HiggsPheno: HDecay.nb

File HDecay.nb, 49.8 KB (added by anonymous, 6 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[       145,          7]
13NotebookDataLength[     50813,       1545]
14NotebookOptionsPosition[     45605,       1361]
15NotebookOutlinePosition[     45963,       1377]
16CellTagsIndexPosition[     45920,       1374]
17WindowFrame->Normal
18ContainsDynamic->False*)
19
20(* Beginning of Notebook Content *)
21Notebook[{
22
23Cell[CellGroupData[{
24Cell["\<\
25Tree-level decays of the Higgs boson\
26\>", "Title",
27 CellChangeTimes->{{3.42892672627883*^9, 3.428926824323577*^9}, {
28  3.428937703319875*^9, 3.428937712432496*^9}}],
29
30Cell[CellGroupData[{
31
32Cell["Input FeynCalc", "Subsection"],
33
34Cell[BoxData[
35 RowBox[{
36  RowBox[{"<<", "HighEnergyPhysics`fc`"}], ";"}]], "Input"]
37}, Open  ]],
38
39Cell[CellGroupData[{
40
41Cell["H \[RightArrow] ff", "Section",
42 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}}],
43
44Cell[CellGroupData[{
45
46Cell["Kinematics 1->2", "Subsection",
47 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
48
49Cell[BoxData[
50 RowBox[{"\[IndentingNewLine]",
51  RowBox[{
52   RowBox[{
53    RowBox[{
54     RowBox[{"ScalarProduct", "[",
55      RowBox[{"P", ",", "P"}], "]"}], "=",
56     RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
57   RowBox[{
58    RowBox[{
59     RowBox[{"ScalarProduct", "[",
60      RowBox[{"p1", ",", "p1"}], "]"}], "=",
61     RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
62   RowBox[{
63    RowBox[{
64     RowBox[{"ScalarProduct", "[",
65      RowBox[{"p2", ",", "p2"}], "]"}], "=",
66     RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
67   RowBox[{
68    RowBox[{
69     RowBox[{"ScalarProduct", "[",
70      RowBox[{"P", ",", "p1"}], "]"}], "=",
71     RowBox[{
72      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
73   RowBox[{
74    RowBox[{
75     RowBox[{"ScalarProduct", "[",
76      RowBox[{"P", ",", "p2"}], "]"}], "=",
77     RowBox[{
78      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
79   RowBox[{
80    RowBox[{
81     RowBox[{"ScalarProduct", "[",
82      RowBox[{"p1", ",", "p2"}], "]"}], "=",
83     RowBox[{
84      RowBox[{
85       RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
86      RowBox[{"mf", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
87
88 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
89  3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
90  3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
91  3.4289384819556913`*^9, 3.428938484248788*^9}}]
92}, Closed]],
93
94Cell[CellGroupData[{
95
96Cell["Amplitude (1 diagram)", "Subsection",
97 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
98
99Cell["The summed and averaged square matrix element", "Text",
100 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
101  3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
102  3.42892751343362*^9}}],
103
104Cell[CellGroupData[{
105
106Cell[BoxData[
107 RowBox[{"M2", "=",
108  RowBox[{
109   RowBox[{
110    RowBox[{
111     RowBox[{
112      RowBox[{"(",
113       RowBox[{"mf", "/", "v"}], ")"}], "^", "2"}],
114     RowBox[{"Tr", "[",
115      RowBox[{
116       RowBox[{"(",
117        RowBox[{
118         RowBox[{"GSD", "[", "p1", "]"}], "+", "mf"}], ")"}], ".",
119       RowBox[{"(",
120        RowBox[{
121         RowBox[{"GSD", "[", "p2", "]"}], "-", "mf"}], ")"}]}], "]"}]}], "//",
122     "Expand"}], "//", "Simplify"}]}]], "Input",
123 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
124   3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
125   3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
126   3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
127   3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
128   3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
129   3.4289382285018063`*^9, 3.428938230286139*^9}}],
130
131Cell[BoxData[
132 FormBox[
133  FractionBox[
134   RowBox[{
135    RowBox[{"2", " ",
136     SuperscriptBox["mf", "2"], " ",
137     SuperscriptBox["mh", "2"]}], "-",
138    RowBox[{"8", " ",
139     SuperscriptBox["mf", "4"]}]}],
140   SuperscriptBox["v", "2"]], TraditionalForm]], "Output",
141 CellChangeTimes->{
142  3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
143   3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
144   3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
145   3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
146   3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
147   3.428939015665769*^9}]
148}, Open  ]],
149
150Cell["We insert he definition of the Fermi constant", "Text",
151 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
152
153Cell[CellGroupData[{
154
155Cell[BoxData[
156 RowBox[{"M2", "=",
157  RowBox[{"M2", "/.",
158   RowBox[{"v", "\[Rule]",
159    RowBox[{"1", "/",
160     RowBox[{"Sqrt", "[",
161      RowBox[{"Gf", " ",
162       RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}]}]], "Input",
163 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
164  3.4289381595073957`*^9, 3.4289381716760798`*^9}}],
165
166Cell[BoxData[
167 FormBox[
168  RowBox[{
169   SqrtBox["2"], " ", "Gf", " ",
170   RowBox[{"(",
171    RowBox[{
172     RowBox[{"2", " ",
173      SuperscriptBox["mf", "2"], " ",
174      SuperscriptBox["mh", "2"]}], "-",
175     RowBox[{"8", " ",
176      SuperscriptBox["mf", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
177 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
178  3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
179  3.4289384978556747`*^9, 3.428939015694807*^9}]
180}, Open  ]]
181}, Closed]],
182
183Cell[CellGroupData[{
184
185Cell["Phase Space", "Subsection",
186 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
187
188Cell["The two particle phase space is", "Text",
189 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
190  3.428938253498197*^9, 3.428938253866067*^9}}],
191
192Cell[CellGroupData[{
193
194Cell[BoxData[
195 RowBox[{"d\[CapitalPhi]2", "=",
196  RowBox[{
197   RowBox[{
198    RowBox[{"(",
199     RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
200   RowBox[{"\[Delta]", "[",
201    RowBox[{"P", "-", "p1", "-", "p2"}], "]"}],
202   RowBox[{
203    RowBox[{
204     RowBox[{"d3p1", "/",
205      RowBox[{
206       RowBox[{"(",
207        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
208   " ",
209   RowBox[{
210    RowBox[{
211     RowBox[{"d3p2", "/",
212      RowBox[{
213       RowBox[{"(",
214        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
215    "E2"}]}]}]], "Input",
216 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
217  3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
218  3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}}],
219
220Cell[BoxData[
221 FormBox[
222  FractionBox[
223   RowBox[{"d3p1", " ", "d3p2", " ",
224    RowBox[{"\[Delta]", "(",
225     RowBox[{"P", "-", "p1", "-", "p2"}], ")"}]}],
226   RowBox[{"16", " ", "E1", " ", "E2", " ",
227    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
228 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
229   3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
230   3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9}]
231}, Open  ]],
232
233Cell["\<\
234Performing the integration over d3p2 in the rest frame of the H gives\
235\>", "Text",
236 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
237  3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
238  3.428938248774928*^9}}],
239
240Cell[CellGroupData[{
241
242Cell[BoxData[
243 RowBox[{"PS", "=",
244  RowBox[{
245   RowBox[{
246    RowBox[{"1", "/", "4"}], "/",
247    RowBox[{
248     RowBox[{"(",
249      RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
250   RowBox[{"\[Delta]", "[",
251    RowBox[{"mh", "-",
252     RowBox[{"2", "E1"}]}], "]"}],
253   RowBox[{"d3p1", "/",
254    RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
255 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
256  3.42893825962851*^9, 3.42893826484441*^9}}],
257
258Cell[BoxData[
259 FormBox[
260  FractionBox[
261   RowBox[{"d3p1", " ",
262    RowBox[{"\[Delta]", "(",
263     RowBox[{"mh", "-",
264      RowBox[{"2", " ", "E1"}]}], ")"}]}],
265   RowBox[{"16", " ",
266    SuperscriptBox["E1", "2"], " ",
267    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
268 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
269   3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
270   3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
271   3.4289386914875193`*^9, 3.4289390157737207`*^9}]
272}, Open  ]],
273
274Cell["\<\
275Going to spherical coordinates, and usging p1 dp1 = E1 dE1, we get\
276\>", "Text",
277 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
278  3.4289382922025423`*^9, 3.428938296218473*^9}}],
279
280Cell[CellGroupData[{
281
282Cell[BoxData[
283 RowBox[{"PS", "=",
284  RowBox[{
285   RowBox[{"PS", "/.",
286    RowBox[{
287     RowBox[{"\[Delta]", "[",
288      RowBox[{"mh", "-",
289       RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
290     RowBox[{
291      RowBox[{"1", "/", "2"}],
292      RowBox[{"\[Delta]", "[",
293       RowBox[{"E1", "-",
294        RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
295   RowBox[{"d3p1", "\[Rule]",
296    RowBox[{"4", "Pi", " ",
297     RowBox[{"Sqrt", "[",
298      RowBox[{
299       RowBox[{"E1", "^", "2"}], "-",
300       RowBox[{"mf", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
301 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
302   3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
303   3.428938584824209*^9, 3.428938599062233*^9}}],
304
305Cell[BoxData[
306 FormBox[
307  FractionBox[
308   RowBox[{"dE1", " ",
309    SqrtBox[
310     RowBox[{
311      SuperscriptBox["E1", "2"], "-",
312      SuperscriptBox["mf", "2"]}]], " ",
313    RowBox[{"\[Delta]", "(",
314     RowBox[{"E1", "-",
315      FractionBox["mh", "2"]}], ")"}]}],
316   RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
317 CellChangeTimes->{
318  3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
319   3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
320   3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
321   3.428938692218741*^9}, 3.4289390158068933`*^9}]
322}, Open  ]],
323
324Cell["Performing the integration", "Text",
325 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
326
327Cell[CellGroupData[{
328
329Cell[BoxData[
330 RowBox[{"PS", "=",
331  RowBox[{
332   RowBox[{"PS", "/.",
333    RowBox[{
334     RowBox[{"dE1", " ",
335      RowBox[{"\[Delta]", "[",
336       RowBox[{"E1", "-",
337        RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
338   RowBox[{"E1", "\[Rule]",
339    RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
340 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
341  3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
342  3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
343
344Cell[BoxData[
345 FormBox[
346  FractionBox[
347   SqrtBox[
348    RowBox[{
349     FractionBox[
350      SuperscriptBox["mh", "2"], "4"], "-",
351     SuperscriptBox["mf", "2"]}]],
352   RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
353 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
354   3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
355   3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
356   3.428938694746279*^9}, 3.42893901583956*^9}]
357}, Open  ]]
358}, Closed]],
359
360Cell[CellGroupData[{
361
362Cell["Result", "Subsection",
363 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
364
365Cell["The decay rate of the H then becomes", "Text",
366 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
367   3.4289383237898083`*^9}],
368
369Cell[CellGroupData[{
370
371Cell[BoxData[
372 RowBox[{"\[CapitalGamma]", "=",
373  RowBox[{
374   RowBox[{
375    RowBox[{
376     RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "//",
377   "Simplify"}]}]], "Input",
378 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
379   3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
380   3.42893864433534*^9, 3.4289389462936773`*^9}],
381
382Cell[BoxData[
383 FormBox[
384  FractionBox[
385   RowBox[{"Gf", " ",
386    SqrtBox[
387     RowBox[{
388      SuperscriptBox["mh", "2"], "-",
389      RowBox[{"4", " ",
390       SuperscriptBox["mf", "2"]}]}]], " ",
391    RowBox[{"(",
392     RowBox[{
393      RowBox[{
394       SuperscriptBox["mf", "2"], " ",
395       SuperscriptBox["mh", "2"]}], "-",
396      RowBox[{"4", " ",
397       SuperscriptBox["mf", "4"]}]}], ")"}]}],
398   RowBox[{"4", " ",
399    SqrtBox["2"], " ",
400    SuperscriptBox["mh", "2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
401 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
402   3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
403   3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
404   3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
405   3.42893901589124*^9}]
406}, Open  ]]
407}, Closed]]
408}, Open  ]],
409
410Cell[CellGroupData[{
411
412Cell["H \[RightArrow] WW", "Section",
413 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
414  3.428939028678343*^9, 3.428939029987813*^9}}],
415
416Cell[CellGroupData[{
417
418Cell["Kinematics 1->2", "Subsection",
419 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
420
421Cell[BoxData[
422 RowBox[{"\[IndentingNewLine]",
423  RowBox[{
424   RowBox[{
425    RowBox[{
426     RowBox[{"ScalarProduct", "[",
427      RowBox[{"P", ",", "P"}], "]"}], "=",
428     RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
429   RowBox[{
430    RowBox[{
431     RowBox[{"ScalarProduct", "[",
432      RowBox[{"pw1", ",", "pw1"}], "]"}], "=",
433     RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
434   RowBox[{
435    RowBox[{
436     RowBox[{"ScalarProduct", "[",
437      RowBox[{"pw2", ",", "pw2"}], "]"}], "=",
438     RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
439   RowBox[{
440    RowBox[{
441     RowBox[{"ScalarProduct", "[",
442      RowBox[{"P", ",", "pw1"}], "]"}], "=",
443     RowBox[{
444      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
445   RowBox[{
446    RowBox[{
447     RowBox[{"ScalarProduct", "[",
448      RowBox[{"P", ",", "pw2"}], "]"}], "=",
449     RowBox[{
450      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
451   RowBox[{
452    RowBox[{
453     RowBox[{"ScalarProduct", "[",
454      RowBox[{"pw1", ",", "pw2"}], "]"}], "=",
455     RowBox[{
456      RowBox[{
457       RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
458      RowBox[{"mw", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
459
460 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
461  3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
462  3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
463  3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
464  3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}}]
465}, Closed]],
466
467Cell[CellGroupData[{
468
469Cell["Amplitude (1 diagram)", "Subsection",
470 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
471
472Cell["The summed and averaged square matrix element", "Text",
473 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
474  3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
475  3.42892751343362*^9}}],
476
477Cell[CellGroupData[{
478
479Cell[BoxData[
480 RowBox[{"M2", "=",
481  RowBox[{
482   RowBox[{
483    RowBox[{"(",
484     RowBox[{"v", " ",
485      RowBox[{
486       RowBox[{"gw", "^", "2"}], "/", "2"}]}], ")"}], "^", "2"}],
487   RowBox[{"(",
488    RowBox[{
489     RowBox[{"-",
490      RowBox[{"MetricTensor", "[",
491       RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
492     RowBox[{
493      RowBox[{"FV", "[",
494       RowBox[{"pw1", ",", "mu"}], "]"}],
495      RowBox[{
496       RowBox[{"FV", "[",
497        RowBox[{"pw1", ",", "nu"}], "]"}], "/",
498       RowBox[{"mw", "^", "2"}]}]}]}], ")"}],
499   RowBox[{"(",
500    RowBox[{
501     RowBox[{"-",
502      RowBox[{"MetricTensor", "[",
503       RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
504     RowBox[{
505      RowBox[{"FV", "[",
506       RowBox[{"pw2", ",", "mu"}], "]"}],
507      RowBox[{
508       RowBox[{"FV", "[",
509        RowBox[{"pw2", ",", "nu"}], "]"}], "/",
510       RowBox[{"mw", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
511 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
512   3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
513   3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
514   3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
515   3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
516   3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
517   3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
518   3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
519   3.428939614471209*^9}],
520
521Cell[BoxData[
522 FormBox[
523  RowBox[{
524   FractionBox["1", "4"], " ",
525   SuperscriptBox["gw", "4"], " ",
526   SuperscriptBox["v", "2"], " ",
527   RowBox[{"(",
528    RowBox[{
529     FractionBox[
530      RowBox[{
531       SuperscriptBox["pw1", "mu"], " ",
532       SuperscriptBox["pw1", "nu"]}],
533      SuperscriptBox["mw", "2"]], "-",
534     SuperscriptBox["g",
535      RowBox[{"mu", "nu"}]]}], ")"}], " ",
536   RowBox[{"(",
537    RowBox[{
538     FractionBox[
539      RowBox[{
540       SuperscriptBox["pw2", "mu"], " ",
541       SuperscriptBox["pw2", "nu"]}],
542      SuperscriptBox["mw", "2"]], "-",
543     SuperscriptBox["g",
544      RowBox[{"mu", "nu"}]]}], ")"}]}], TraditionalForm]], "Output",
545 CellChangeTimes->{
546  3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
547   3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
548   3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
549   3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
550   3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
551   3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
552   3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9}}]
553}, Open  ]],
554
555Cell["We constrat the Lorentz indices", "Text",
556 CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
557
558Cell[CellGroupData[{
559
560Cell[BoxData[
561 RowBox[{"M2", "=",
562  RowBox[{
563   RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
564 CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
565
566Cell[BoxData[
567 FormBox[
568  FractionBox[
569   RowBox[{
570    SuperscriptBox["gw", "4"], " ",
571    RowBox[{"(",
572     RowBox[{
573      SuperscriptBox["mh", "4"], "-",
574      RowBox[{"4", " ",
575       SuperscriptBox["mw", "2"], " ",
576       SuperscriptBox["mh", "2"]}], "+",
577      RowBox[{"12", " ",
578       SuperscriptBox["mw", "4"]}]}], ")"}], " ",
579    SuperscriptBox["v", "2"]}],
580   RowBox[{"16", " ",
581    SuperscriptBox["mw", "4"]}]], TraditionalForm]], "Output",
582 CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
583   3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9}]
584}, Open  ]],
585
586Cell["We insert he definition of the Fermi constant", "Text",
587 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
588
589Cell[CellGroupData[{
590
591Cell[BoxData[
592 RowBox[{"M2", "=",
593  RowBox[{
594   RowBox[{"M2", "/.",
595    RowBox[{"v", "\[Rule]",
596     RowBox[{"1", "/",
597      RowBox[{"Sqrt", "[",
598       RowBox[{"Gf", " ",
599        RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
600   RowBox[{"gw", "\[Rule]",
601    RowBox[{"Sqrt", "[",
602     RowBox[{"Gf", " ", "8",
603      RowBox[{
604       RowBox[{"mw", "^", "2"}], "/",
605       RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
606 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
607  3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
608  3.428939216735014*^9}}],
609
610Cell[BoxData[
611 FormBox[
612  RowBox[{
613   SqrtBox["2"], " ", "Gf", " ",
614   RowBox[{"(",
615    RowBox[{
616     SuperscriptBox["mh", "4"], "-",
617     RowBox[{"4", " ",
618      SuperscriptBox["mw", "2"], " ",
619      SuperscriptBox["mh", "2"]}], "+",
620     RowBox[{"12", " ",
621      SuperscriptBox["mw", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
622 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
623  3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
624  3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
625  3.428939398074815*^9, 3.428939621035542*^9}]
626}, Open  ]]
627}, Closed]],
628
629Cell[CellGroupData[{
630
631Cell["Phase Space", "Subsection",
632 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
633
634Cell["The two particle phase space is", "Text",
635 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
636  3.428938253498197*^9, 3.428938253866067*^9}}],
637
638Cell[CellGroupData[{
639
640Cell[BoxData[
641 RowBox[{"d\[CapitalPhi]2", "=",
642  RowBox[{
643   RowBox[{
644    RowBox[{"(",
645     RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
646   RowBox[{"\[Delta]", "[",
647    RowBox[{"P", "-", "pw1", "-", "pw2"}], "]"}],
648   RowBox[{
649    RowBox[{
650     RowBox[{"d3pw1", "/",
651      RowBox[{
652       RowBox[{"(",
653        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
654   " ",
655   RowBox[{
656    RowBox[{
657     RowBox[{"d3pw2", "/",
658      RowBox[{
659       RowBox[{"(",
660        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
661    "E2"}]}]}]], "Input",
662 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
663  3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
664  3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
665  3.428939402360241*^9, 3.428939407583867*^9}}],
666
667Cell[BoxData[
668 FormBox[
669  FractionBox[
670   RowBox[{"d3pw1", " ", "d3pw2", " ",
671    RowBox[{"\[Delta]", "(",
672     RowBox[{"P", "-", "pw1", "-", "pw2"}], ")"}]}],
673   RowBox[{"16", " ", "E1", " ", "E2", " ",
674    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
675 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
676   3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
677   3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
678   3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9}]
679}, Open  ]],
680
681Cell["\<\
682Performing the integration over d3pw2 in the rest frame of the H gives\
683\>", "Text",
684 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
685   3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
686   3.428938248774928*^9}, 3.428939418781519*^9}],
687
688Cell[CellGroupData[{
689
690Cell[BoxData[
691 RowBox[{"PS", "=",
692  RowBox[{
693   RowBox[{
694    RowBox[{"1", "/", "4"}], "/",
695    RowBox[{
696     RowBox[{"(",
697      RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
698   RowBox[{"\[Delta]", "[",
699    RowBox[{"mh", "-",
700     RowBox[{"2", "E1"}]}], "]"}],
701   RowBox[{"d3pw1", "/",
702    RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
703 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
704   3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9}],
705
706Cell[BoxData[
707 FormBox[
708  FractionBox[
709   RowBox[{"d3pw1", " ",
710    RowBox[{"\[Delta]", "(",
711     RowBox[{"mh", "-",
712      RowBox[{"2", " ", "E1"}]}], ")"}]}],
713   RowBox[{"16", " ",
714    SuperscriptBox["E1", "2"], " ",
715    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
716 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
717   3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
718   3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
719   3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
720   3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9}]
721}, Open  ]],
722
723Cell["\<\
724Going to spherical coordinates, and usging pw1 dpw1 = E1 dE1, we get\
725\>", "Text",
726 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
727  3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
728  3.4289394222210503`*^9}}],
729
730Cell[CellGroupData[{
731
732Cell[BoxData[
733 RowBox[{"PS", "=",
734  RowBox[{
735   RowBox[{"PS", "/.",
736    RowBox[{
737     RowBox[{"\[Delta]", "[",
738      RowBox[{"mh", "-",
739       RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
740     RowBox[{
741      RowBox[{"1", "/", "2"}],
742      RowBox[{"\[Delta]", "[",
743       RowBox[{"E1", "-",
744        RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
745   RowBox[{"d3pw1", "\[Rule]",
746    RowBox[{"4", "Pi", " ",
747     RowBox[{"Sqrt", "[",
748      RowBox[{
749       RowBox[{"E1", "^", "2"}], "-",
750       RowBox[{"mw", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
751 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
752   3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
753   3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
754   3.4289392398953457`*^9}, 3.428939430416103*^9}],
755
756Cell[BoxData[
757 FormBox[
758  FractionBox[
759   RowBox[{"dE1", " ",
760    SqrtBox[
761     RowBox[{
762      SuperscriptBox["E1", "2"], "-",
763      SuperscriptBox["mw", "2"]}]], " ",
764    RowBox[{"\[Delta]", "(",
765     RowBox[{"E1", "-",
766      FractionBox["mh", "2"]}], ")"}]}],
767   RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
768 CellChangeTimes->{
769  3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
770   3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
771   3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
772   3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
773   3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9}]
774}, Open  ]],
775
776Cell["Performing the integration", "Text",
777 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
778
779Cell[CellGroupData[{
780
781Cell[BoxData[
782 RowBox[{"PS", "=",
783  RowBox[{
784   RowBox[{"PS", "/.",
785    RowBox[{
786     RowBox[{"dE1", " ",
787      RowBox[{"\[Delta]", "[",
788       RowBox[{"E1", "-",
789        RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
790   RowBox[{"E1", "\[Rule]",
791    RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
792 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
793  3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
794  3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
795
796Cell[BoxData[
797 FormBox[
798  FractionBox[
799   SqrtBox[
800    RowBox[{
801     FractionBox[
802      SuperscriptBox["mh", "2"], "4"], "-",
803     SuperscriptBox["mw", "2"]}]],
804   RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
805 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
806   3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
807   3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
808   3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
809   3.4289394342927837`*^9, 3.428939625835762*^9}]
810}, Open  ]]
811}, Closed]],
812
813Cell[CellGroupData[{
814
815Cell["Result", "Subsection",
816 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
817
818Cell["The decay rate of the H then becomes", "Text",
819 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
820   3.4289383237898083`*^9}],
821
822Cell[CellGroupData[{
823
824Cell[BoxData[
825 RowBox[{"\[CapitalGamma]", "=",
826  RowBox[{
827   RowBox[{
828    RowBox[{
829     RowBox[{
830      RowBox[{
831       RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
832     RowBox[{"mw", "\[Rule]",
833      RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
834   "PowerExpand"}]}]], "Input",
835 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
836   3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
837   3.42893864433534*^9, 3.4289389462936773`*^9, {3.428939734911998*^9,
838   3.428939761347455*^9}}],
839
840Cell[BoxData[
841 FormBox[
842  FractionBox[
843   RowBox[{"Gf", " ",
844    SuperscriptBox["mh", "3"], " ",
845    SqrtBox[
846     RowBox[{"1", "-",
847      RowBox[{"4", " ",
848       SuperscriptBox["x", "2"]}]}]], " ",
849    RowBox[{"(",
850     RowBox[{
851      RowBox[{"12", " ",
852       SuperscriptBox["x", "4"]}], "-",
853      RowBox[{"4", " ",
854       SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
855   RowBox[{"8", " ",
856    SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
857 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
858   3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
859   3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
860   3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
861   3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
862   3.4289396272755547`*^9, {3.42893974381048*^9, 3.428939762040904*^9}}]
863}, Open  ]]
864}, Closed]]
865}, Open  ]],
866
867Cell[CellGroupData[{
868
869Cell["H \[RightArrow] ZZ", "Section",
870 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
871  3.428939028678343*^9, 3.428939029987813*^9}, {3.428939649559754*^9,
872  3.4289396513572483`*^9}}],
873
874Cell[CellGroupData[{
875
876Cell["Kinematics 1->2", "Subsection",
877 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
878
879Cell[BoxData[
880 RowBox[{"\[IndentingNewLine]",
881  RowBox[{
882   RowBox[{
883    RowBox[{
884     RowBox[{"ScalarProduct", "[",
885      RowBox[{"P", ",", "P"}], "]"}], "=",
886     RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
887   RowBox[{
888    RowBox[{
889     RowBox[{"ScalarProduct", "[",
890      RowBox[{"pz1", ",", "pz1"}], "]"}], "=",
891     RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
892   RowBox[{
893    RowBox[{
894     RowBox[{"ScalarProduct", "[",
895      RowBox[{"pz2", ",", "pz2"}], "]"}], "=",
896     RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
897   RowBox[{
898    RowBox[{
899     RowBox[{"ScalarProduct", "[",
900      RowBox[{"P", ",", "pz1"}], "]"}], "=",
901     RowBox[{
902      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
903   RowBox[{
904    RowBox[{
905     RowBox[{"ScalarProduct", "[",
906      RowBox[{"P", ",", "pz2"}], "]"}], "=",
907     RowBox[{
908      RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
909   RowBox[{
910    RowBox[{
911     RowBox[{"ScalarProduct", "[",
912      RowBox[{"pz1", ",", "pz2"}], "]"}], "=",
913     RowBox[{
914      RowBox[{
915       RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
916      RowBox[{"mz", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
917
918 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
919  3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
920  3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
921  3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
922  3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}, {
923  3.428939657707238*^9, 3.428939671283299*^9}}]
924}, Closed]],
925
926Cell[CellGroupData[{
927
928Cell["Amplitude (1 diagram)", "Subsection",
929 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
930
931Cell["The summed and averaged square matrix element", "Text",
932 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
933  3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
934  3.42892751343362*^9}}],
935
936Cell[CellGroupData[{
937
938Cell[BoxData[
939 RowBox[{"M2", "=",
940  RowBox[{
941   RowBox[{
942    RowBox[{"(",
943     RowBox[{"v", " ",
944      RowBox[{
945       RowBox[{
946        RowBox[{"gw", "^", "2"}], "/", "2"}], "/",
947       RowBox[{"cw", "^", "2"}]}]}], ")"}], "^", "2"}],
948   RowBox[{"(",
949    RowBox[{
950     RowBox[{"-",
951      RowBox[{"MetricTensor", "[",
952       RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
953     RowBox[{
954      RowBox[{"FV", "[",
955       RowBox[{"pz1", ",", "mu"}], "]"}],
956      RowBox[{
957       RowBox[{"FV", "[",
958        RowBox[{"pz1", ",", "nu"}], "]"}], "/",
959       RowBox[{"mz", "^", "2"}]}]}]}], ")"}],
960   RowBox[{"(",
961    RowBox[{
962     RowBox[{"-",
963      RowBox[{"MetricTensor", "[",
964       RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
965     RowBox[{
966      RowBox[{"FV", "[",
967       RowBox[{"pz2", ",", "mu"}], "]"}],
968      RowBox[{
969       RowBox[{"FV", "[",
970        RowBox[{"pz2", ",", "nu"}], "]"}], "/",
971       RowBox[{"mz", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
972 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
973   3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
974   3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
975   3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
976   3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
977   3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
978   3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
979   3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
980   3.428939614471209*^9, {3.4289396974209337`*^9, 3.428939729732409*^9}, {
981   3.42893977829564*^9, 3.4289397787246437`*^9}}],
982
983Cell[BoxData[
984 FormBox[
985  FractionBox[
986   RowBox[{
987    SuperscriptBox["gw", "4"], " ",
988    SuperscriptBox["v", "2"], " ",
989    RowBox[{"(",
990     RowBox[{
991      FractionBox[
992       RowBox[{
993        SuperscriptBox["pz1", "mu"], " ",
994        SuperscriptBox["pz1", "nu"]}],
995       SuperscriptBox["mz", "2"]], "-",
996      SuperscriptBox["g",
997       RowBox[{"mu", "nu"}]]}], ")"}], " ",
998    RowBox[{"(",
999     RowBox[{
1000      FractionBox[
1001       RowBox[{
1002        SuperscriptBox["pz2", "mu"], " ",
1003        SuperscriptBox["pz2", "nu"]}],
1004       SuperscriptBox["mz", "2"]], "-",
1005      SuperscriptBox["g",
1006       RowBox[{"mu", "nu"}]]}], ")"}]}],
1007   RowBox[{"4", " ",
1008    SuperscriptBox["cw", "4"]}]], TraditionalForm]], "Output",
1009 CellChangeTimes->{
1010  3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
1011   3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
1012   3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
1013   3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
1014   3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
1015   3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
1016   3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9},
1017   3.428939778926634*^9, 3.4289398622949247`*^9}]
1018}, Open  ]],
1019
1020Cell["We constrat the Lorentz indices", "Text",
1021 CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
1022
1023Cell[CellGroupData[{
1024
1025Cell[BoxData[
1026 RowBox[{"M2", "=",
1027  RowBox[{
1028   RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
1029 CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
1030
1031Cell[BoxData[
1032 FormBox[
1033  FractionBox[
1034   RowBox[{
1035    SuperscriptBox["gw", "4"], " ",
1036    RowBox[{"(",
1037     RowBox[{
1038      SuperscriptBox["mh", "4"], "-",
1039      RowBox[{"4", " ",
1040       SuperscriptBox["mz", "2"], " ",
1041       SuperscriptBox["mh", "2"]}], "+",
1042      RowBox[{"12", " ",
1043       SuperscriptBox["mz", "4"]}]}], ")"}], " ",
1044    SuperscriptBox["v", "2"]}],
1045   RowBox[{"16", " ",
1046    SuperscriptBox["cw", "4"], " ",
1047    SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
1048 CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
1049   3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9,
1050   3.428939782429967*^9, 3.428939869387093*^9}]
1051}, Open  ]],
1052
1053Cell["We insert he definition of the Fermi constant", "Text",
1054 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
1055
1056Cell[CellGroupData[{
1057
1058Cell[BoxData[
1059 RowBox[{"M2", "=",
1060  RowBox[{
1061   RowBox[{"M2", "/.",
1062    RowBox[{"v", "\[Rule]",
1063     RowBox[{"1", "/",
1064      RowBox[{"Sqrt", "[",
1065       RowBox[{"Gf", " ",
1066        RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
1067   RowBox[{"gw", "\[Rule]",
1068    RowBox[{"Sqrt", "[",
1069     RowBox[{"Gf", " ", "8",
1070      RowBox[{
1071       RowBox[{"mw", "^", "2"}], "/",
1072       RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
1073 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
1074  3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
1075  3.428939216735014*^9}}],
1076
1077Cell[BoxData[
1078 FormBox[
1079  FractionBox[
1080   RowBox[{
1081    SqrtBox["2"], " ", "Gf", " ",
1082    SuperscriptBox["mw", "4"], " ",
1083    RowBox[{"(",
1084     RowBox[{
1085      SuperscriptBox["mh", "4"], "-",
1086      RowBox[{"4", " ",
1087       SuperscriptBox["mz", "2"], " ",
1088       SuperscriptBox["mh", "2"]}], "+",
1089      RowBox[{"12", " ",
1090       SuperscriptBox["mz", "4"]}]}], ")"}]}],
1091   RowBox[{
1092    SuperscriptBox["cw", "4"], " ",
1093    SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
1094 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
1095  3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
1096  3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
1097  3.428939398074815*^9, 3.428939621035542*^9, 3.428939786171034*^9,
1098  3.4289398708976583`*^9}]
1099}, Open  ]]
1100}, Closed]],
1101
1102Cell[CellGroupData[{
1103
1104Cell["Phase Space", "Subsection",
1105 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
1106
1107Cell["The two particle phase space is", "Text",
1108 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
1109  3.428938253498197*^9, 3.428938253866067*^9}}],
1110
1111Cell[CellGroupData[{
1112
1113Cell[BoxData[
1114 RowBox[{"d\[CapitalPhi]2", "=",
1115  RowBox[{
1116   RowBox[{"1", "/", "2"}],
1117   RowBox[{
1118    RowBox[{"(",
1119     RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
1120   RowBox[{"\[Delta]", "[",
1121    RowBox[{"P", "-", "pz1", "-", "pz2"}], "]"}],
1122   RowBox[{
1123    RowBox[{
1124     RowBox[{"d3pz1", "/",
1125      RowBox[{
1126       RowBox[{"(",
1127        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
1128   " ",
1129   RowBox[{
1130    RowBox[{
1131     RowBox[{"d3pz2", "/",
1132      RowBox[{
1133       RowBox[{"(",
1134        RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
1135    "E2"}]}]}]], "Input",
1136 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
1137  3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
1138  3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
1139  3.428939402360241*^9, 3.428939407583867*^9}, {3.4289397947484217`*^9,
1140  3.4289398003366203`*^9}, {3.42893988381181*^9, 3.428939884041622*^9}}],
1141
1142Cell[BoxData[
1143 FormBox[
1144  FractionBox[
1145   RowBox[{"d3pz1", " ", "d3pz2", " ",
1146    RowBox[{"\[Delta]", "(",
1147     RowBox[{"P", "-", "pz1", "-", "pz2"}], ")"}]}],
1148   RowBox[{"16", " ", "E1", " ", "E2", " ",
1149    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
1150 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
1151   3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
1152   3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
1153   3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9,
1154   3.428939802399288*^9, 3.4289398723729563`*^9}]
1155}, Open  ]],
1156
1157Cell["\<\
1158Notice the additional factor 1/2 in the phase spac, coming form the fact that \
1159we have identical particles in the final state.\
1160\>", "Text",
1161 CellChangeTimes->{{3.428939885985323*^9, 3.428939907485496*^9}}],
1162
1163Cell["\<\
1164Performing the integration over d3pz2 in the rest frame of the H gives\
1165\>", "Text",
1166 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
1167   3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
1168   3.428938248774928*^9}, 3.428939418781519*^9, {3.428939816157881*^9,
1169   3.4289398163019114`*^9}}],
1170
1171Cell[CellGroupData[{
1172
1173Cell[BoxData[
1174 RowBox[{"PS", "=",
1175  RowBox[{
1176   RowBox[{"1", "/", "2"}], " ",
1177   RowBox[{
1178    RowBox[{"1", "/", "4"}], "/",
1179    RowBox[{
1180     RowBox[{"(",
1181      RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
1182   RowBox[{"\[Delta]", "[",
1183    RowBox[{"mh", "-",
1184     RowBox[{"2", "E1"}]}], "]"}],
1185   RowBox[{"d3pz1", "/",
1186    RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
1187 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
1188   3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9, {
1189   3.4289398057924757`*^9, 3.42893980595168*^9}, {3.428939917120672*^9,
1190   3.428939918020076*^9}}],
1191
1192Cell[BoxData[
1193 FormBox[
1194  FractionBox[
1195   RowBox[{"d3pz1", " ",
1196    RowBox[{"\[Delta]", "(",
1197     RowBox[{"mh", "-",
1198      RowBox[{"2", " ", "E1"}]}], ")"}]}],
1199   RowBox[{"32", " ",
1200    SuperscriptBox["E1", "2"], " ",
1201    SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
1202 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
1203   3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
1204   3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
1205   3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
1206   3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9,
1207   3.4289398062227793`*^9, 3.428939873429842*^9, 3.428939918388637*^9}]
1208}, Open  ]],
1209
1210Cell["\<\
1211Going to spherical coordinates, and usging pz1 dpz1 = E1 dE1, we get\
1212\>", "Text",
1213 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
1214  3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
1215  3.4289394222210503`*^9}, {3.428939811789967*^9, 3.4289398135420017`*^9}}],
1216
1217Cell[CellGroupData[{
1218
1219Cell[BoxData[
1220 RowBox[{"PS", "=",
1221  RowBox[{
1222   RowBox[{"PS", "/.",
1223    RowBox[{
1224     RowBox[{"\[Delta]", "[",
1225      RowBox[{"mh", "-",
1226       RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
1227     RowBox[{
1228      RowBox[{"1", "/", "2"}],
1229      RowBox[{"\[Delta]", "[",
1230       RowBox[{"E1", "-",
1231        RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
1232   RowBox[{"d3pz1", "\[Rule]",
1233    RowBox[{"4", "Pi", " ",
1234     RowBox[{"Sqrt", "[",
1235      RowBox[{
1236       RowBox[{"E1", "^", "2"}], "-",
1237       RowBox[{"mz", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
1238 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
1239   3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
1240   3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
1241   3.4289392398953457`*^9}, 3.428939430416103*^9, {3.428939810323925*^9,
1242   3.428939819169014*^9}}],
1243
1244Cell[BoxData[
1245 FormBox[
1246  FractionBox[
1247   RowBox[{"dE1", " ",
1248    SqrtBox[
1249     RowBox[{
1250      SuperscriptBox["E1", "2"], "-",
1251      SuperscriptBox["mz", "2"]}]], " ",
1252    RowBox[{"\[Delta]", "(",
1253     RowBox[{"E1", "-",
1254      FractionBox["mh", "2"]}], ")"}]}],
1255   RowBox[{"16", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1256 CellChangeTimes->{
1257  3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
1258   3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
1259   3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
1260   3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
1261   3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9,
1262   3.4289398195382347`*^9, 3.428939874626782*^9, 3.428939921689764*^9}]
1263}, Open  ]],
1264
1265Cell["Performing the integration", "Text",
1266 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
1267
1268Cell[CellGroupData[{
1269
1270Cell[BoxData[
1271 RowBox[{"PS", "=",
1272  RowBox[{
1273   RowBox[{"PS", "/.",
1274    RowBox[{
1275     RowBox[{"dE1", " ",
1276      RowBox[{"\[Delta]", "[",
1277       RowBox[{"E1", "-",
1278        RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
1279   RowBox[{"E1", "\[Rule]",
1280    RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
1281 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
1282  3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
1283  3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
1284
1285Cell[BoxData[
1286 FormBox[
1287  FractionBox[
1288   SqrtBox[
1289    RowBox[{
1290     FractionBox[
1291      SuperscriptBox["mh", "2"], "4"], "-",
1292     SuperscriptBox["mz", "2"]}]],
1293   RowBox[{"8", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1294 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
1295   3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
1296   3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
1297   3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
1298   3.4289394342927837`*^9, 3.428939625835762*^9, 3.428939823598246*^9,
1299   3.428939875651293*^9, 3.4289399228618383`*^9}]
1300}, Open  ]]
1301}, Closed]],
1302
1303Cell[CellGroupData[{
1304
1305Cell["Result", "Subsection",
1306 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
1307
1308Cell["The decay rate of the H then becomes", "Text",
1309 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
1310   3.4289383237898083`*^9}],
1311
1312Cell[CellGroupData[{
1313
1314Cell[BoxData[
1315 RowBox[{"\[CapitalGamma]", "=",
1316  RowBox[{
1317   RowBox[{
1318    RowBox[{
1319     RowBox[{
1320      RowBox[{
1321       RowBox[{
1322        RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
1323      RowBox[{"mw", "\[Rule]",
1324       RowBox[{"mz", " ", "cw"}]}]}], "/.",
1325     RowBox[{"mz", "\[Rule]",
1326      RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
1327   "PowerExpand"}]}]], "Input",
1328 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
1329   3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
1330   3.42893864433534*^9, 3.4289389462936773`*^9, {3.42893982964193*^9,
1331   3.4289398502038717`*^9}}],
1332
1333Cell[BoxData[
1334 FormBox[
1335  FractionBox[
1336   RowBox[{"Gf", " ",
1337    SuperscriptBox["mh", "3"], " ",
1338    SqrtBox[
1339     RowBox[{"1", "-",
1340      RowBox[{"4", " ",
1341       SuperscriptBox["x", "2"]}]}]], " ",
1342    RowBox[{"(",
1343     RowBox[{
1344      RowBox[{"12", " ",
1345       SuperscriptBox["x", "4"]}], "-",
1346      RowBox[{"4", " ",
1347       SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
1348   RowBox[{"16", " ",
1349    SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
1350 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
1351   3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
1352   3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
1353   3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
1354   3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
1355   3.4289396272755547`*^9, {3.4289398454713497`*^9, 3.4289398770178833`*^9},
1356   3.428939924241026*^9}]
1357}, Open  ]]
1358}, Closed]]
1359}, Open  ]]
1360}, Open  ]]
1361},
1362WindowSize->{710, 706},
1363WindowMargins->{{Automatic, 230}, {Automatic, 4}},
1364ShowSelection->True,
1365FrontEndVersion->"6.0 for Mac OS X x86 (32-bit) (April 20, 2007)",
1366StyleDefinitions->"Default.nb"
1367]
1368(* End of Notebook Content *)
1369
1370(* Internal cache information *)
1371(*CellTagsOutline
1372CellTagsIndex->{}
1373*)
1374(*CellTagsIndex
1375CellTagsIndex->{}
1376*)
1377(*NotebookFileOutline
1378Notebook[{
1379Cell[CellGroupData[{
1380Cell[590, 23, 175, 4, 76, "Title"],
1381Cell[CellGroupData[{
1382Cell[790, 31, 36, 0, 34, "Subsection"],
1383Cell[829, 33, 83, 2, 27, "Input"]
1384}, Open  ]],
1385Cell[CellGroupData[{
1386Cell[949, 40, 105, 1, 67, "Section"],
1387Cell[CellGroupData[{
1388Cell[1079, 45, 103, 1, 34, "Subsection"],
1389Cell[1185, 48, 1494, 42, 133, "Input"]
1390}, Closed]],
1391Cell[CellGroupData[{
1392Cell[2716, 95, 111, 1, 26, "Subsection"],
1393Cell[2830, 98, 228, 3, 26, "Text"],
1394Cell[CellGroupData[{
1395Cell[3083, 105, 955, 23, 27, "Input"],
1396Cell[4041, 130, 682, 16, 70, "Output"]
1397}, Open  ]],
1398Cell[4738, 149, 127, 1, 26, "Text"],
1399Cell[CellGroupData[{
1400Cell[4890, 154, 346, 9, 27, "Input"],
1401Cell[5239, 165, 485, 13, 70, "Output"]
1402}, Open  ]]
1403}, Closed]],
1404Cell[CellGroupData[{
1405Cell[5773, 184, 101, 1, 26, "Subsection"],
1406Cell[5877, 187, 164, 2, 26, "Text"],
1407Cell[CellGroupData[{
1408Cell[6066, 193, 782, 24, 27, "Input"],
1409Cell[6851, 219, 479, 10, 70, "Output"]
1410}, Open  ]],
1411Cell[7345, 232, 259, 5, 26, "Text"],
1412Cell[CellGroupData[{
1413Cell[7629, 241, 451, 14, 27, "Input"],
1414Cell[8083, 257, 547, 13, 70, "Output"]
1415}, Open  ]],
1416Cell[8645, 273, 209, 4, 26, "Text"],
1417Cell[CellGroupData[{
1418Cell[8879, 281, 765, 21, 27, "Input"],
1419Cell[9647, 304, 627, 16, 70, "Output"]
1420}, Open  ]],
1421Cell[10289, 323, 108, 1, 26, "Text"],
1422Cell[CellGroupData[{
1423Cell[10422, 328, 526, 13, 27, "Input"],
1424Cell[10951, 343, 496, 12, 70, "Output"]
1425}, Open  ]]
1426}, Closed]],
1427Cell[CellGroupData[{
1428Cell[11496, 361, 98, 1, 26, "Subsection"],
1429Cell[11597, 364, 146, 2, 26, "Text"],
1430Cell[CellGroupData[{
1431Cell[11768, 370, 373, 9, 27, "Input"],
1432Cell[12144, 381, 837, 23, 60, "Output"]
1433}, Open  ]]
1434}, Closed]]
1435}, Open  ]],
1436Cell[CellGroupData[{
1437Cell[13042, 411, 154, 2, 67, "Section"],
1438Cell[CellGroupData[{
1439Cell[13221, 417, 103, 1, 34, "Subsection"],
1440Cell[13327, 420, 1598, 43, 133, "Input"]
1441}, Closed]],
1442Cell[CellGroupData[{
1443Cell[14962, 468, 111, 1, 26, "Subsection"],
1444Cell[15076, 471, 228, 3, 26, "Text"],
1445Cell[CellGroupData[{
1446Cell[15329, 478, 1514, 40, 43, "Input"],
1447Cell[16846, 520, 1199, 31, 48, "Output"]
1448}, Open  ]],
1449Cell[18060, 554, 113, 1, 26, "Text"],
1450Cell[CellGroupData[{
1451Cell[18198, 559, 184, 4, 27, "Input"],
1452Cell[18385, 565, 597, 17, 51, "Output"]
1453}, Open  ]],
1454Cell[18997, 585, 127, 1, 26, "Text"],
1455Cell[CellGroupData[{
1456Cell[19149, 590, 613, 17, 27, "Input"],
1457Cell[19765, 609, 593, 15, 39, "Output"]
1458}, Open  ]]
1459}, Closed]],
1460Cell[CellGroupData[{
1461Cell[20407, 630, 101, 1, 26, "Subsection"],
1462Cell[20511, 633, 164, 2, 26, "Text"],
1463Cell[CellGroupData[{
1464Cell[20700, 639, 835, 25, 27, "Input"],
1465Cell[21538, 666, 555, 11, 48, "Output"]
1466}, Open  ]],
1467Cell[22108, 680, 284, 5, 26, "Text"],
1468Cell[CellGroupData[{
1469Cell[22417, 689, 475, 14, 27, "Input"],
1470Cell[22895, 705, 642, 14, 48, "Output"]
1471}, Open  ]],
1472Cell[23552, 722, 262, 5, 26, "Text"],
1473Cell[CellGroupData[{
1474Cell[23839, 731, 840, 22, 27, "Input"],
1475Cell[24682, 755, 723, 17, 59, "Output"]
1476}, Open  ]],
1477Cell[25420, 775, 108, 1, 26, "Text"],
1478Cell[CellGroupData[{
1479Cell[25553, 780, 526, 13, 27, "Input"],
1480Cell[26082, 795, 568, 13, 71, "Output"]
1481}, Open  ]]
1482}, Closed]],
1483Cell[CellGroupData[{
1484Cell[26699, 814, 98, 1, 26, "Subsection"],
1485Cell[26800, 817, 146, 2, 26, "Text"],
1486Cell[CellGroupData[{
1487Cell[26971, 823, 551, 14, 27, "Input"],
1488Cell[27525, 839, 905, 22, 60, "Output"]
1489}, Open  ]]
1490}, Closed]]
1491}, Open  ]],
1492Cell[CellGroupData[{
1493Cell[28491, 868, 205, 3, 67, "Section"],
1494Cell[CellGroupData[{
1495Cell[28721, 875, 103, 1, 34, "Subsection"],
1496Cell[28827, 878, 1647, 44, 133, "Input"]
1497}, Closed]],
1498Cell[CellGroupData[{
1499Cell[30511, 927, 111, 1, 26, "Subsection"],
1500Cell[30625, 930, 228, 3, 26, "Text"],
1501Cell[CellGroupData[{
1502Cell[30878, 937, 1671, 43, 43, "Input"],
1503Cell[32552, 982, 1310, 34, 59, "Output"]
1504}, Open  ]],
1505Cell[33877, 1019, 113, 1, 26, "Text"],
1506Cell[CellGroupData[{
1507Cell[34015, 1024, 184, 4, 27, "Input"],
1508Cell[34202, 1030, 682, 19, 51, "Output"]
1509}, Open  ]],
1510Cell[34899, 1052, 127, 1, 26, "Text"],
1511Cell[CellGroupData[{
1512Cell[35051, 1057, 613, 17, 27, "Input"],
1513Cell[35667, 1076, 788, 21, 53, "Output"]
1514}, Open  ]]
1515}, Closed]],
1516Cell[CellGroupData[{
1517Cell[36504, 1103, 101, 1, 26, "Subsection"],
1518Cell[36608, 1106, 164, 2, 26, "Text"],
1519Cell[CellGroupData[{
1520Cell[36797, 1112, 962, 27, 27, "Input"],
1521Cell[37762, 1141, 605, 12, 48, "Output"]
1522}, Open  ]],
1523Cell[38382, 1156, 217, 4, 26, "Text"],
1524Cell[38602, 1162, 336, 6, 26, "Text"],
1525Cell[CellGroupData[{
1526Cell[38963, 1172, 610, 17, 27, "Input"],
1527Cell[39576, 1191, 714, 15, 48, "Output"]
1528}, Open  ]],
1529Cell[40305, 1209, 310, 5, 26, "Text"],
1530Cell[CellGroupData[{
1531Cell[40640, 1218, 890, 23, 27, "Input"],
1532Cell[41533, 1243, 796, 18, 59, "Output"]
1533}, Open  ]],
1534Cell[42344, 1264, 108, 1, 26, "Text"],
1535Cell[CellGroupData[{
1536Cell[42477, 1269, 526, 13, 27, "Input"],
1537Cell[43006, 1284, 640, 14, 71, "Output"]
1538}, Open  ]]
1539}, Closed]],
1540Cell[CellGroupData[{
1541Cell[43695, 1304, 98, 1, 26, "Subsection"],
1542Cell[43796, 1307, 146, 2, 26, "Text"],
1543Cell[CellGroupData[{
1544Cell[43967, 1313, 646, 17, 27, "Input"],
1545Cell[44616, 1332, 937, 23, 60, "Output"]
1546}, Open  ]]
1547}, Closed]]
1548}, Open  ]]
1549}, Open  ]]
1550}
1551]
1552*)
1553
1554(* End of internal cache information *)