2)\)\^e\)
|
|---|
| 923 | 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
|
|---|
| 924 | v\^\(-e\)\ \((1 - v)\)\^\(-e\);\)\), "\[IndentingNewLine]",
|
|---|
| 925 | \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((1 - v)\), \
|
|---|
| 926 | u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
|
|---|
| 927 | s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
|
|---|
| 928 | \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
|
|---|
| 929 | 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
|
|---|
| 930 | \(\(pgq =
|
|---|
| 931 | CF \((\((1 - z)\)\^2 + 1)\)/z\ //
|
|---|
| 932 | Factor;\)\), "\[IndentingNewLine]",
|
|---|
| 933 | \(\)}], "Input",
|
|---|
| 934 | PageWidth->PaperWidth],
|
|---|
| 935 |
|
|---|
| 936 | Cell[CellGroupData[{
|
|---|
| 937 |
|
|---|
| 938 | Cell["dim-reg", "Subsubsection",
|
|---|
| 939 | PageWidth->PaperWidth],
|
|---|
| 940 |
|
|---|
| 941 | Cell[CellGroupData[{
|
|---|
| 942 |
|
|---|
| 943 | Cell[BoxData[{
|
|---|
| 944 | \(\(\[Sigma]r =
|
|---|
| 945 | Integrate[\((RealD\ PS\ c\[CapitalGamma]/cGamma\ //
|
|---|
| 946 | Simplify)\) //. \ substu // Expand, {v, 0, 1}, \
|
|---|
| 947 | GenerateConditions \[Rule] False] // Simplify;\)\), "\n",
|
|---|
| 948 | \(\(\[Sigma]r =
|
|---|
| 949 | Normal[Series[\[Sigma]r/\((1 + \ e)\), {e, 0, 0}]] /. \
|
|---|
| 950 | gs^2\ \[Rule] \ as\ 4\ \[Pi]\ // FullSimplify;\)\), "\n",
|
|---|
| 951 | \(\(\[Sigma]r = \(\(\(-\[Sigma]r\)/c\[CapitalGamma]\)/\[Pi]\)/2 -
|
|---|
| 952 | 1/e\ z\ \ \ Pgq\ + 1/e\ \ z\ \ pgq;\)\), "\n",
|
|---|
| 953 | \(\[Sigma]r = \(\[Sigma]r // PowerExpand\) // Expand\)}], "Input",
|
|---|
| 954 | PageWidth->PaperWidth],
|
|---|
| 955 |
|
|---|
| 956 | Cell[BoxData[
|
|---|
| 957 | \(TraditionalForm\`\(-\(1\/2\)\)\ C\_F\ z\^2 +
|
|---|
| 958 | 2\ C\_F\ \(log(1 - z)\)\ z\^2 - C\_F\ \(log(z)\)\ z\^2 +
|
|---|
| 959 | 3\ C\_F\ z - \(Pgq\ z\)\/e - 4\ C\_F\ \(log(1 - z)\)\ z +
|
|---|
| 960 | 2\ C\_F\ \(log(z)\)\ z - \(3\ C\_F\)\/2 + 4\ C\_F\ \(log(1 - z)\) -
|
|---|
| 961 | 2\ C\_F\ \(log(z)\)\)], "Output"]
|
|---|
| 962 | }, Open ]],
|
|---|
| 963 |
|
|---|
| 964 | Cell[CellGroupData[{
|
|---|
| 965 |
|
|---|
| 966 | Cell[BoxData[{
|
|---|
| 967 | \(sally =
|
|---|
| 968 | 2*\((\(-\ \ \((1 - z)\)\)\ \((7 - 3 z)\)/3\ +
|
|---|
| 969 | 1/2\ z\ pgq\ \((1 + 2 Log[1 - z] -
|
|---|
| 970 | Log[z])\))\)\), "\[IndentingNewLine]",
|
|---|
| 971 | \(\((\(\((\[Sigma]r - \ sally)\) /. \ CF -> 4/3\) /. \ Pgq \[Rule] 0)\) //
|
|---|
| 972 | Simplify\)}], "Input"],
|
|---|
| 973 |
|
|---|
| 974 | Cell[BoxData[
|
|---|
| 975 | \(TraditionalForm\`2\ \((1\/3\ \((7 - 3\ z)\)\ \((z - 1)\) +
|
|---|
| 976 | 1\/2\ C\_F\ \((z\^2 - 2\ z + 2)\)\ \((2\ \(log(1 - z)\) - log(z) +
|
|---|
| 977 | 1)\))\)\)], "Output"],
|
|---|
| 978 |
|
|---|
| 979 | Cell[BoxData[
|
|---|
| 980 | \(TraditionalForm\`0\)], "Output"]
|
|---|
| 981 | }, Open ]],
|
|---|
| 982 |
|
|---|
| 983 | Cell[BoxData[""], "Input"]
|
|---|
| 984 | }, Open ]]
|
|---|
| 985 | }, Open ]]
|
|---|
| 986 | }, Closed]]
|
|---|
| 987 | }, Open ]]
|
|---|
| 988 | },
|
|---|
| 989 | FrontEndVersion->"4.1 for Macintosh",
|
|---|
| 990 | ScreenRectangle->{{0, 1280}, {0, 832}},
|
|---|
| 991 | WindowSize->{807, 655},
|
|---|
| 992 | WindowMargins->{{Automatic, 126}, {Automatic, 0}},
|
|---|
| 993 | PrintingCopies->1,
|
|---|
| 994 | PrintingPageRange->{Automatic, Automatic}
|
|---|
| 995 | ]
|
|---|
| 996 |
|
|---|
| 997 | (*******************************************************************
|
|---|
| 998 | Cached data follows. If you edit this Notebook file directly, not
|
|---|
| 999 | using Mathematica, you must remove the line containing CacheID at
|
|---|
| 1000 | the top of the file. The cache data will then be recreated when
|
|---|
| 1001 | you save this file from within Mathematica.
|
|---|
| 1002 | *******************************************************************)
|
|---|
| 1003 |
|
|---|
| 1004 | (*CellTagsOutline
|
|---|
| 1005 | CellTagsIndex->{}
|
|---|
| 1006 | *)
|
|---|
| 1007 |
|
|---|
| 1008 | (*CellTagsIndex
|
|---|
| 1009 | CellTagsIndex->{}
|
|---|
| 1010 | *)
|
|---|
| 1011 |
|
|---|
| 1012 | (*NotebookFileOutline
|
|---|
| 1013 | Notebook[{
|
|---|
| 1014 |
|
|---|
| 1015 | Cell[CellGroupData[{
|
|---|
| 1016 | Cell[1727, 52, 72, 1, 108, "Title"],
|
|---|
| 1017 |
|
|---|
| 1018 | Cell[CellGroupData[{
|
|---|
| 1019 | Cell[1824, 57, 61, 1, 46, "Subsection"],
|
|---|
| 1020 | Cell[1888, 60, 82, 2, 27, "Input"],
|
|---|
| 1021 | Cell[1973, 64, 369, 14, 32, "Text"],
|
|---|
| 1022 | Cell[2345, 80, 80, 2, 27, "Input"]
|
|---|
| 1023 | }, Closed]],
|
|---|
| 1024 |
|
|---|
| 1025 | Cell[CellGroupData[{
|
|---|
| 1026 | Cell[2462, 87, 75, 1, 36, "Section"],
|
|---|
| 1027 |
|
|---|
| 1028 | Cell[CellGroupData[{
|
|---|
| 1029 | Cell[2562, 92, 57, 1, 46, "Subsection"],
|
|---|
| 1030 | Cell[2622, 95, 172, 12, 204, "Text"],
|
|---|
| 1031 | Cell[2797, 109, 1720, 33, 450, "Input"]
|
|---|
| 1032 | }, Closed]],
|
|---|
| 1033 |
|
|---|
| 1034 | Cell[CellGroupData[{
|
|---|
| 1035 | Cell[4554, 147, 71, 1, 30, "Subsection"],
|
|---|
| 1036 | Cell[4628, 150, 1246, 46, 152, "Text"],
|
|---|
| 1037 | Cell[5877, 198, 896, 16, 310, "Input"]
|
|---|
| 1038 | }, Closed]],
|
|---|
| 1039 |
|
|---|
| 1040 | Cell[CellGroupData[{
|
|---|
| 1041 | Cell[6810, 219, 67, 1, 30, "Subsection"],
|
|---|
| 1042 |
|
|---|
| 1043 | Cell[CellGroupData[{
|
|---|
| 1044 | Cell[6902, 224, 378, 8, 130, "Input"],
|
|---|
| 1045 | Cell[7283, 234, 54, 1, 70, "Output"],
|
|---|
| 1046 | Cell[7340, 237, 286, 7, 70, "Output"]
|
|---|
| 1047 | }, Open ]],
|
|---|
| 1048 |
|
|---|
| 1049 | Cell[CellGroupData[{
|
|---|
| 1050 | Cell[7663, 249, 488, 9, 110, "Input"],
|
|---|
| 1051 | Cell[8154, 260, 90, 1, 70, "Output"]
|
|---|
| 1052 | }, Open ]]
|
|---|
| 1053 | }, Closed]],
|
|---|
| 1054 |
|
|---|
| 1055 | Cell[CellGroupData[{
|
|---|
| 1056 | Cell[8293, 267, 66, 1, 30, "Subsection"],
|
|---|
| 1057 | Cell[8362, 270, 757, 16, 210, "Input"],
|
|---|
| 1058 | Cell[9122, 288, 26, 0, 30, "Input"],
|
|---|
| 1059 | Cell[9151, 290, 26, 0, 30, "Input"]
|
|---|
| 1060 | }, Closed]]
|
|---|
| 1061 | }, Closed]],
|
|---|
| 1062 |
|
|---|
| 1063 | Cell[CellGroupData[{
|
|---|
| 1064 | Cell[9226, 296, 22, 0, 36, "Section"],
|
|---|
| 1065 |
|
|---|
| 1066 | Cell[CellGroupData[{
|
|---|
| 1067 | Cell[9273, 300, 62, 1, 46, "Subsection"],
|
|---|
| 1068 |
|
|---|
| 1069 | Cell[CellGroupData[{
|
|---|
| 1070 | Cell[9360, 305, 897, 17, 235, "Input"],
|
|---|
| 1071 | Cell[10260, 324, 394, 12, 26, "Output"],
|
|---|
| 1072 | Cell[10657, 338, 1327, 28, 29, "Output"]
|
|---|
| 1073 | }, Open ]],
|
|---|
| 1074 | Cell[11999, 369, 26, 0, 27, "Input"]
|
|---|
| 1075 | }, Open ]],
|
|---|
| 1076 |
|
|---|
| 1077 | Cell[CellGroupData[{
|
|---|
| 1078 | Cell[12062, 374, 63, 1, 46, "Subsection"],
|
|---|
| 1079 |
|
|---|
| 1080 | Cell[CellGroupData[{
|
|---|
| 1081 | Cell[12150, 379, 673, 13, 219, "Input"],
|
|---|
| 1082 | Cell[12826, 394, 251, 4, 48, "Output"]
|
|---|
| 1083 | }, Open ]]
|
|---|
| 1084 | }, Open ]],
|
|---|
| 1085 |
|
|---|
| 1086 | Cell[CellGroupData[{
|
|---|
| 1087 | Cell[13126, 404, 38, 0, 46, "Subsection"],
|
|---|
| 1088 |
|
|---|
| 1089 | Cell[CellGroupData[{
|
|---|
| 1090 | Cell[13189, 408, 389, 7, 107, "Input"],
|
|---|
| 1091 | Cell[13581, 417, 136, 2, 43, "Output"]
|
|---|
| 1092 | }, Open ]],
|
|---|
| 1093 |
|
|---|
| 1094 | Cell[CellGroupData[{
|
|---|
| 1095 | Cell[13754, 424, 474, 10, 155, "Input"],
|
|---|
| 1096 | Cell[14231, 436, 85, 1, 43, "Output"]
|
|---|
| 1097 | }, Open ]],
|
|---|
| 1098 |
|
|---|
| 1099 | Cell[CellGroupData[{
|
|---|
| 1100 | Cell[14353, 442, 164, 3, 40, "Input"],
|
|---|
| 1101 | Cell[14520, 447, 160, 2, 52, "Output"]
|
|---|
| 1102 | }, Open ]],
|
|---|
| 1103 | Cell[14695, 452, 52, 1, 43, "Input"],
|
|---|
| 1104 |
|
|---|
| 1105 | Cell[CellGroupData[{
|
|---|
| 1106 | Cell[14772, 457, 63, 1, 27, "Input"],
|
|---|
| 1107 | Cell[14838, 460, 76, 1, 45, "Output"]
|
|---|
| 1108 | }, Open ]]
|
|---|
| 1109 | }, Open ]]
|
|---|
| 1110 | }, Closed]],
|
|---|
| 1111 |
|
|---|
| 1112 | Cell[CellGroupData[{
|
|---|
| 1113 | Cell[14975, 468, 66, 1, 36, "Section"],
|
|---|
| 1114 |
|
|---|
| 1115 | Cell[CellGroupData[{
|
|---|
| 1116 | Cell[15066, 473, 57, 1, 46, "Subsection"],
|
|---|
| 1117 | Cell[15126, 476, 702, 37, 574, "Text"],
|
|---|
| 1118 | Cell[15831, 515, 1310, 24, 299, "Input"]
|
|---|
| 1119 | }, Open ]],
|
|---|
| 1120 |
|
|---|
| 1121 | Cell[CellGroupData[{
|
|---|
| 1122 | Cell[17178, 544, 71, 1, 46, "Subsection"],
|
|---|
| 1123 | Cell[17252, 547, 1246, 46, 152, "Text"],
|
|---|
| 1124 | Cell[18501, 595, 757, 14, 187, "Input"]
|
|---|
| 1125 | }, Open ]],
|
|---|
| 1126 |
|
|---|
| 1127 | Cell[CellGroupData[{
|
|---|
| 1128 | Cell[19295, 614, 57, 0, 46, "Subsection"],
|
|---|
| 1129 | Cell[19355, 616, 419, 10, 147, "Input"]
|
|---|
| 1130 | }, Open ]],
|
|---|
| 1131 |
|
|---|
| 1132 | Cell[CellGroupData[{
|
|---|
| 1133 | Cell[19811, 631, 137, 3, 46, "Subsection"],
|
|---|
| 1134 | Cell[19951, 636, 396, 10, 147, "Input"],
|
|---|
| 1135 |
|
|---|
| 1136 | Cell[CellGroupData[{
|
|---|
| 1137 | Cell[20372, 650, 124, 3, 42, "Input"],
|
|---|
| 1138 | Cell[20499, 655, 649, 9, 98, "Output"]
|
|---|
| 1139 | }, Open ]],
|
|---|
| 1140 | Cell[21163, 667, 57, 3, 42, "Input"]
|
|---|
| 1141 | }, Open ]],
|
|---|
| 1142 |
|
|---|
| 1143 | Cell[CellGroupData[{
|
|---|
| 1144 | Cell[21257, 675, 85, 1, 46, "Subsection"],
|
|---|
| 1145 | Cell[21345, 678, 368, 7, 123, "Input"]
|
|---|
| 1146 | }, Open ]],
|
|---|
| 1147 |
|
|---|
| 1148 | Cell[CellGroupData[{
|
|---|
| 1149 | Cell[21750, 690, 74, 1, 46, "Subsection"],
|
|---|
| 1150 | Cell[21827, 693, 820, 15, 231, "Input"]
|
|---|
| 1151 | }, Closed]],
|
|---|
| 1152 |
|
|---|
| 1153 | Cell[CellGroupData[{
|
|---|
| 1154 | Cell[22684, 713, 50, 1, 30, "Subsection"],
|
|---|
| 1155 |
|
|---|
| 1156 | Cell[CellGroupData[{
|
|---|
| 1157 | Cell[22759, 718, 277, 6, 98, "Input"],
|
|---|
| 1158 | Cell[23039, 726, 708, 10, 121, "Output"]
|
|---|
| 1159 | }, Open ]],
|
|---|
| 1160 | Cell[23762, 739, 618, 12, 171, "Input"]
|
|---|
| 1161 | }, Closed]]
|
|---|
| 1162 | }, Closed]],
|
|---|
| 1163 |
|
|---|
| 1164 | Cell[CellGroupData[{
|
|---|
| 1165 | Cell[24429, 757, 26, 0, 36, "Section"],
|
|---|
| 1166 |
|
|---|
| 1167 | Cell[CellGroupData[{
|
|---|
| 1168 | Cell[24480, 761, 55, 0, 46, "Subsection"],
|
|---|
| 1169 | Cell[24538, 763, 1409, 24, 299, "Input"],
|
|---|
| 1170 |
|
|---|
| 1171 | Cell[CellGroupData[{
|
|---|
| 1172 | Cell[25972, 791, 136, 3, 27, "Input"],
|
|---|
| 1173 | Cell[26111, 796, 165, 2, 55, "Output"]
|
|---|
| 1174 | }, Open ]],
|
|---|
| 1175 |
|
|---|
| 1176 | Cell[CellGroupData[{
|
|---|
| 1177 | Cell[26313, 803, 155, 3, 42, "Input"],
|
|---|
| 1178 | Cell[26471, 808, 113, 2, 43, "Output"]
|
|---|
| 1179 | }, Open ]],
|
|---|
| 1180 |
|
|---|
| 1181 | Cell[CellGroupData[{
|
|---|
| 1182 | Cell[26621, 815, 144, 2, 27, "Input"],
|
|---|
| 1183 | Cell[26768, 819, 150, 2, 55, "Output"]
|
|---|
| 1184 | }, Open ]],
|
|---|
| 1185 | Cell[26933, 824, 329, 6, 59, "Input"],
|
|---|
| 1186 | Cell[27265, 832, 289, 5, 43, "Input"]
|
|---|
| 1187 | }, Open ]]
|
|---|
| 1188 | }, Closed]],
|
|---|
| 1189 |
|
|---|
| 1190 | Cell[CellGroupData[{
|
|---|
| 1191 | Cell[27603, 843, 67, 1, 36, "Section"],
|
|---|
| 1192 |
|
|---|
| 1193 | Cell[CellGroupData[{
|
|---|
| 1194 | Cell[27695, 848, 70, 1, 46, "Subsection"],
|
|---|
| 1195 | Cell[27768, 851, 172, 12, 174, "Text"],
|
|---|
| 1196 | Cell[27943, 865, 1720, 33, 363, "Input"]
|
|---|
| 1197 | }, Open ]],
|
|---|
| 1198 |
|
|---|
| 1199 | Cell[CellGroupData[{
|
|---|
| 1200 | Cell[29700, 903, 61, 1, 46, "Subsection"],
|
|---|
| 1201 | Cell[29764, 906, 253, 5, 59, "Input"]
|
|---|
| 1202 | }, Open ]],
|
|---|
| 1203 |
|
|---|
| 1204 | Cell[CellGroupData[{
|
|---|
| 1205 | Cell[30054, 916, 95, 1, 46, "Subsection"],
|
|---|
| 1206 | Cell[30152, 919, 712, 14, 186, "Input"],
|
|---|
| 1207 |
|
|---|
| 1208 | Cell[CellGroupData[{
|
|---|
| 1209 | Cell[30889, 937, 57, 1, 42, "Subsubsection"],
|
|---|
| 1210 |
|
|---|
| 1211 | Cell[CellGroupData[{
|
|---|
| 1212 | Cell[30971, 942, 623, 11, 139, "Input"],
|
|---|
| 1213 | Cell[31597, 955, 309, 5, 43, "Output"]
|
|---|
| 1214 | }, Open ]],
|
|---|
| 1215 |
|
|---|
| 1216 | Cell[CellGroupData[{
|
|---|
| 1217 | Cell[31943, 965, 300, 6, 43, "Input"],
|
|---|
| 1218 | Cell[32246, 973, 195, 3, 43, "Output"],
|
|---|
| 1219 | Cell[32444, 978, 52, 1, 26, "Output"]
|
|---|
| 1220 | }, Open ]],
|
|---|
| 1221 | Cell[32511, 982, 26, 0, 27, "Input"]
|
|---|
| 1222 | }, Open ]]
|
|---|
| 1223 | }, Open ]]
|
|---|
| 1224 | }, Closed]]
|
|---|
| 1225 | }, Open ]]
|
|---|
| 1226 | }
|
|---|
| 1227 | ]
|
|---|
| 1228 | *)
|
|---|
| 1229 |
|
|---|
| 1230 |
|
|---|
| 1231 |
|
|---|
| 1232 | (*******************************************************************
|
|---|
| 1233 | End of Mathematica Notebook file.
|
|---|
| 1234 | *******************************************************************)
|
|---|
| 1235 |
|
|---|