HiggsPheno: HDecay.2.nb

File HDecay.2.nb, 49.8 KB (added by trac, 13 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 145, 7]
13NotebookDataLength[ 50813, 1545]
14NotebookOptionsPosition[ 45605, 1361]
15NotebookOutlinePosition[ 45963, 1377]
16CellTagsIndexPosition[ 45920, 1374]
17WindowFrame->Normal
18ContainsDynamic->False*)
19
20(* Beginning of Notebook Content *)
21Notebook[{
22
23Cell[CellGroupData[{
24Cell["\<\
25Tree-level decays of the Higgs boson\
26\>", "Title",
27 CellChangeTimes->{{3.42892672627883*^9, 3.428926824323577*^9}, {
28 3.428937703319875*^9, 3.428937712432496*^9}}],
29
30Cell[CellGroupData[{
31
32Cell["Input FeynCalc", "Subsection"],
33
34Cell[BoxData[
35 RowBox[{
36 RowBox[{"<<", "HighEnergyPhysics`fc`"}], ";"}]], "Input"]
37}, Open ]],
38
39Cell[CellGroupData[{
40
41Cell["H \[RightArrow] ff", "Section",
42 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}}],
43
44Cell[CellGroupData[{
45
46Cell["Kinematics 1->2", "Subsection",
47 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
48
49Cell[BoxData[
50 RowBox[{"\[IndentingNewLine]",
51 RowBox[{
52 RowBox[{
53 RowBox[{
54 RowBox[{"ScalarProduct", "[",
55 RowBox[{"P", ",", "P"}], "]"}], "=",
56 RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
57 RowBox[{
58 RowBox[{
59 RowBox[{"ScalarProduct", "[",
60 RowBox[{"p1", ",", "p1"}], "]"}], "=",
61 RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
62 RowBox[{
63 RowBox[{
64 RowBox[{"ScalarProduct", "[",
65 RowBox[{"p2", ",", "p2"}], "]"}], "=",
66 RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
67 RowBox[{
68 RowBox[{
69 RowBox[{"ScalarProduct", "[",
70 RowBox[{"P", ",", "p1"}], "]"}], "=",
71 RowBox[{
72 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
73 RowBox[{
74 RowBox[{
75 RowBox[{"ScalarProduct", "[",
76 RowBox[{"P", ",", "p2"}], "]"}], "=",
77 RowBox[{
78 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
79 RowBox[{
80 RowBox[{
81 RowBox[{"ScalarProduct", "[",
82 RowBox[{"p1", ",", "p2"}], "]"}], "=",
83 RowBox[{
84 RowBox[{
85 RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
86 RowBox[{"mf", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
87
88 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
89 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
90 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
91 3.4289384819556913`*^9, 3.428938484248788*^9}}]
92}, Closed]],
93
94Cell[CellGroupData[{
95
96Cell["Amplitude (1 diagram)", "Subsection",
97 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
98
99Cell["The summed and averaged square matrix element", "Text",
100 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
101 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
102 3.42892751343362*^9}}],
103
104Cell[CellGroupData[{
105
106Cell[BoxData[
107 RowBox[{"M2", "=",
108 RowBox[{
109 RowBox[{
110 RowBox[{
111 RowBox[{
112 RowBox[{"(",
113 RowBox[{"mf", "/", "v"}], ")"}], "^", "2"}],
114 RowBox[{"Tr", "[",
115 RowBox[{
116 RowBox[{"(",
117 RowBox[{
118 RowBox[{"GSD", "[", "p1", "]"}], "+", "mf"}], ")"}], ".",
119 RowBox[{"(",
120 RowBox[{
121 RowBox[{"GSD", "[", "p2", "]"}], "-", "mf"}], ")"}]}], "]"}]}], "//",
122 "Expand"}], "//", "Simplify"}]}]], "Input",
123 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
124 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
125 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
126 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
127 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
128 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
129 3.4289382285018063`*^9, 3.428938230286139*^9}}],
130
131Cell[BoxData[
132 FormBox[
133 FractionBox[
134 RowBox[{
135 RowBox[{"2", " ",
136 SuperscriptBox["mf", "2"], " ",
137 SuperscriptBox["mh", "2"]}], "-",
138 RowBox[{"8", " ",
139 SuperscriptBox["mf", "4"]}]}],
140 SuperscriptBox["v", "2"]], TraditionalForm]], "Output",
141 CellChangeTimes->{
142 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
143 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
144 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
145 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
146 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
147 3.428939015665769*^9}]
148}, Open ]],
149
150Cell["We insert he definition of the Fermi constant", "Text",
151 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
152
153Cell[CellGroupData[{
154
155Cell[BoxData[
156 RowBox[{"M2", "=",
157 RowBox[{"M2", "/.",
158 RowBox[{"v", "\[Rule]",
159 RowBox[{"1", "/",
160 RowBox[{"Sqrt", "[",
161 RowBox[{"Gf", " ",
162 RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}]}]], "Input",
163 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
164 3.4289381595073957`*^9, 3.4289381716760798`*^9}}],
165
166Cell[BoxData[
167 FormBox[
168 RowBox[{
169 SqrtBox["2"], " ", "Gf", " ",
170 RowBox[{"(",
171 RowBox[{
172 RowBox[{"2", " ",
173 SuperscriptBox["mf", "2"], " ",
174 SuperscriptBox["mh", "2"]}], "-",
175 RowBox[{"8", " ",
176 SuperscriptBox["mf", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
177 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
178 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
179 3.4289384978556747`*^9, 3.428939015694807*^9}]
180}, Open ]]
181}, Closed]],
182
183Cell[CellGroupData[{
184
185Cell["Phase Space", "Subsection",
186 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
187
188Cell["The two particle phase space is", "Text",
189 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
190 3.428938253498197*^9, 3.428938253866067*^9}}],
191
192Cell[CellGroupData[{
193
194Cell[BoxData[
195 RowBox[{"d\[CapitalPhi]2", "=",
196 RowBox[{
197 RowBox[{
198 RowBox[{"(",
199 RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
200 RowBox[{"\[Delta]", "[",
201 RowBox[{"P", "-", "p1", "-", "p2"}], "]"}],
202 RowBox[{
203 RowBox[{
204 RowBox[{"d3p1", "/",
205 RowBox[{
206 RowBox[{"(",
207 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
208 " ",
209 RowBox[{
210 RowBox[{
211 RowBox[{"d3p2", "/",
212 RowBox[{
213 RowBox[{"(",
214 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
215 "E2"}]}]}]], "Input",
216 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
217 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
218 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}}],
219
220Cell[BoxData[
221 FormBox[
222 FractionBox[
223 RowBox[{"d3p1", " ", "d3p2", " ",
224 RowBox[{"\[Delta]", "(",
225 RowBox[{"P", "-", "p1", "-", "p2"}], ")"}]}],
226 RowBox[{"16", " ", "E1", " ", "E2", " ",
227 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
228 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
229 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
230 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9}]
231}, Open ]],
232
233Cell["\<\
234Performing the integration over d3p2 in the rest frame of the H gives\
235\>", "Text",
236 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
237 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
238 3.428938248774928*^9}}],
239
240Cell[CellGroupData[{
241
242Cell[BoxData[
243 RowBox[{"PS", "=",
244 RowBox[{
245 RowBox[{
246 RowBox[{"1", "/", "4"}], "/",
247 RowBox[{
248 RowBox[{"(",
249 RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
250 RowBox[{"\[Delta]", "[",
251 RowBox[{"mh", "-",
252 RowBox[{"2", "E1"}]}], "]"}],
253 RowBox[{"d3p1", "/",
254 RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
255 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
256 3.42893825962851*^9, 3.42893826484441*^9}}],
257
258Cell[BoxData[
259 FormBox[
260 FractionBox[
261 RowBox[{"d3p1", " ",
262 RowBox[{"\[Delta]", "(",
263 RowBox[{"mh", "-",
264 RowBox[{"2", " ", "E1"}]}], ")"}]}],
265 RowBox[{"16", " ",
266 SuperscriptBox["E1", "2"], " ",
267 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
268 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
269 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
270 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
271 3.4289386914875193`*^9, 3.4289390157737207`*^9}]
272}, Open ]],
273
274Cell["\<\
275Going to spherical coordinates, and usging p1 dp1 = E1 dE1, we get\
276\>", "Text",
277 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
278 3.4289382922025423`*^9, 3.428938296218473*^9}}],
279
280Cell[CellGroupData[{
281
282Cell[BoxData[
283 RowBox[{"PS", "=",
284 RowBox[{
285 RowBox[{"PS", "/.",
286 RowBox[{
287 RowBox[{"\[Delta]", "[",
288 RowBox[{"mh", "-",
289 RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
290 RowBox[{
291 RowBox[{"1", "/", "2"}],
292 RowBox[{"\[Delta]", "[",
293 RowBox[{"E1", "-",
294 RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
295 RowBox[{"d3p1", "\[Rule]",
296 RowBox[{"4", "Pi", " ",
297 RowBox[{"Sqrt", "[",
298 RowBox[{
299 RowBox[{"E1", "^", "2"}], "-",
300 RowBox[{"mf", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
301 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
302 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
303 3.428938584824209*^9, 3.428938599062233*^9}}],
304
305Cell[BoxData[
306 FormBox[
307 FractionBox[
308 RowBox[{"dE1", " ",
309 SqrtBox[
310 RowBox[{
311 SuperscriptBox["E1", "2"], "-",
312 SuperscriptBox["mf", "2"]}]], " ",
313 RowBox[{"\[Delta]", "(",
314 RowBox[{"E1", "-",
315 FractionBox["mh", "2"]}], ")"}]}],
316 RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
317 CellChangeTimes->{
318 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
319 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
320 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
321 3.428938692218741*^9}, 3.4289390158068933`*^9}]
322}, Open ]],
323
324Cell["Performing the integration", "Text",
325 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
326
327Cell[CellGroupData[{
328
329Cell[BoxData[
330 RowBox[{"PS", "=",
331 RowBox[{
332 RowBox[{"PS", "/.",
333 RowBox[{
334 RowBox[{"dE1", " ",
335 RowBox[{"\[Delta]", "[",
336 RowBox[{"E1", "-",
337 RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
338 RowBox[{"E1", "\[Rule]",
339 RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
340 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
341 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
342 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
343
344Cell[BoxData[
345 FormBox[
346 FractionBox[
347 SqrtBox[
348 RowBox[{
349 FractionBox[
350 SuperscriptBox["mh", "2"], "4"], "-",
351 SuperscriptBox["mf", "2"]}]],
352 RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
353 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
354 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
355 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
356 3.428938694746279*^9}, 3.42893901583956*^9}]
357}, Open ]]
358}, Closed]],
359
360Cell[CellGroupData[{
361
362Cell["Result", "Subsection",
363 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
364
365Cell["The decay rate of the H then becomes", "Text",
366 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
367 3.4289383237898083`*^9}],
368
369Cell[CellGroupData[{
370
371Cell[BoxData[
372 RowBox[{"\[CapitalGamma]", "=",
373 RowBox[{
374 RowBox[{
375 RowBox[{
376 RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "//",
377 "Simplify"}]}]], "Input",
378 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
379 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
380 3.42893864433534*^9, 3.4289389462936773`*^9}],
381
382Cell[BoxData[
383 FormBox[
384 FractionBox[
385 RowBox[{"Gf", " ",
386 SqrtBox[
387 RowBox[{
388 SuperscriptBox["mh", "2"], "-",
389 RowBox[{"4", " ",
390 SuperscriptBox["mf", "2"]}]}]], " ",
391 RowBox[{"(",
392 RowBox[{
393 RowBox[{
394 SuperscriptBox["mf", "2"], " ",
395 SuperscriptBox["mh", "2"]}], "-",
396 RowBox[{"4", " ",
397 SuperscriptBox["mf", "4"]}]}], ")"}]}],
398 RowBox[{"4", " ",
399 SqrtBox["2"], " ",
400 SuperscriptBox["mh", "2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
401 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
402 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
403 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
404 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
405 3.42893901589124*^9}]
406}, Open ]]
407}, Closed]]
408}, Open ]],
409
410Cell[CellGroupData[{
411
412Cell["H \[RightArrow] WW", "Section",
413 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
414 3.428939028678343*^9, 3.428939029987813*^9}}],
415
416Cell[CellGroupData[{
417
418Cell["Kinematics 1->2", "Subsection",
419 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
420
421Cell[BoxData[
422 RowBox[{"\[IndentingNewLine]",
423 RowBox[{
424 RowBox[{
425 RowBox[{
426 RowBox[{"ScalarProduct", "[",
427 RowBox[{"P", ",", "P"}], "]"}], "=",
428 RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
429 RowBox[{
430 RowBox[{
431 RowBox[{"ScalarProduct", "[",
432 RowBox[{"pw1", ",", "pw1"}], "]"}], "=",
433 RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
434 RowBox[{
435 RowBox[{
436 RowBox[{"ScalarProduct", "[",
437 RowBox[{"pw2", ",", "pw2"}], "]"}], "=",
438 RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
439 RowBox[{
440 RowBox[{
441 RowBox[{"ScalarProduct", "[",
442 RowBox[{"P", ",", "pw1"}], "]"}], "=",
443 RowBox[{
444 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
445 RowBox[{
446 RowBox[{
447 RowBox[{"ScalarProduct", "[",
448 RowBox[{"P", ",", "pw2"}], "]"}], "=",
449 RowBox[{
450 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
451 RowBox[{
452 RowBox[{
453 RowBox[{"ScalarProduct", "[",
454 RowBox[{"pw1", ",", "pw2"}], "]"}], "=",
455 RowBox[{
456 RowBox[{
457 RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
458 RowBox[{"mw", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
459
460 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
461 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
462 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
463 3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
464 3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}}]
465}, Closed]],
466
467Cell[CellGroupData[{
468
469Cell["Amplitude (1 diagram)", "Subsection",
470 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
471
472Cell["The summed and averaged square matrix element", "Text",
473 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
474 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
475 3.42892751343362*^9}}],
476
477Cell[CellGroupData[{
478
479Cell[BoxData[
480 RowBox[{"M2", "=",
481 RowBox[{
482 RowBox[{
483 RowBox[{"(",
484 RowBox[{"v", " ",
485 RowBox[{
486 RowBox[{"gw", "^", "2"}], "/", "2"}]}], ")"}], "^", "2"}],
487 RowBox[{"(",
488 RowBox[{
489 RowBox[{"-",
490 RowBox[{"MetricTensor", "[",
491 RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
492 RowBox[{
493 RowBox[{"FV", "[",
494 RowBox[{"pw1", ",", "mu"}], "]"}],
495 RowBox[{
496 RowBox[{"FV", "[",
497 RowBox[{"pw1", ",", "nu"}], "]"}], "/",
498 RowBox[{"mw", "^", "2"}]}]}]}], ")"}],
499 RowBox[{"(",
500 RowBox[{
501 RowBox[{"-",
502 RowBox[{"MetricTensor", "[",
503 RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
504 RowBox[{
505 RowBox[{"FV", "[",
506 RowBox[{"pw2", ",", "mu"}], "]"}],
507 RowBox[{
508 RowBox[{"FV", "[",
509 RowBox[{"pw2", ",", "nu"}], "]"}], "/",
510 RowBox[{"mw", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
511 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
512 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
513 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
514 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
515 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
516 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
517 3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
518 3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
519 3.428939614471209*^9}],
520
521Cell[BoxData[
522 FormBox[
523 RowBox[{
524 FractionBox["1", "4"], " ",
525 SuperscriptBox["gw", "4"], " ",
526 SuperscriptBox["v", "2"], " ",
527 RowBox[{"(",
528 RowBox[{
529 FractionBox[
530 RowBox[{
531 SuperscriptBox["pw1", "mu"], " ",
532 SuperscriptBox["pw1", "nu"]}],
533 SuperscriptBox["mw", "2"]], "-",
534 SuperscriptBox["g",
535 RowBox[{"mu", "nu"}]]}], ")"}], " ",
536 RowBox[{"(",
537 RowBox[{
538 FractionBox[
539 RowBox[{
540 SuperscriptBox["pw2", "mu"], " ",
541 SuperscriptBox["pw2", "nu"]}],
542 SuperscriptBox["mw", "2"]], "-",
543 SuperscriptBox["g",
544 RowBox[{"mu", "nu"}]]}], ")"}]}], TraditionalForm]], "Output",
545 CellChangeTimes->{
546 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
547 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
548 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
549 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
550 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
551 3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
552 3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9}}]
553}, Open ]],
554
555Cell["We constrat the Lorentz indices", "Text",
556 CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
557
558Cell[CellGroupData[{
559
560Cell[BoxData[
561 RowBox[{"M2", "=",
562 RowBox[{
563 RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
564 CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
565
566Cell[BoxData[
567 FormBox[
568 FractionBox[
569 RowBox[{
570 SuperscriptBox["gw", "4"], " ",
571 RowBox[{"(",
572 RowBox[{
573 SuperscriptBox["mh", "4"], "-",
574 RowBox[{"4", " ",
575 SuperscriptBox["mw", "2"], " ",
576 SuperscriptBox["mh", "2"]}], "+",
577 RowBox[{"12", " ",
578 SuperscriptBox["mw", "4"]}]}], ")"}], " ",
579 SuperscriptBox["v", "2"]}],
580 RowBox[{"16", " ",
581 SuperscriptBox["mw", "4"]}]], TraditionalForm]], "Output",
582 CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
583 3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9}]
584}, Open ]],
585
586Cell["We insert he definition of the Fermi constant", "Text",
587 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
588
589Cell[CellGroupData[{
590
591Cell[BoxData[
592 RowBox[{"M2", "=",
593 RowBox[{
594 RowBox[{"M2", "/.",
595 RowBox[{"v", "\[Rule]",
596 RowBox[{"1", "/",
597 RowBox[{"Sqrt", "[",
598 RowBox[{"Gf", " ",
599 RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
600 RowBox[{"gw", "\[Rule]",
601 RowBox[{"Sqrt", "[",
602 RowBox[{"Gf", " ", "8",
603 RowBox[{
604 RowBox[{"mw", "^", "2"}], "/",
605 RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
606 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
607 3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
608 3.428939216735014*^9}}],
609
610Cell[BoxData[
611 FormBox[
612 RowBox[{
613 SqrtBox["2"], " ", "Gf", " ",
614 RowBox[{"(",
615 RowBox[{
616 SuperscriptBox["mh", "4"], "-",
617 RowBox[{"4", " ",
618 SuperscriptBox["mw", "2"], " ",
619 SuperscriptBox["mh", "2"]}], "+",
620 RowBox[{"12", " ",
621 SuperscriptBox["mw", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
622 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
623 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
624 3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
625 3.428939398074815*^9, 3.428939621035542*^9}]
626}, Open ]]
627}, Closed]],
628
629Cell[CellGroupData[{
630
631Cell["Phase Space", "Subsection",
632 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
633
634Cell["The two particle phase space is", "Text",
635 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
636 3.428938253498197*^9, 3.428938253866067*^9}}],
637
638Cell[CellGroupData[{
639
640Cell[BoxData[
641 RowBox[{"d\[CapitalPhi]2", "=",
642 RowBox[{
643 RowBox[{
644 RowBox[{"(",
645 RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
646 RowBox[{"\[Delta]", "[",
647 RowBox[{"P", "-", "pw1", "-", "pw2"}], "]"}],
648 RowBox[{
649 RowBox[{
650 RowBox[{"d3pw1", "/",
651 RowBox[{
652 RowBox[{"(",
653 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
654 " ",
655 RowBox[{
656 RowBox[{
657 RowBox[{"d3pw2", "/",
658 RowBox[{
659 RowBox[{"(",
660 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
661 "E2"}]}]}]], "Input",
662 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
663 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
664 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
665 3.428939402360241*^9, 3.428939407583867*^9}}],
666
667Cell[BoxData[
668 FormBox[
669 FractionBox[
670 RowBox[{"d3pw1", " ", "d3pw2", " ",
671 RowBox[{"\[Delta]", "(",
672 RowBox[{"P", "-", "pw1", "-", "pw2"}], ")"}]}],
673 RowBox[{"16", " ", "E1", " ", "E2", " ",
674 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
675 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
676 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
677 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
678 3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9}]
679}, Open ]],
680
681Cell["\<\
682Performing the integration over d3pw2 in the rest frame of the H gives\
683\>", "Text",
684 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
685 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
686 3.428938248774928*^9}, 3.428939418781519*^9}],
687
688Cell[CellGroupData[{
689
690Cell[BoxData[
691 RowBox[{"PS", "=",
692 RowBox[{
693 RowBox[{
694 RowBox[{"1", "/", "4"}], "/",
695 RowBox[{
696 RowBox[{"(",
697 RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
698 RowBox[{"\[Delta]", "[",
699 RowBox[{"mh", "-",
700 RowBox[{"2", "E1"}]}], "]"}],
701 RowBox[{"d3pw1", "/",
702 RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
703 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
704 3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9}],
705
706Cell[BoxData[
707 FormBox[
708 FractionBox[
709 RowBox[{"d3pw1", " ",
710 RowBox[{"\[Delta]", "(",
711 RowBox[{"mh", "-",
712 RowBox[{"2", " ", "E1"}]}], ")"}]}],
713 RowBox[{"16", " ",
714 SuperscriptBox["E1", "2"], " ",
715 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
716 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
717 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
718 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
719 3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
720 3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9}]
721}, Open ]],
722
723Cell["\<\
724Going to spherical coordinates, and usging pw1 dpw1 = E1 dE1, we get\
725\>", "Text",
726 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
727 3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
728 3.4289394222210503`*^9}}],
729
730Cell[CellGroupData[{
731
732Cell[BoxData[
733 RowBox[{"PS", "=",
734 RowBox[{
735 RowBox[{"PS", "/.",
736 RowBox[{
737 RowBox[{"\[Delta]", "[",
738 RowBox[{"mh", "-",
739 RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
740 RowBox[{
741 RowBox[{"1", "/", "2"}],
742 RowBox[{"\[Delta]", "[",
743 RowBox[{"E1", "-",
744 RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
745 RowBox[{"d3pw1", "\[Rule]",
746 RowBox[{"4", "Pi", " ",
747 RowBox[{"Sqrt", "[",
748 RowBox[{
749 RowBox[{"E1", "^", "2"}], "-",
750 RowBox[{"mw", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
751 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
752 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
753 3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
754 3.4289392398953457`*^9}, 3.428939430416103*^9}],
755
756Cell[BoxData[
757 FormBox[
758 FractionBox[
759 RowBox[{"dE1", " ",
760 SqrtBox[
761 RowBox[{
762 SuperscriptBox["E1", "2"], "-",
763 SuperscriptBox["mw", "2"]}]], " ",
764 RowBox[{"\[Delta]", "(",
765 RowBox[{"E1", "-",
766 FractionBox["mh", "2"]}], ")"}]}],
767 RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
768 CellChangeTimes->{
769 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
770 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
771 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
772 3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
773 3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9}]
774}, Open ]],
775
776Cell["Performing the integration", "Text",
777 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
778
779Cell[CellGroupData[{
780
781Cell[BoxData[
782 RowBox[{"PS", "=",
783 RowBox[{
784 RowBox[{"PS", "/.",
785 RowBox[{
786 RowBox[{"dE1", " ",
787 RowBox[{"\[Delta]", "[",
788 RowBox[{"E1", "-",
789 RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
790 RowBox[{"E1", "\[Rule]",
791 RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
792 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
793 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
794 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
795
796Cell[BoxData[
797 FormBox[
798 FractionBox[
799 SqrtBox[
800 RowBox[{
801 FractionBox[
802 SuperscriptBox["mh", "2"], "4"], "-",
803 SuperscriptBox["mw", "2"]}]],
804 RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
805 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
806 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
807 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
808 3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
809 3.4289394342927837`*^9, 3.428939625835762*^9}]
810}, Open ]]
811}, Closed]],
812
813Cell[CellGroupData[{
814
815Cell["Result", "Subsection",
816 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
817
818Cell["The decay rate of the H then becomes", "Text",
819 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
820 3.4289383237898083`*^9}],
821
822Cell[CellGroupData[{
823
824Cell[BoxData[
825 RowBox[{"\[CapitalGamma]", "=",
826 RowBox[{
827 RowBox[{
828 RowBox[{
829 RowBox[{
830 RowBox[{
831 RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
832 RowBox[{"mw", "\[Rule]",
833 RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
834 "PowerExpand"}]}]], "Input",
835 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
836 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
837 3.42893864433534*^9, 3.4289389462936773`*^9, {3.428939734911998*^9,
838 3.428939761347455*^9}}],
839
840Cell[BoxData[
841 FormBox[
842 FractionBox[
843 RowBox[{"Gf", " ",
844 SuperscriptBox["mh", "3"], " ",
845 SqrtBox[
846 RowBox[{"1", "-",
847 RowBox[{"4", " ",
848 SuperscriptBox["x", "2"]}]}]], " ",
849 RowBox[{"(",
850 RowBox[{
851 RowBox[{"12", " ",
852 SuperscriptBox["x", "4"]}], "-",
853 RowBox[{"4", " ",
854 SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
855 RowBox[{"8", " ",
856 SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
857 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
858 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
859 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
860 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
861 3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
862 3.4289396272755547`*^9, {3.42893974381048*^9, 3.428939762040904*^9}}]
863}, Open ]]
864}, Closed]]
865}, Open ]],
866
867Cell[CellGroupData[{
868
869Cell["H \[RightArrow] ZZ", "Section",
870 CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
871 3.428939028678343*^9, 3.428939029987813*^9}, {3.428939649559754*^9,
872 3.4289396513572483`*^9}}],
873
874Cell[CellGroupData[{
875
876Cell["Kinematics 1->2", "Subsection",
877 CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
878
879Cell[BoxData[
880 RowBox[{"\[IndentingNewLine]",
881 RowBox[{
882 RowBox[{
883 RowBox[{
884 RowBox[{"ScalarProduct", "[",
885 RowBox[{"P", ",", "P"}], "]"}], "=",
886 RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
887 RowBox[{
888 RowBox[{
889 RowBox[{"ScalarProduct", "[",
890 RowBox[{"pz1", ",", "pz1"}], "]"}], "=",
891 RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
892 RowBox[{
893 RowBox[{
894 RowBox[{"ScalarProduct", "[",
895 RowBox[{"pz2", ",", "pz2"}], "]"}], "=",
896 RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
897 RowBox[{
898 RowBox[{
899 RowBox[{"ScalarProduct", "[",
900 RowBox[{"P", ",", "pz1"}], "]"}], "=",
901 RowBox[{
902 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
903 RowBox[{
904 RowBox[{
905 RowBox[{"ScalarProduct", "[",
906 RowBox[{"P", ",", "pz2"}], "]"}], "=",
907 RowBox[{
908 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
909 RowBox[{
910 RowBox[{
911 RowBox[{"ScalarProduct", "[",
912 RowBox[{"pz1", ",", "pz2"}], "]"}], "=",
913 RowBox[{
914 RowBox[{
915 RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
916 RowBox[{"mz", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
917
918 CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
919 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
920 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
921 3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
922 3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}, {
923 3.428939657707238*^9, 3.428939671283299*^9}}]
924}, Closed]],
925
926Cell[CellGroupData[{
927
928Cell["Amplitude (1 diagram)", "Subsection",
929 CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
930
931Cell["The summed and averaged square matrix element", "Text",
932 CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
933 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
934 3.42892751343362*^9}}],
935
936Cell[CellGroupData[{
937
938Cell[BoxData[
939 RowBox[{"M2", "=",
940 RowBox[{
941 RowBox[{
942 RowBox[{"(",
943 RowBox[{"v", " ",
944 RowBox[{
945 RowBox[{
946 RowBox[{"gw", "^", "2"}], "/", "2"}], "/",
947 RowBox[{"cw", "^", "2"}]}]}], ")"}], "^", "2"}],
948 RowBox[{"(",
949 RowBox[{
950 RowBox[{"-",
951 RowBox[{"MetricTensor", "[",
952 RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
953 RowBox[{
954 RowBox[{"FV", "[",
955 RowBox[{"pz1", ",", "mu"}], "]"}],
956 RowBox[{
957 RowBox[{"FV", "[",
958 RowBox[{"pz1", ",", "nu"}], "]"}], "/",
959 RowBox[{"mz", "^", "2"}]}]}]}], ")"}],
960 RowBox[{"(",
961 RowBox[{
962 RowBox[{"-",
963 RowBox[{"MetricTensor", "[",
964 RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
965 RowBox[{
966 RowBox[{"FV", "[",
967 RowBox[{"pz2", ",", "mu"}], "]"}],
968 RowBox[{
969 RowBox[{"FV", "[",
970 RowBox[{"pz2", ",", "nu"}], "]"}], "/",
971 RowBox[{"mz", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
972 CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
973 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
974 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
975 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
976 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
977 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
978 3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
979 3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
980 3.428939614471209*^9, {3.4289396974209337`*^9, 3.428939729732409*^9}, {
981 3.42893977829564*^9, 3.4289397787246437`*^9}}],
982
983Cell[BoxData[
984 FormBox[
985 FractionBox[
986 RowBox[{
987 SuperscriptBox["gw", "4"], " ",
988 SuperscriptBox["v", "2"], " ",
989 RowBox[{"(",
990 RowBox[{
991 FractionBox[
992 RowBox[{
993 SuperscriptBox["pz1", "mu"], " ",
994 SuperscriptBox["pz1", "nu"]}],
995 SuperscriptBox["mz", "2"]], "-",
996 SuperscriptBox["g",
997 RowBox[{"mu", "nu"}]]}], ")"}], " ",
998 RowBox[{"(",
999 RowBox[{
1000 FractionBox[
1001 RowBox[{
1002 SuperscriptBox["pz2", "mu"], " ",
1003 SuperscriptBox["pz2", "nu"]}],
1004 SuperscriptBox["mz", "2"]], "-",
1005 SuperscriptBox["g",
1006 RowBox[{"mu", "nu"}]]}], ")"}]}],
1007 RowBox[{"4", " ",
1008 SuperscriptBox["cw", "4"]}]], TraditionalForm]], "Output",
1009 CellChangeTimes->{
1010 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
1011 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
1012 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
1013 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
1014 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
1015 3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
1016 3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9},
1017 3.428939778926634*^9, 3.4289398622949247`*^9}]
1018}, Open ]],
1019
1020Cell["We constrat the Lorentz indices", "Text",
1021 CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
1022
1023Cell[CellGroupData[{
1024
1025Cell[BoxData[
1026 RowBox[{"M2", "=",
1027 RowBox[{
1028 RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
1029 CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
1030
1031Cell[BoxData[
1032 FormBox[
1033 FractionBox[
1034 RowBox[{
1035 SuperscriptBox["gw", "4"], " ",
1036 RowBox[{"(",
1037 RowBox[{
1038 SuperscriptBox["mh", "4"], "-",
1039 RowBox[{"4", " ",
1040 SuperscriptBox["mz", "2"], " ",
1041 SuperscriptBox["mh", "2"]}], "+",
1042 RowBox[{"12", " ",
1043 SuperscriptBox["mz", "4"]}]}], ")"}], " ",
1044 SuperscriptBox["v", "2"]}],
1045 RowBox[{"16", " ",
1046 SuperscriptBox["cw", "4"], " ",
1047 SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
1048 CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
1049 3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9,
1050 3.428939782429967*^9, 3.428939869387093*^9}]
1051}, Open ]],
1052
1053Cell["We insert he definition of the Fermi constant", "Text",
1054 CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
1055
1056Cell[CellGroupData[{
1057
1058Cell[BoxData[
1059 RowBox[{"M2", "=",
1060 RowBox[{
1061 RowBox[{"M2", "/.",
1062 RowBox[{"v", "\[Rule]",
1063 RowBox[{"1", "/",
1064 RowBox[{"Sqrt", "[",
1065 RowBox[{"Gf", " ",
1066 RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
1067 RowBox[{"gw", "\[Rule]",
1068 RowBox[{"Sqrt", "[",
1069 RowBox[{"Gf", " ", "8",
1070 RowBox[{
1071 RowBox[{"mw", "^", "2"}], "/",
1072 RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
1073 CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
1074 3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
1075 3.428939216735014*^9}}],
1076
1077Cell[BoxData[
1078 FormBox[
1079 FractionBox[
1080 RowBox[{
1081 SqrtBox["2"], " ", "Gf", " ",
1082 SuperscriptBox["mw", "4"], " ",
1083 RowBox[{"(",
1084 RowBox[{
1085 SuperscriptBox["mh", "4"], "-",
1086 RowBox[{"4", " ",
1087 SuperscriptBox["mz", "2"], " ",
1088 SuperscriptBox["mh", "2"]}], "+",
1089 RowBox[{"12", " ",
1090 SuperscriptBox["mz", "4"]}]}], ")"}]}],
1091 RowBox[{
1092 SuperscriptBox["cw", "4"], " ",
1093 SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
1094 CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
1095 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
1096 3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
1097 3.428939398074815*^9, 3.428939621035542*^9, 3.428939786171034*^9,
1098 3.4289398708976583`*^9}]
1099}, Open ]]
1100}, Closed]],
1101
1102Cell[CellGroupData[{
1103
1104Cell["Phase Space", "Subsection",
1105 CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
1106
1107Cell["The two particle phase space is", "Text",
1108 CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
1109 3.428938253498197*^9, 3.428938253866067*^9}}],
1110
1111Cell[CellGroupData[{
1112
1113Cell[BoxData[
1114 RowBox[{"d\[CapitalPhi]2", "=",
1115 RowBox[{
1116 RowBox[{"1", "/", "2"}],
1117 RowBox[{
1118 RowBox[{"(",
1119 RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
1120 RowBox[{"\[Delta]", "[",
1121 RowBox[{"P", "-", "pz1", "-", "pz2"}], "]"}],
1122 RowBox[{
1123 RowBox[{
1124 RowBox[{"d3pz1", "/",
1125 RowBox[{
1126 RowBox[{"(",
1127 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
1128 " ",
1129 RowBox[{
1130 RowBox[{
1131 RowBox[{"d3pz2", "/",
1132 RowBox[{
1133 RowBox[{"(",
1134 RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
1135 "E2"}]}]}]], "Input",
1136 CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
1137 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
1138 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
1139 3.428939402360241*^9, 3.428939407583867*^9}, {3.4289397947484217`*^9,
1140 3.4289398003366203`*^9}, {3.42893988381181*^9, 3.428939884041622*^9}}],
1141
1142Cell[BoxData[
1143 FormBox[
1144 FractionBox[
1145 RowBox[{"d3pz1", " ", "d3pz2", " ",
1146 RowBox[{"\[Delta]", "(",
1147 RowBox[{"P", "-", "pz1", "-", "pz2"}], ")"}]}],
1148 RowBox[{"16", " ", "E1", " ", "E2", " ",
1149 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
1150 CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
1151 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
1152 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
1153 3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9,
1154 3.428939802399288*^9, 3.4289398723729563`*^9}]
1155}, Open ]],
1156
1157Cell["\<\
1158Notice the additional factor 1/2 in the phase spac, coming form the fact that \
1159we have identical particles in the final state.\
1160\>", "Text",
1161 CellChangeTimes->{{3.428939885985323*^9, 3.428939907485496*^9}}],
1162
1163Cell["\<\
1164Performing the integration over d3pz2 in the rest frame of the H gives\
1165\>", "Text",
1166 CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
1167 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
1168 3.428938248774928*^9}, 3.428939418781519*^9, {3.428939816157881*^9,
1169 3.4289398163019114`*^9}}],
1170
1171Cell[CellGroupData[{
1172
1173Cell[BoxData[
1174 RowBox[{"PS", "=",
1175 RowBox[{
1176 RowBox[{"1", "/", "2"}], " ",
1177 RowBox[{
1178 RowBox[{"1", "/", "4"}], "/",
1179 RowBox[{
1180 RowBox[{"(",
1181 RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
1182 RowBox[{"\[Delta]", "[",
1183 RowBox[{"mh", "-",
1184 RowBox[{"2", "E1"}]}], "]"}],
1185 RowBox[{"d3pz1", "/",
1186 RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
1187 CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
1188 3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9, {
1189 3.4289398057924757`*^9, 3.42893980595168*^9}, {3.428939917120672*^9,
1190 3.428939918020076*^9}}],
1191
1192Cell[BoxData[
1193 FormBox[
1194 FractionBox[
1195 RowBox[{"d3pz1", " ",
1196 RowBox[{"\[Delta]", "(",
1197 RowBox[{"mh", "-",
1198 RowBox[{"2", " ", "E1"}]}], ")"}]}],
1199 RowBox[{"32", " ",
1200 SuperscriptBox["E1", "2"], " ",
1201 SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
1202 CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
1203 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
1204 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
1205 3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
1206 3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9,
1207 3.4289398062227793`*^9, 3.428939873429842*^9, 3.428939918388637*^9}]
1208}, Open ]],
1209
1210Cell["\<\
1211Going to spherical coordinates, and usging pz1 dpz1 = E1 dE1, we get\
1212\>", "Text",
1213 CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
1214 3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
1215 3.4289394222210503`*^9}, {3.428939811789967*^9, 3.4289398135420017`*^9}}],
1216
1217Cell[CellGroupData[{
1218
1219Cell[BoxData[
1220 RowBox[{"PS", "=",
1221 RowBox[{
1222 RowBox[{"PS", "/.",
1223 RowBox[{
1224 RowBox[{"\[Delta]", "[",
1225 RowBox[{"mh", "-",
1226 RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
1227 RowBox[{
1228 RowBox[{"1", "/", "2"}],
1229 RowBox[{"\[Delta]", "[",
1230 RowBox[{"E1", "-",
1231 RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
1232 RowBox[{"d3pz1", "\[Rule]",
1233 RowBox[{"4", "Pi", " ",
1234 RowBox[{"Sqrt", "[",
1235 RowBox[{
1236 RowBox[{"E1", "^", "2"}], "-",
1237 RowBox[{"mz", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
1238 CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
1239 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
1240 3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
1241 3.4289392398953457`*^9}, 3.428939430416103*^9, {3.428939810323925*^9,
1242 3.428939819169014*^9}}],
1243
1244Cell[BoxData[
1245 FormBox[
1246 FractionBox[
1247 RowBox[{"dE1", " ",
1248 SqrtBox[
1249 RowBox[{
1250 SuperscriptBox["E1", "2"], "-",
1251 SuperscriptBox["mz", "2"]}]], " ",
1252 RowBox[{"\[Delta]", "(",
1253 RowBox[{"E1", "-",
1254 FractionBox["mh", "2"]}], ")"}]}],
1255 RowBox[{"16", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1256 CellChangeTimes->{
1257 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
1258 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
1259 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
1260 3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
1261 3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9,
1262 3.4289398195382347`*^9, 3.428939874626782*^9, 3.428939921689764*^9}]
1263}, Open ]],
1264
1265Cell["Performing the integration", "Text",
1266 CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
1267
1268Cell[CellGroupData[{
1269
1270Cell[BoxData[
1271 RowBox[{"PS", "=",
1272 RowBox[{
1273 RowBox[{"PS", "/.",
1274 RowBox[{
1275 RowBox[{"dE1", " ",
1276 RowBox[{"\[Delta]", "[",
1277 RowBox[{"E1", "-",
1278 RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
1279 RowBox[{"E1", "\[Rule]",
1280 RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
1281 CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
1282 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
1283 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
1284
1285Cell[BoxData[
1286 FormBox[
1287 FractionBox[
1288 SqrtBox[
1289 RowBox[{
1290 FractionBox[
1291 SuperscriptBox["mh", "2"], "4"], "-",
1292 SuperscriptBox["mz", "2"]}]],
1293 RowBox[{"8", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1294 CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
1295 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
1296 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
1297 3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
1298 3.4289394342927837`*^9, 3.428939625835762*^9, 3.428939823598246*^9,
1299 3.428939875651293*^9, 3.4289399228618383`*^9}]
1300}, Open ]]
1301}, Closed]],
1302
1303Cell[CellGroupData[{
1304
1305Cell["Result", "Subsection",
1306 CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
1307
1308Cell["The decay rate of the H then becomes", "Text",
1309 CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
1310 3.4289383237898083`*^9}],
1311
1312Cell[CellGroupData[{
1313
1314Cell[BoxData[
1315 RowBox[{"\[CapitalGamma]", "=",
1316 RowBox[{
1317 RowBox[{
1318 RowBox[{
1319 RowBox[{
1320 RowBox[{
1321 RowBox[{
1322 RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
1323 RowBox[{"mw", "\[Rule]",
1324 RowBox[{"mz", " ", "cw"}]}]}], "/.",
1325 RowBox[{"mz", "\[Rule]",
1326 RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
1327 "PowerExpand"}]}]], "Input",
1328 CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
1329 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
1330 3.42893864433534*^9, 3.4289389462936773`*^9, {3.42893982964193*^9,
1331 3.4289398502038717`*^9}}],
1332
1333Cell[BoxData[
1334 FormBox[
1335 FractionBox[
1336 RowBox[{"Gf", " ",
1337 SuperscriptBox["mh", "3"], " ",
1338 SqrtBox[
1339 RowBox[{"1", "-",
1340 RowBox[{"4", " ",
1341 SuperscriptBox["x", "2"]}]}]], " ",
1342 RowBox[{"(",
1343 RowBox[{
1344 RowBox[{"12", " ",
1345 SuperscriptBox["x", "4"]}], "-",
1346 RowBox[{"4", " ",
1347 SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
1348 RowBox[{"16", " ",
1349 SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
1350 CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
1351 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
1352 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
1353 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
1354 3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
1355 3.4289396272755547`*^9, {3.4289398454713497`*^9, 3.4289398770178833`*^9},
1356 3.428939924241026*^9}]
1357}, Open ]]
1358}, Closed]]
1359}, Open ]]
1360}, Open ]]
1361},
1362WindowSize->{710, 706},
1363WindowMargins->{{Automatic, 230}, {Automatic, 4}},
1364ShowSelection->True,
1365FrontEndVersion->"6.0 for Mac OS X x86 (32-bit) (April 20, 2007)",
1366StyleDefinitions->"Default.nb"
1367]
1368(* End of Notebook Content *)
1369
1370(* Internal cache information *)
1371(*CellTagsOutline
1372CellTagsIndex->{}
1373*)
1374(*CellTagsIndex
1375CellTagsIndex->{}
1376*)
1377(*NotebookFileOutline
1378Notebook[{
1379Cell[CellGroupData[{
1380Cell[590, 23, 175, 4, 76, "Title"],
1381Cell[CellGroupData[{
1382Cell[790, 31, 36, 0, 34, "Subsection"],
1383Cell[829, 33, 83, 2, 27, "Input"]
1384}, Open ]],
1385Cell[CellGroupData[{
1386Cell[949, 40, 105, 1, 67, "Section"],
1387Cell[CellGroupData[{
1388Cell[1079, 45, 103, 1, 34, "Subsection"],
1389Cell[1185, 48, 1494, 42, 133, "Input"]
1390}, Closed]],
1391Cell[CellGroupData[{
1392Cell[2716, 95, 111, 1, 26, "Subsection"],
1393Cell[2830, 98, 228, 3, 26, "Text"],
1394Cell[CellGroupData[{
1395Cell[3083, 105, 955, 23, 27, "Input"],
1396Cell[4041, 130, 682, 16, 70, "Output"]
1397}, Open ]],
1398Cell[4738, 149, 127, 1, 26, "Text"],
1399Cell[CellGroupData[{
1400Cell[4890, 154, 346, 9, 27, "Input"],
1401Cell[5239, 165, 485, 13, 70, "Output"]
1402}, Open ]]
1403}, Closed]],
1404Cell[CellGroupData[{
1405Cell[5773, 184, 101, 1, 26, "Subsection"],
1406Cell[5877, 187, 164, 2, 26, "Text"],
1407Cell[CellGroupData[{
1408Cell[6066, 193, 782, 24, 27, "Input"],
1409Cell[6851, 219, 479, 10, 70, "Output"]
1410}, Open ]],
1411Cell[7345, 232, 259, 5, 26, "Text"],
1412Cell[CellGroupData[{
1413Cell[7629, 241, 451, 14, 27, "Input"],
1414Cell[8083, 257, 547, 13, 70, "Output"]
1415}, Open ]],
1416Cell[8645, 273, 209, 4, 26, "Text"],
1417Cell[CellGroupData[{
1418Cell[8879, 281, 765, 21, 27, "Input"],
1419Cell[9647, 304, 627, 16, 70, "Output"]
1420}, Open ]],
1421Cell[10289, 323, 108, 1, 26, "Text"],
1422Cell[CellGroupData[{
1423Cell[10422, 328, 526, 13, 27, "Input"],
1424Cell[10951, 343, 496, 12, 70, "Output"]
1425}, Open ]]
1426}, Closed]],
1427Cell[CellGroupData[{
1428Cell[11496, 361, 98, 1, 26, "Subsection"],
1429Cell[11597, 364, 146, 2, 26, "Text"],
1430Cell[CellGroupData[{
1431Cell[11768, 370, 373, 9, 27, "Input"],
1432Cell[12144, 381, 837, 23, 60, "Output"]
1433}, Open ]]
1434}, Closed]]
1435}, Open ]],
1436Cell[CellGroupData[{
1437Cell[13042, 411, 154, 2, 67, "Section"],
1438Cell[CellGroupData[{
1439Cell[13221, 417, 103, 1, 34, "Subsection"],
1440Cell[13327, 420, 1598, 43, 133, "Input"]
1441}, Closed]],
1442Cell[CellGroupData[{
1443Cell[14962, 468, 111, 1, 26, "Subsection"],
1444Cell[15076, 471, 228, 3, 26, "Text"],
1445Cell[CellGroupData[{
1446Cell[15329, 478, 1514, 40, 43, "Input"],
1447Cell[16846, 520, 1199, 31, 48, "Output"]
1448}, Open ]],
1449Cell[18060, 554, 113, 1, 26, "Text"],
1450Cell[CellGroupData[{
1451Cell[18198, 559, 184, 4, 27, "Input"],
1452Cell[18385, 565, 597, 17, 51, "Output"]
1453}, Open ]],
1454Cell[18997, 585, 127, 1, 26, "Text"],
1455Cell[CellGroupData[{
1456Cell[19149, 590, 613, 17, 27, "Input"],
1457Cell[19765, 609, 593, 15, 39, "Output"]
1458}, Open ]]
1459}, Closed]],
1460Cell[CellGroupData[{
1461Cell[20407, 630, 101, 1, 26, "Subsection"],
1462Cell[20511, 633, 164, 2, 26, "Text"],
1463Cell[CellGroupData[{
1464Cell[20700, 639, 835, 25, 27, "Input"],
1465Cell[21538, 666, 555, 11, 48, "Output"]
1466}, Open ]],
1467Cell[22108, 680, 284, 5, 26, "Text"],
1468Cell[CellGroupData[{
1469Cell[22417, 689, 475, 14, 27, "Input"],
1470Cell[22895, 705, 642, 14, 48, "Output"]
1471}, Open ]],
1472Cell[23552, 722, 262, 5, 26, "Text"],
1473Cell[CellGroupData[{
1474Cell[23839, 731, 840, 22, 27, "Input"],
1475Cell[24682, 755, 723, 17, 59, "Output"]
1476}, Open ]],
1477Cell[25420, 775, 108, 1, 26, "Text"],
1478Cell[CellGroupData[{
1479Cell[25553, 780, 526, 13, 27, "Input"],
1480Cell[26082, 795, 568, 13, 71, "Output"]
1481}, Open ]]
1482}, Closed]],
1483Cell[CellGroupData[{
1484Cell[26699, 814, 98, 1, 26, "Subsection"],
1485Cell[26800, 817, 146, 2, 26, "Text"],
1486Cell[CellGroupData[{
1487Cell[26971, 823, 551, 14, 27, "Input"],
1488Cell[27525, 839, 905, 22, 60, "Output"]
1489}, Open ]]
1490}, Closed]]
1491}, Open ]],
1492Cell[CellGroupData[{
1493Cell[28491, 868, 205, 3, 67, "Section"],
1494Cell[CellGroupData[{
1495Cell[28721, 875, 103, 1, 34, "Subsection"],
1496Cell[28827, 878, 1647, 44, 133, "Input"]
1497}, Closed]],
1498Cell[CellGroupData[{
1499Cell[30511, 927, 111, 1, 26, "Subsection"],
1500Cell[30625, 930, 228, 3, 26, "Text"],
1501Cell[CellGroupData[{
1502Cell[30878, 937, 1671, 43, 43, "Input"],
1503Cell[32552, 982, 1310, 34, 59, "Output"]
1504}, Open ]],
1505Cell[33877, 1019, 113, 1, 26, "Text"],
1506Cell[CellGroupData[{
1507Cell[34015, 1024, 184, 4, 27, "Input"],
1508Cell[34202, 1030, 682, 19, 51, "Output"]
1509}, Open ]],
1510Cell[34899, 1052, 127, 1, 26, "Text"],
1511Cell[CellGroupData[{
1512Cell[35051, 1057, 613, 17, 27, "Input"],
1513Cell[35667, 1076, 788, 21, 53, "Output"]
1514}, Open ]]
1515}, Closed]],
1516Cell[CellGroupData[{
1517Cell[36504, 1103, 101, 1, 26, "Subsection"],
1518Cell[36608, 1106, 164, 2, 26, "Text"],
1519Cell[CellGroupData[{
1520Cell[36797, 1112, 962, 27, 27, "Input"],
1521Cell[37762, 1141, 605, 12, 48, "Output"]
1522}, Open ]],
1523Cell[38382, 1156, 217, 4, 26, "Text"],
1524Cell[38602, 1162, 336, 6, 26, "Text"],
1525Cell[CellGroupData[{
1526Cell[38963, 1172, 610, 17, 27, "Input"],
1527Cell[39576, 1191, 714, 15, 48, "Output"]
1528}, Open ]],
1529Cell[40305, 1209, 310, 5, 26, "Text"],
1530Cell[CellGroupData[{
1531Cell[40640, 1218, 890, 23, 27, "Input"],
1532Cell[41533, 1243, 796, 18, 59, "Output"]
1533}, Open ]],
1534Cell[42344, 1264, 108, 1, 26, "Text"],
1535Cell[CellGroupData[{
1536Cell[42477, 1269, 526, 13, 27, "Input"],
1537Cell[43006, 1284, 640, 14, 71, "Output"]
1538}, Open ]]
1539}, Closed]],
1540Cell[CellGroupData[{
1541Cell[43695, 1304, 98, 1, 26, "Subsection"],
1542Cell[43796, 1307, 146, 2, 26, "Text"],
1543Cell[CellGroupData[{
1544Cell[43967, 1313, 646, 17, 27, "Input"],
1545Cell[44616, 1332, 937, 23, 60, "Output"]
1546}, Open ]]
1547}, Closed]]
1548}, Open ]]
1549}, Open ]]
1550}
1551]
1552*)
1553
1554(* End of internal cache information *)