1 | (* Content-type: application/mathematica *)
|
---|
2 |
|
---|
3 | (*** Wolfram Notebook File ***)
|
---|
4 | (* http://www.wolfram.com/nb *)
|
---|
5 |
|
---|
6 | (* CreatedBy='Mathematica 6.0' *)
|
---|
7 |
|
---|
8 | (*CacheID: 234*)
|
---|
9 | (* Internal cache information:
|
---|
10 | NotebookFileLineBreakTest
|
---|
11 | NotebookFileLineBreakTest
|
---|
12 | NotebookDataPosition[ 145, 7]
|
---|
13 | NotebookDataLength[ 50813, 1545]
|
---|
14 | NotebookOptionsPosition[ 45605, 1361]
|
---|
15 | NotebookOutlinePosition[ 45963, 1377]
|
---|
16 | CellTagsIndexPosition[ 45920, 1374]
|
---|
17 | WindowFrame->Normal
|
---|
18 | ContainsDynamic->False*)
|
---|
19 |
|
---|
20 | (* Beginning of Notebook Content *)
|
---|
21 | Notebook[{
|
---|
22 |
|
---|
23 | Cell[CellGroupData[{
|
---|
24 | Cell["\<\
|
---|
25 | Tree-level decays of the Higgs boson\
|
---|
26 | \>", "Title",
|
---|
27 | CellChangeTimes->{{3.42892672627883*^9, 3.428926824323577*^9}, {
|
---|
28 | 3.428937703319875*^9, 3.428937712432496*^9}}],
|
---|
29 |
|
---|
30 | Cell[CellGroupData[{
|
---|
31 |
|
---|
32 | Cell["Input FeynCalc", "Subsection"],
|
---|
33 |
|
---|
34 | Cell[BoxData[
|
---|
35 | RowBox[{
|
---|
36 | RowBox[{"<<", "HighEnergyPhysics`fc`"}], ";"}]], "Input"]
|
---|
37 | }, Open ]],
|
---|
38 |
|
---|
39 | Cell[CellGroupData[{
|
---|
40 |
|
---|
41 | Cell["H \[RightArrow] ff", "Section",
|
---|
42 | CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}}],
|
---|
43 |
|
---|
44 | Cell[CellGroupData[{
|
---|
45 |
|
---|
46 | Cell["Kinematics 1->2", "Subsection",
|
---|
47 | CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
|
---|
48 |
|
---|
49 | Cell[BoxData[
|
---|
50 | RowBox[{"\[IndentingNewLine]",
|
---|
51 | RowBox[{
|
---|
52 | RowBox[{
|
---|
53 | RowBox[{
|
---|
54 | RowBox[{"ScalarProduct", "[",
|
---|
55 | RowBox[{"P", ",", "P"}], "]"}], "=",
|
---|
56 | RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
57 | RowBox[{
|
---|
58 | RowBox[{
|
---|
59 | RowBox[{"ScalarProduct", "[",
|
---|
60 | RowBox[{"p1", ",", "p1"}], "]"}], "=",
|
---|
61 | RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
62 | RowBox[{
|
---|
63 | RowBox[{
|
---|
64 | RowBox[{"ScalarProduct", "[",
|
---|
65 | RowBox[{"p2", ",", "p2"}], "]"}], "=",
|
---|
66 | RowBox[{"mf", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
67 | RowBox[{
|
---|
68 | RowBox[{
|
---|
69 | RowBox[{"ScalarProduct", "[",
|
---|
70 | RowBox[{"P", ",", "p1"}], "]"}], "=",
|
---|
71 | RowBox[{
|
---|
72 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
73 | RowBox[{
|
---|
74 | RowBox[{
|
---|
75 | RowBox[{"ScalarProduct", "[",
|
---|
76 | RowBox[{"P", ",", "p2"}], "]"}], "=",
|
---|
77 | RowBox[{
|
---|
78 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
79 | RowBox[{
|
---|
80 | RowBox[{
|
---|
81 | RowBox[{"ScalarProduct", "[",
|
---|
82 | RowBox[{"p1", ",", "p2"}], "]"}], "=",
|
---|
83 | RowBox[{
|
---|
84 | RowBox[{
|
---|
85 | RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
|
---|
86 | RowBox[{"mf", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
|
---|
87 |
|
---|
88 | CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
|
---|
89 | 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
|
---|
90 | 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
|
---|
91 | 3.4289384819556913`*^9, 3.428938484248788*^9}}]
|
---|
92 | }, Closed]],
|
---|
93 |
|
---|
94 | Cell[CellGroupData[{
|
---|
95 |
|
---|
96 | Cell["Amplitude (1 diagram)", "Subsection",
|
---|
97 | CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
|
---|
98 |
|
---|
99 | Cell["The summed and averaged square matrix element", "Text",
|
---|
100 | CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
|
---|
101 | 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
|
---|
102 | 3.42892751343362*^9}}],
|
---|
103 |
|
---|
104 | Cell[CellGroupData[{
|
---|
105 |
|
---|
106 | Cell[BoxData[
|
---|
107 | RowBox[{"M2", "=",
|
---|
108 | RowBox[{
|
---|
109 | RowBox[{
|
---|
110 | RowBox[{
|
---|
111 | RowBox[{
|
---|
112 | RowBox[{"(",
|
---|
113 | RowBox[{"mf", "/", "v"}], ")"}], "^", "2"}],
|
---|
114 | RowBox[{"Tr", "[",
|
---|
115 | RowBox[{
|
---|
116 | RowBox[{"(",
|
---|
117 | RowBox[{
|
---|
118 | RowBox[{"GSD", "[", "p1", "]"}], "+", "mf"}], ")"}], ".",
|
---|
119 | RowBox[{"(",
|
---|
120 | RowBox[{
|
---|
121 | RowBox[{"GSD", "[", "p2", "]"}], "-", "mf"}], ")"}]}], "]"}]}], "//",
|
---|
122 | "Expand"}], "//", "Simplify"}]}]], "Input",
|
---|
123 | CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
|
---|
124 | 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
|
---|
125 | 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
|
---|
126 | 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
|
---|
127 | 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
|
---|
128 | 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
|
---|
129 | 3.4289382285018063`*^9, 3.428938230286139*^9}}],
|
---|
130 |
|
---|
131 | Cell[BoxData[
|
---|
132 | FormBox[
|
---|
133 | FractionBox[
|
---|
134 | RowBox[{
|
---|
135 | RowBox[{"2", " ",
|
---|
136 | SuperscriptBox["mf", "2"], " ",
|
---|
137 | SuperscriptBox["mh", "2"]}], "-",
|
---|
138 | RowBox[{"8", " ",
|
---|
139 | SuperscriptBox["mf", "4"]}]}],
|
---|
140 | SuperscriptBox["v", "2"]], TraditionalForm]], "Output",
|
---|
141 | CellChangeTimes->{
|
---|
142 | 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
|
---|
143 | 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
|
---|
144 | 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
|
---|
145 | 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
|
---|
146 | 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
|
---|
147 | 3.428939015665769*^9}]
|
---|
148 | }, Open ]],
|
---|
149 |
|
---|
150 | Cell["We insert he definition of the Fermi constant", "Text",
|
---|
151 | CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
|
---|
152 |
|
---|
153 | Cell[CellGroupData[{
|
---|
154 |
|
---|
155 | Cell[BoxData[
|
---|
156 | RowBox[{"M2", "=",
|
---|
157 | RowBox[{"M2", "/.",
|
---|
158 | RowBox[{"v", "\[Rule]",
|
---|
159 | RowBox[{"1", "/",
|
---|
160 | RowBox[{"Sqrt", "[",
|
---|
161 | RowBox[{"Gf", " ",
|
---|
162 | RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}]}]], "Input",
|
---|
163 | CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
|
---|
164 | 3.4289381595073957`*^9, 3.4289381716760798`*^9}}],
|
---|
165 |
|
---|
166 | Cell[BoxData[
|
---|
167 | FormBox[
|
---|
168 | RowBox[{
|
---|
169 | SqrtBox["2"], " ", "Gf", " ",
|
---|
170 | RowBox[{"(",
|
---|
171 | RowBox[{
|
---|
172 | RowBox[{"2", " ",
|
---|
173 | SuperscriptBox["mf", "2"], " ",
|
---|
174 | SuperscriptBox["mh", "2"]}], "-",
|
---|
175 | RowBox[{"8", " ",
|
---|
176 | SuperscriptBox["mf", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
|
---|
177 | CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
|
---|
178 | 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
|
---|
179 | 3.4289384978556747`*^9, 3.428939015694807*^9}]
|
---|
180 | }, Open ]]
|
---|
181 | }, Closed]],
|
---|
182 |
|
---|
183 | Cell[CellGroupData[{
|
---|
184 |
|
---|
185 | Cell["Phase Space", "Subsection",
|
---|
186 | CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
|
---|
187 |
|
---|
188 | Cell["The two particle phase space is", "Text",
|
---|
189 | CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
|
---|
190 | 3.428938253498197*^9, 3.428938253866067*^9}}],
|
---|
191 |
|
---|
192 | Cell[CellGroupData[{
|
---|
193 |
|
---|
194 | Cell[BoxData[
|
---|
195 | RowBox[{"d\[CapitalPhi]2", "=",
|
---|
196 | RowBox[{
|
---|
197 | RowBox[{
|
---|
198 | RowBox[{"(",
|
---|
199 | RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
|
---|
200 | RowBox[{"\[Delta]", "[",
|
---|
201 | RowBox[{"P", "-", "p1", "-", "p2"}], "]"}],
|
---|
202 | RowBox[{
|
---|
203 | RowBox[{
|
---|
204 | RowBox[{"d3p1", "/",
|
---|
205 | RowBox[{
|
---|
206 | RowBox[{"(",
|
---|
207 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
|
---|
208 | " ",
|
---|
209 | RowBox[{
|
---|
210 | RowBox[{
|
---|
211 | RowBox[{"d3p2", "/",
|
---|
212 | RowBox[{
|
---|
213 | RowBox[{"(",
|
---|
214 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
|
---|
215 | "E2"}]}]}]], "Input",
|
---|
216 | CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
|
---|
217 | 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
|
---|
218 | 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}}],
|
---|
219 |
|
---|
220 | Cell[BoxData[
|
---|
221 | FormBox[
|
---|
222 | FractionBox[
|
---|
223 | RowBox[{"d3p1", " ", "d3p2", " ",
|
---|
224 | RowBox[{"\[Delta]", "(",
|
---|
225 | RowBox[{"P", "-", "p1", "-", "p2"}], ")"}]}],
|
---|
226 | RowBox[{"16", " ", "E1", " ", "E2", " ",
|
---|
227 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
228 | CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
|
---|
229 | 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
|
---|
230 | 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9}]
|
---|
231 | }, Open ]],
|
---|
232 |
|
---|
233 | Cell["\<\
|
---|
234 | Performing the integration over d3p2 in the rest frame of the H gives\
|
---|
235 | \>", "Text",
|
---|
236 | CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
|
---|
237 | 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
|
---|
238 | 3.428938248774928*^9}}],
|
---|
239 |
|
---|
240 | Cell[CellGroupData[{
|
---|
241 |
|
---|
242 | Cell[BoxData[
|
---|
243 | RowBox[{"PS", "=",
|
---|
244 | RowBox[{
|
---|
245 | RowBox[{
|
---|
246 | RowBox[{"1", "/", "4"}], "/",
|
---|
247 | RowBox[{
|
---|
248 | RowBox[{"(",
|
---|
249 | RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
|
---|
250 | RowBox[{"\[Delta]", "[",
|
---|
251 | RowBox[{"mh", "-",
|
---|
252 | RowBox[{"2", "E1"}]}], "]"}],
|
---|
253 | RowBox[{"d3p1", "/",
|
---|
254 | RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
|
---|
255 | CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
|
---|
256 | 3.42893825962851*^9, 3.42893826484441*^9}}],
|
---|
257 |
|
---|
258 | Cell[BoxData[
|
---|
259 | FormBox[
|
---|
260 | FractionBox[
|
---|
261 | RowBox[{"d3p1", " ",
|
---|
262 | RowBox[{"\[Delta]", "(",
|
---|
263 | RowBox[{"mh", "-",
|
---|
264 | RowBox[{"2", " ", "E1"}]}], ")"}]}],
|
---|
265 | RowBox[{"16", " ",
|
---|
266 | SuperscriptBox["E1", "2"], " ",
|
---|
267 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
268 | CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
|
---|
269 | 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
|
---|
270 | 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
|
---|
271 | 3.4289386914875193`*^9, 3.4289390157737207`*^9}]
|
---|
272 | }, Open ]],
|
---|
273 |
|
---|
274 | Cell["\<\
|
---|
275 | Going to spherical coordinates, and usging p1 dp1 = E1 dE1, we get\
|
---|
276 | \>", "Text",
|
---|
277 | CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
|
---|
278 | 3.4289382922025423`*^9, 3.428938296218473*^9}}],
|
---|
279 |
|
---|
280 | Cell[CellGroupData[{
|
---|
281 |
|
---|
282 | Cell[BoxData[
|
---|
283 | RowBox[{"PS", "=",
|
---|
284 | RowBox[{
|
---|
285 | RowBox[{"PS", "/.",
|
---|
286 | RowBox[{
|
---|
287 | RowBox[{"\[Delta]", "[",
|
---|
288 | RowBox[{"mh", "-",
|
---|
289 | RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
|
---|
290 | RowBox[{
|
---|
291 | RowBox[{"1", "/", "2"}],
|
---|
292 | RowBox[{"\[Delta]", "[",
|
---|
293 | RowBox[{"E1", "-",
|
---|
294 | RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
|
---|
295 | RowBox[{"d3p1", "\[Rule]",
|
---|
296 | RowBox[{"4", "Pi", " ",
|
---|
297 | RowBox[{"Sqrt", "[",
|
---|
298 | RowBox[{
|
---|
299 | RowBox[{"E1", "^", "2"}], "-",
|
---|
300 | RowBox[{"mf", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
|
---|
301 | CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
|
---|
302 | 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
|
---|
303 | 3.428938584824209*^9, 3.428938599062233*^9}}],
|
---|
304 |
|
---|
305 | Cell[BoxData[
|
---|
306 | FormBox[
|
---|
307 | FractionBox[
|
---|
308 | RowBox[{"dE1", " ",
|
---|
309 | SqrtBox[
|
---|
310 | RowBox[{
|
---|
311 | SuperscriptBox["E1", "2"], "-",
|
---|
312 | SuperscriptBox["mf", "2"]}]], " ",
|
---|
313 | RowBox[{"\[Delta]", "(",
|
---|
314 | RowBox[{"E1", "-",
|
---|
315 | FractionBox["mh", "2"]}], ")"}]}],
|
---|
316 | RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
317 | CellChangeTimes->{
|
---|
318 | 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
|
---|
319 | 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
|
---|
320 | 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
|
---|
321 | 3.428938692218741*^9}, 3.4289390158068933`*^9}]
|
---|
322 | }, Open ]],
|
---|
323 |
|
---|
324 | Cell["Performing the integration", "Text",
|
---|
325 | CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
|
---|
326 |
|
---|
327 | Cell[CellGroupData[{
|
---|
328 |
|
---|
329 | Cell[BoxData[
|
---|
330 | RowBox[{"PS", "=",
|
---|
331 | RowBox[{
|
---|
332 | RowBox[{"PS", "/.",
|
---|
333 | RowBox[{
|
---|
334 | RowBox[{"dE1", " ",
|
---|
335 | RowBox[{"\[Delta]", "[",
|
---|
336 | RowBox[{"E1", "-",
|
---|
337 | RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
|
---|
338 | RowBox[{"E1", "\[Rule]",
|
---|
339 | RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
|
---|
340 | CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
|
---|
341 | 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
|
---|
342 | 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
|
---|
343 |
|
---|
344 | Cell[BoxData[
|
---|
345 | FormBox[
|
---|
346 | FractionBox[
|
---|
347 | SqrtBox[
|
---|
348 | RowBox[{
|
---|
349 | FractionBox[
|
---|
350 | SuperscriptBox["mh", "2"], "4"], "-",
|
---|
351 | SuperscriptBox["mf", "2"]}]],
|
---|
352 | RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
353 | CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
|
---|
354 | 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
|
---|
355 | 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
|
---|
356 | 3.428938694746279*^9}, 3.42893901583956*^9}]
|
---|
357 | }, Open ]]
|
---|
358 | }, Closed]],
|
---|
359 |
|
---|
360 | Cell[CellGroupData[{
|
---|
361 |
|
---|
362 | Cell["Result", "Subsection",
|
---|
363 | CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
|
---|
364 |
|
---|
365 | Cell["The decay rate of the H then becomes", "Text",
|
---|
366 | CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
|
---|
367 | 3.4289383237898083`*^9}],
|
---|
368 |
|
---|
369 | Cell[CellGroupData[{
|
---|
370 |
|
---|
371 | Cell[BoxData[
|
---|
372 | RowBox[{"\[CapitalGamma]", "=",
|
---|
373 | RowBox[{
|
---|
374 | RowBox[{
|
---|
375 | RowBox[{
|
---|
376 | RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "//",
|
---|
377 | "Simplify"}]}]], "Input",
|
---|
378 | CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
|
---|
379 | 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
|
---|
380 | 3.42893864433534*^9, 3.4289389462936773`*^9}],
|
---|
381 |
|
---|
382 | Cell[BoxData[
|
---|
383 | FormBox[
|
---|
384 | FractionBox[
|
---|
385 | RowBox[{"Gf", " ",
|
---|
386 | SqrtBox[
|
---|
387 | RowBox[{
|
---|
388 | SuperscriptBox["mh", "2"], "-",
|
---|
389 | RowBox[{"4", " ",
|
---|
390 | SuperscriptBox["mf", "2"]}]}]], " ",
|
---|
391 | RowBox[{"(",
|
---|
392 | RowBox[{
|
---|
393 | RowBox[{
|
---|
394 | SuperscriptBox["mf", "2"], " ",
|
---|
395 | SuperscriptBox["mh", "2"]}], "-",
|
---|
396 | RowBox[{"4", " ",
|
---|
397 | SuperscriptBox["mf", "4"]}]}], ")"}]}],
|
---|
398 | RowBox[{"4", " ",
|
---|
399 | SqrtBox["2"], " ",
|
---|
400 | SuperscriptBox["mh", "2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
401 | CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
|
---|
402 | 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
|
---|
403 | 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
|
---|
404 | 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
|
---|
405 | 3.42893901589124*^9}]
|
---|
406 | }, Open ]]
|
---|
407 | }, Closed]]
|
---|
408 | }, Open ]],
|
---|
409 |
|
---|
410 | Cell[CellGroupData[{
|
---|
411 |
|
---|
412 | Cell["H \[RightArrow] WW", "Section",
|
---|
413 | CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
|
---|
414 | 3.428939028678343*^9, 3.428939029987813*^9}}],
|
---|
415 |
|
---|
416 | Cell[CellGroupData[{
|
---|
417 |
|
---|
418 | Cell["Kinematics 1->2", "Subsection",
|
---|
419 | CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
|
---|
420 |
|
---|
421 | Cell[BoxData[
|
---|
422 | RowBox[{"\[IndentingNewLine]",
|
---|
423 | RowBox[{
|
---|
424 | RowBox[{
|
---|
425 | RowBox[{
|
---|
426 | RowBox[{"ScalarProduct", "[",
|
---|
427 | RowBox[{"P", ",", "P"}], "]"}], "=",
|
---|
428 | RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
429 | RowBox[{
|
---|
430 | RowBox[{
|
---|
431 | RowBox[{"ScalarProduct", "[",
|
---|
432 | RowBox[{"pw1", ",", "pw1"}], "]"}], "=",
|
---|
433 | RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
434 | RowBox[{
|
---|
435 | RowBox[{
|
---|
436 | RowBox[{"ScalarProduct", "[",
|
---|
437 | RowBox[{"pw2", ",", "pw2"}], "]"}], "=",
|
---|
438 | RowBox[{"mw", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
439 | RowBox[{
|
---|
440 | RowBox[{
|
---|
441 | RowBox[{"ScalarProduct", "[",
|
---|
442 | RowBox[{"P", ",", "pw1"}], "]"}], "=",
|
---|
443 | RowBox[{
|
---|
444 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
445 | RowBox[{
|
---|
446 | RowBox[{
|
---|
447 | RowBox[{"ScalarProduct", "[",
|
---|
448 | RowBox[{"P", ",", "pw2"}], "]"}], "=",
|
---|
449 | RowBox[{
|
---|
450 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
451 | RowBox[{
|
---|
452 | RowBox[{
|
---|
453 | RowBox[{"ScalarProduct", "[",
|
---|
454 | RowBox[{"pw1", ",", "pw2"}], "]"}], "=",
|
---|
455 | RowBox[{
|
---|
456 | RowBox[{
|
---|
457 | RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
|
---|
458 | RowBox[{"mw", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
|
---|
459 |
|
---|
460 | CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
|
---|
461 | 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
|
---|
462 | 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
|
---|
463 | 3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
|
---|
464 | 3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}}]
|
---|
465 | }, Closed]],
|
---|
466 |
|
---|
467 | Cell[CellGroupData[{
|
---|
468 |
|
---|
469 | Cell["Amplitude (1 diagram)", "Subsection",
|
---|
470 | CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
|
---|
471 |
|
---|
472 | Cell["The summed and averaged square matrix element", "Text",
|
---|
473 | CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
|
---|
474 | 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
|
---|
475 | 3.42892751343362*^9}}],
|
---|
476 |
|
---|
477 | Cell[CellGroupData[{
|
---|
478 |
|
---|
479 | Cell[BoxData[
|
---|
480 | RowBox[{"M2", "=",
|
---|
481 | RowBox[{
|
---|
482 | RowBox[{
|
---|
483 | RowBox[{"(",
|
---|
484 | RowBox[{"v", " ",
|
---|
485 | RowBox[{
|
---|
486 | RowBox[{"gw", "^", "2"}], "/", "2"}]}], ")"}], "^", "2"}],
|
---|
487 | RowBox[{"(",
|
---|
488 | RowBox[{
|
---|
489 | RowBox[{"-",
|
---|
490 | RowBox[{"MetricTensor", "[",
|
---|
491 | RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
|
---|
492 | RowBox[{
|
---|
493 | RowBox[{"FV", "[",
|
---|
494 | RowBox[{"pw1", ",", "mu"}], "]"}],
|
---|
495 | RowBox[{
|
---|
496 | RowBox[{"FV", "[",
|
---|
497 | RowBox[{"pw1", ",", "nu"}], "]"}], "/",
|
---|
498 | RowBox[{"mw", "^", "2"}]}]}]}], ")"}],
|
---|
499 | RowBox[{"(",
|
---|
500 | RowBox[{
|
---|
501 | RowBox[{"-",
|
---|
502 | RowBox[{"MetricTensor", "[",
|
---|
503 | RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
|
---|
504 | RowBox[{
|
---|
505 | RowBox[{"FV", "[",
|
---|
506 | RowBox[{"pw2", ",", "mu"}], "]"}],
|
---|
507 | RowBox[{
|
---|
508 | RowBox[{"FV", "[",
|
---|
509 | RowBox[{"pw2", ",", "nu"}], "]"}], "/",
|
---|
510 | RowBox[{"mw", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
|
---|
511 | CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
|
---|
512 | 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
|
---|
513 | 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
|
---|
514 | 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
|
---|
515 | 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
|
---|
516 | 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
|
---|
517 | 3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
|
---|
518 | 3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
|
---|
519 | 3.428939614471209*^9}],
|
---|
520 |
|
---|
521 | Cell[BoxData[
|
---|
522 | FormBox[
|
---|
523 | RowBox[{
|
---|
524 | FractionBox["1", "4"], " ",
|
---|
525 | SuperscriptBox["gw", "4"], " ",
|
---|
526 | SuperscriptBox["v", "2"], " ",
|
---|
527 | RowBox[{"(",
|
---|
528 | RowBox[{
|
---|
529 | FractionBox[
|
---|
530 | RowBox[{
|
---|
531 | SuperscriptBox["pw1", "mu"], " ",
|
---|
532 | SuperscriptBox["pw1", "nu"]}],
|
---|
533 | SuperscriptBox["mw", "2"]], "-",
|
---|
534 | SuperscriptBox["g",
|
---|
535 | RowBox[{"mu", "nu"}]]}], ")"}], " ",
|
---|
536 | RowBox[{"(",
|
---|
537 | RowBox[{
|
---|
538 | FractionBox[
|
---|
539 | RowBox[{
|
---|
540 | SuperscriptBox["pw2", "mu"], " ",
|
---|
541 | SuperscriptBox["pw2", "nu"]}],
|
---|
542 | SuperscriptBox["mw", "2"]], "-",
|
---|
543 | SuperscriptBox["g",
|
---|
544 | RowBox[{"mu", "nu"}]]}], ")"}]}], TraditionalForm]], "Output",
|
---|
545 | CellChangeTimes->{
|
---|
546 | 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
|
---|
547 | 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
|
---|
548 | 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
|
---|
549 | 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
|
---|
550 | 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
|
---|
551 | 3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
|
---|
552 | 3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9}}]
|
---|
553 | }, Open ]],
|
---|
554 |
|
---|
555 | Cell["We constrat the Lorentz indices", "Text",
|
---|
556 | CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
|
---|
557 |
|
---|
558 | Cell[CellGroupData[{
|
---|
559 |
|
---|
560 | Cell[BoxData[
|
---|
561 | RowBox[{"M2", "=",
|
---|
562 | RowBox[{
|
---|
563 | RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
|
---|
564 | CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
|
---|
565 |
|
---|
566 | Cell[BoxData[
|
---|
567 | FormBox[
|
---|
568 | FractionBox[
|
---|
569 | RowBox[{
|
---|
570 | SuperscriptBox["gw", "4"], " ",
|
---|
571 | RowBox[{"(",
|
---|
572 | RowBox[{
|
---|
573 | SuperscriptBox["mh", "4"], "-",
|
---|
574 | RowBox[{"4", " ",
|
---|
575 | SuperscriptBox["mw", "2"], " ",
|
---|
576 | SuperscriptBox["mh", "2"]}], "+",
|
---|
577 | RowBox[{"12", " ",
|
---|
578 | SuperscriptBox["mw", "4"]}]}], ")"}], " ",
|
---|
579 | SuperscriptBox["v", "2"]}],
|
---|
580 | RowBox[{"16", " ",
|
---|
581 | SuperscriptBox["mw", "4"]}]], TraditionalForm]], "Output",
|
---|
582 | CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
|
---|
583 | 3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9}]
|
---|
584 | }, Open ]],
|
---|
585 |
|
---|
586 | Cell["We insert he definition of the Fermi constant", "Text",
|
---|
587 | CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
|
---|
588 |
|
---|
589 | Cell[CellGroupData[{
|
---|
590 |
|
---|
591 | Cell[BoxData[
|
---|
592 | RowBox[{"M2", "=",
|
---|
593 | RowBox[{
|
---|
594 | RowBox[{"M2", "/.",
|
---|
595 | RowBox[{"v", "\[Rule]",
|
---|
596 | RowBox[{"1", "/",
|
---|
597 | RowBox[{"Sqrt", "[",
|
---|
598 | RowBox[{"Gf", " ",
|
---|
599 | RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
|
---|
600 | RowBox[{"gw", "\[Rule]",
|
---|
601 | RowBox[{"Sqrt", "[",
|
---|
602 | RowBox[{"Gf", " ", "8",
|
---|
603 | RowBox[{
|
---|
604 | RowBox[{"mw", "^", "2"}], "/",
|
---|
605 | RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
|
---|
606 | CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
|
---|
607 | 3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
|
---|
608 | 3.428939216735014*^9}}],
|
---|
609 |
|
---|
610 | Cell[BoxData[
|
---|
611 | FormBox[
|
---|
612 | RowBox[{
|
---|
613 | SqrtBox["2"], " ", "Gf", " ",
|
---|
614 | RowBox[{"(",
|
---|
615 | RowBox[{
|
---|
616 | SuperscriptBox["mh", "4"], "-",
|
---|
617 | RowBox[{"4", " ",
|
---|
618 | SuperscriptBox["mw", "2"], " ",
|
---|
619 | SuperscriptBox["mh", "2"]}], "+",
|
---|
620 | RowBox[{"12", " ",
|
---|
621 | SuperscriptBox["mw", "4"]}]}], ")"}]}], TraditionalForm]], "Output",
|
---|
622 | CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
|
---|
623 | 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
|
---|
624 | 3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
|
---|
625 | 3.428939398074815*^9, 3.428939621035542*^9}]
|
---|
626 | }, Open ]]
|
---|
627 | }, Closed]],
|
---|
628 |
|
---|
629 | Cell[CellGroupData[{
|
---|
630 |
|
---|
631 | Cell["Phase Space", "Subsection",
|
---|
632 | CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
|
---|
633 |
|
---|
634 | Cell["The two particle phase space is", "Text",
|
---|
635 | CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
|
---|
636 | 3.428938253498197*^9, 3.428938253866067*^9}}],
|
---|
637 |
|
---|
638 | Cell[CellGroupData[{
|
---|
639 |
|
---|
640 | Cell[BoxData[
|
---|
641 | RowBox[{"d\[CapitalPhi]2", "=",
|
---|
642 | RowBox[{
|
---|
643 | RowBox[{
|
---|
644 | RowBox[{"(",
|
---|
645 | RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
|
---|
646 | RowBox[{"\[Delta]", "[",
|
---|
647 | RowBox[{"P", "-", "pw1", "-", "pw2"}], "]"}],
|
---|
648 | RowBox[{
|
---|
649 | RowBox[{
|
---|
650 | RowBox[{"d3pw1", "/",
|
---|
651 | RowBox[{
|
---|
652 | RowBox[{"(",
|
---|
653 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
|
---|
654 | " ",
|
---|
655 | RowBox[{
|
---|
656 | RowBox[{
|
---|
657 | RowBox[{"d3pw2", "/",
|
---|
658 | RowBox[{
|
---|
659 | RowBox[{"(",
|
---|
660 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
|
---|
661 | "E2"}]}]}]], "Input",
|
---|
662 | CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
|
---|
663 | 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
|
---|
664 | 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
|
---|
665 | 3.428939402360241*^9, 3.428939407583867*^9}}],
|
---|
666 |
|
---|
667 | Cell[BoxData[
|
---|
668 | FormBox[
|
---|
669 | FractionBox[
|
---|
670 | RowBox[{"d3pw1", " ", "d3pw2", " ",
|
---|
671 | RowBox[{"\[Delta]", "(",
|
---|
672 | RowBox[{"P", "-", "pw1", "-", "pw2"}], ")"}]}],
|
---|
673 | RowBox[{"16", " ", "E1", " ", "E2", " ",
|
---|
674 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
675 | CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
|
---|
676 | 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
|
---|
677 | 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
|
---|
678 | 3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9}]
|
---|
679 | }, Open ]],
|
---|
680 |
|
---|
681 | Cell["\<\
|
---|
682 | Performing the integration over d3pw2 in the rest frame of the H gives\
|
---|
683 | \>", "Text",
|
---|
684 | CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
|
---|
685 | 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
|
---|
686 | 3.428938248774928*^9}, 3.428939418781519*^9}],
|
---|
687 |
|
---|
688 | Cell[CellGroupData[{
|
---|
689 |
|
---|
690 | Cell[BoxData[
|
---|
691 | RowBox[{"PS", "=",
|
---|
692 | RowBox[{
|
---|
693 | RowBox[{
|
---|
694 | RowBox[{"1", "/", "4"}], "/",
|
---|
695 | RowBox[{
|
---|
696 | RowBox[{"(",
|
---|
697 | RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
|
---|
698 | RowBox[{"\[Delta]", "[",
|
---|
699 | RowBox[{"mh", "-",
|
---|
700 | RowBox[{"2", "E1"}]}], "]"}],
|
---|
701 | RowBox[{"d3pw1", "/",
|
---|
702 | RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
|
---|
703 | CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
|
---|
704 | 3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9}],
|
---|
705 |
|
---|
706 | Cell[BoxData[
|
---|
707 | FormBox[
|
---|
708 | FractionBox[
|
---|
709 | RowBox[{"d3pw1", " ",
|
---|
710 | RowBox[{"\[Delta]", "(",
|
---|
711 | RowBox[{"mh", "-",
|
---|
712 | RowBox[{"2", " ", "E1"}]}], ")"}]}],
|
---|
713 | RowBox[{"16", " ",
|
---|
714 | SuperscriptBox["E1", "2"], " ",
|
---|
715 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
716 | CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
|
---|
717 | 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
|
---|
718 | 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
|
---|
719 | 3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
|
---|
720 | 3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9}]
|
---|
721 | }, Open ]],
|
---|
722 |
|
---|
723 | Cell["\<\
|
---|
724 | Going to spherical coordinates, and usging pw1 dpw1 = E1 dE1, we get\
|
---|
725 | \>", "Text",
|
---|
726 | CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
|
---|
727 | 3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
|
---|
728 | 3.4289394222210503`*^9}}],
|
---|
729 |
|
---|
730 | Cell[CellGroupData[{
|
---|
731 |
|
---|
732 | Cell[BoxData[
|
---|
733 | RowBox[{"PS", "=",
|
---|
734 | RowBox[{
|
---|
735 | RowBox[{"PS", "/.",
|
---|
736 | RowBox[{
|
---|
737 | RowBox[{"\[Delta]", "[",
|
---|
738 | RowBox[{"mh", "-",
|
---|
739 | RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
|
---|
740 | RowBox[{
|
---|
741 | RowBox[{"1", "/", "2"}],
|
---|
742 | RowBox[{"\[Delta]", "[",
|
---|
743 | RowBox[{"E1", "-",
|
---|
744 | RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
|
---|
745 | RowBox[{"d3pw1", "\[Rule]",
|
---|
746 | RowBox[{"4", "Pi", " ",
|
---|
747 | RowBox[{"Sqrt", "[",
|
---|
748 | RowBox[{
|
---|
749 | RowBox[{"E1", "^", "2"}], "-",
|
---|
750 | RowBox[{"mw", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
|
---|
751 | CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
|
---|
752 | 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
|
---|
753 | 3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
|
---|
754 | 3.4289392398953457`*^9}, 3.428939430416103*^9}],
|
---|
755 |
|
---|
756 | Cell[BoxData[
|
---|
757 | FormBox[
|
---|
758 | FractionBox[
|
---|
759 | RowBox[{"dE1", " ",
|
---|
760 | SqrtBox[
|
---|
761 | RowBox[{
|
---|
762 | SuperscriptBox["E1", "2"], "-",
|
---|
763 | SuperscriptBox["mw", "2"]}]], " ",
|
---|
764 | RowBox[{"\[Delta]", "(",
|
---|
765 | RowBox[{"E1", "-",
|
---|
766 | FractionBox["mh", "2"]}], ")"}]}],
|
---|
767 | RowBox[{"8", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
768 | CellChangeTimes->{
|
---|
769 | 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
|
---|
770 | 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
|
---|
771 | 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
|
---|
772 | 3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
|
---|
773 | 3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9}]
|
---|
774 | }, Open ]],
|
---|
775 |
|
---|
776 | Cell["Performing the integration", "Text",
|
---|
777 | CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
|
---|
778 |
|
---|
779 | Cell[CellGroupData[{
|
---|
780 |
|
---|
781 | Cell[BoxData[
|
---|
782 | RowBox[{"PS", "=",
|
---|
783 | RowBox[{
|
---|
784 | RowBox[{"PS", "/.",
|
---|
785 | RowBox[{
|
---|
786 | RowBox[{"dE1", " ",
|
---|
787 | RowBox[{"\[Delta]", "[",
|
---|
788 | RowBox[{"E1", "-",
|
---|
789 | RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
|
---|
790 | RowBox[{"E1", "\[Rule]",
|
---|
791 | RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
|
---|
792 | CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
|
---|
793 | 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
|
---|
794 | 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
|
---|
795 |
|
---|
796 | Cell[BoxData[
|
---|
797 | FormBox[
|
---|
798 | FractionBox[
|
---|
799 | SqrtBox[
|
---|
800 | RowBox[{
|
---|
801 | FractionBox[
|
---|
802 | SuperscriptBox["mh", "2"], "4"], "-",
|
---|
803 | SuperscriptBox["mw", "2"]}]],
|
---|
804 | RowBox[{"4", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
805 | CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
|
---|
806 | 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
|
---|
807 | 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
|
---|
808 | 3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
|
---|
809 | 3.4289394342927837`*^9, 3.428939625835762*^9}]
|
---|
810 | }, Open ]]
|
---|
811 | }, Closed]],
|
---|
812 |
|
---|
813 | Cell[CellGroupData[{
|
---|
814 |
|
---|
815 | Cell["Result", "Subsection",
|
---|
816 | CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
|
---|
817 |
|
---|
818 | Cell["The decay rate of the H then becomes", "Text",
|
---|
819 | CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
|
---|
820 | 3.4289383237898083`*^9}],
|
---|
821 |
|
---|
822 | Cell[CellGroupData[{
|
---|
823 |
|
---|
824 | Cell[BoxData[
|
---|
825 | RowBox[{"\[CapitalGamma]", "=",
|
---|
826 | RowBox[{
|
---|
827 | RowBox[{
|
---|
828 | RowBox[{
|
---|
829 | RowBox[{
|
---|
830 | RowBox[{
|
---|
831 | RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
|
---|
832 | RowBox[{"mw", "\[Rule]",
|
---|
833 | RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
|
---|
834 | "PowerExpand"}]}]], "Input",
|
---|
835 | CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
|
---|
836 | 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
|
---|
837 | 3.42893864433534*^9, 3.4289389462936773`*^9, {3.428939734911998*^9,
|
---|
838 | 3.428939761347455*^9}}],
|
---|
839 |
|
---|
840 | Cell[BoxData[
|
---|
841 | FormBox[
|
---|
842 | FractionBox[
|
---|
843 | RowBox[{"Gf", " ",
|
---|
844 | SuperscriptBox["mh", "3"], " ",
|
---|
845 | SqrtBox[
|
---|
846 | RowBox[{"1", "-",
|
---|
847 | RowBox[{"4", " ",
|
---|
848 | SuperscriptBox["x", "2"]}]}]], " ",
|
---|
849 | RowBox[{"(",
|
---|
850 | RowBox[{
|
---|
851 | RowBox[{"12", " ",
|
---|
852 | SuperscriptBox["x", "4"]}], "-",
|
---|
853 | RowBox[{"4", " ",
|
---|
854 | SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
|
---|
855 | RowBox[{"8", " ",
|
---|
856 | SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
857 | CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
|
---|
858 | 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
|
---|
859 | 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
|
---|
860 | 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
|
---|
861 | 3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
|
---|
862 | 3.4289396272755547`*^9, {3.42893974381048*^9, 3.428939762040904*^9}}]
|
---|
863 | }, Open ]]
|
---|
864 | }, Closed]]
|
---|
865 | }, Open ]],
|
---|
866 |
|
---|
867 | Cell[CellGroupData[{
|
---|
868 |
|
---|
869 | Cell["H \[RightArrow] ZZ", "Section",
|
---|
870 | CellChangeTimes->{{3.4289377207239313`*^9, 3.428937731049849*^9}, {
|
---|
871 | 3.428939028678343*^9, 3.428939029987813*^9}, {3.428939649559754*^9,
|
---|
872 | 3.4289396513572483`*^9}}],
|
---|
873 |
|
---|
874 | Cell[CellGroupData[{
|
---|
875 |
|
---|
876 | Cell["Kinematics 1->2", "Subsection",
|
---|
877 | CellChangeTimes->{{3.428926835790217*^9, 3.428926837886043*^9}}],
|
---|
878 |
|
---|
879 | Cell[BoxData[
|
---|
880 | RowBox[{"\[IndentingNewLine]",
|
---|
881 | RowBox[{
|
---|
882 | RowBox[{
|
---|
883 | RowBox[{
|
---|
884 | RowBox[{"ScalarProduct", "[",
|
---|
885 | RowBox[{"P", ",", "P"}], "]"}], "=",
|
---|
886 | RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
887 | RowBox[{
|
---|
888 | RowBox[{
|
---|
889 | RowBox[{"ScalarProduct", "[",
|
---|
890 | RowBox[{"pz1", ",", "pz1"}], "]"}], "=",
|
---|
891 | RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
892 | RowBox[{
|
---|
893 | RowBox[{
|
---|
894 | RowBox[{"ScalarProduct", "[",
|
---|
895 | RowBox[{"pz2", ",", "pz2"}], "]"}], "=",
|
---|
896 | RowBox[{"mz", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
897 | RowBox[{
|
---|
898 | RowBox[{
|
---|
899 | RowBox[{"ScalarProduct", "[",
|
---|
900 | RowBox[{"P", ",", "pz1"}], "]"}], "=",
|
---|
901 | RowBox[{
|
---|
902 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
903 | RowBox[{
|
---|
904 | RowBox[{
|
---|
905 | RowBox[{"ScalarProduct", "[",
|
---|
906 | RowBox[{"P", ",", "pz2"}], "]"}], "=",
|
---|
907 | RowBox[{
|
---|
908 | RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
909 | RowBox[{
|
---|
910 | RowBox[{
|
---|
911 | RowBox[{"ScalarProduct", "[",
|
---|
912 | RowBox[{"pz1", ",", "pz2"}], "]"}], "=",
|
---|
913 | RowBox[{
|
---|
914 | RowBox[{
|
---|
915 | RowBox[{"mh", "^", "2"}], "/", "2"}], "-",
|
---|
916 | RowBox[{"mz", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",\
|
---|
917 |
|
---|
918 | CellChangeTimes->{{3.4289268403011503`*^9, 3.428926946965074*^9}, {
|
---|
919 | 3.428937810100576*^9, 3.428937873020487*^9}, {3.428938071207912*^9,
|
---|
920 | 3.428938078071608*^9}, {3.428938213984881*^9, 3.428938224130307*^9}, {
|
---|
921 | 3.4289384819556913`*^9, 3.428938484248788*^9}, {3.428939073598165*^9,
|
---|
922 | 3.428939082348546*^9}, {3.42893937775745*^9, 3.4289393838581676`*^9}, {
|
---|
923 | 3.428939657707238*^9, 3.428939671283299*^9}}]
|
---|
924 | }, Closed]],
|
---|
925 |
|
---|
926 | Cell[CellGroupData[{
|
---|
927 |
|
---|
928 | Cell["Amplitude (1 diagram)", "Subsection",
|
---|
929 | CellChangeTimes->{{3.4289292421393127`*^9, 3.428929244675111*^9}}],
|
---|
930 |
|
---|
931 | Cell["The summed and averaged square matrix element", "Text",
|
---|
932 | CellChangeTimes->{{3.4289271420095243`*^9, 3.4289271454722757`*^9}, {
|
---|
933 | 3.4289273354903717`*^9, 3.428927351049911*^9}, {3.4289275105378*^9,
|
---|
934 | 3.42892751343362*^9}}],
|
---|
935 |
|
---|
936 | Cell[CellGroupData[{
|
---|
937 |
|
---|
938 | Cell[BoxData[
|
---|
939 | RowBox[{"M2", "=",
|
---|
940 | RowBox[{
|
---|
941 | RowBox[{
|
---|
942 | RowBox[{"(",
|
---|
943 | RowBox[{"v", " ",
|
---|
944 | RowBox[{
|
---|
945 | RowBox[{
|
---|
946 | RowBox[{"gw", "^", "2"}], "/", "2"}], "/",
|
---|
947 | RowBox[{"cw", "^", "2"}]}]}], ")"}], "^", "2"}],
|
---|
948 | RowBox[{"(",
|
---|
949 | RowBox[{
|
---|
950 | RowBox[{"-",
|
---|
951 | RowBox[{"MetricTensor", "[",
|
---|
952 | RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
|
---|
953 | RowBox[{
|
---|
954 | RowBox[{"FV", "[",
|
---|
955 | RowBox[{"pz1", ",", "mu"}], "]"}],
|
---|
956 | RowBox[{
|
---|
957 | RowBox[{"FV", "[",
|
---|
958 | RowBox[{"pz1", ",", "nu"}], "]"}], "/",
|
---|
959 | RowBox[{"mz", "^", "2"}]}]}]}], ")"}],
|
---|
960 | RowBox[{"(",
|
---|
961 | RowBox[{
|
---|
962 | RowBox[{"-",
|
---|
963 | RowBox[{"MetricTensor", "[",
|
---|
964 | RowBox[{"mu", ",", "nu"}], "]"}]}], "+",
|
---|
965 | RowBox[{
|
---|
966 | RowBox[{"FV", "[",
|
---|
967 | RowBox[{"pz2", ",", "mu"}], "]"}],
|
---|
968 | RowBox[{
|
---|
969 | RowBox[{"FV", "[",
|
---|
970 | RowBox[{"pz2", ",", "nu"}], "]"}], "/",
|
---|
971 | RowBox[{"mz", "^", "2"}]}]}]}], ")"}]}]}]], "Input",
|
---|
972 | CellChangeTimes->{{3.428927033246361*^9, 3.4289271401967373`*^9}, {
|
---|
973 | 3.42892727787171*^9, 3.428927413135103*^9}, {3.4289274432481937`*^9,
|
---|
974 | 3.4289274930463*^9}, {3.428929121395401*^9, 3.428929122088388*^9},
|
---|
975 | 3.428929375657975*^9, {3.428929541763723*^9, 3.428929566521463*^9}, {
|
---|
976 | 3.428937860468915*^9, 3.428937864548534*^9}, {3.4289380364317427`*^9,
|
---|
977 | 3.428938062823503*^9}, {3.42893809477054*^9, 3.4289381246774197`*^9}, {
|
---|
978 | 3.4289382285018063`*^9, 3.428938230286139*^9}, {3.4289390981304398`*^9,
|
---|
979 | 3.428939148746867*^9}, {3.428939388292745*^9, 3.428939394515564*^9},
|
---|
980 | 3.428939614471209*^9, {3.4289396974209337`*^9, 3.428939729732409*^9}, {
|
---|
981 | 3.42893977829564*^9, 3.4289397787246437`*^9}}],
|
---|
982 |
|
---|
983 | Cell[BoxData[
|
---|
984 | FormBox[
|
---|
985 | FractionBox[
|
---|
986 | RowBox[{
|
---|
987 | SuperscriptBox["gw", "4"], " ",
|
---|
988 | SuperscriptBox["v", "2"], " ",
|
---|
989 | RowBox[{"(",
|
---|
990 | RowBox[{
|
---|
991 | FractionBox[
|
---|
992 | RowBox[{
|
---|
993 | SuperscriptBox["pz1", "mu"], " ",
|
---|
994 | SuperscriptBox["pz1", "nu"]}],
|
---|
995 | SuperscriptBox["mz", "2"]], "-",
|
---|
996 | SuperscriptBox["g",
|
---|
997 | RowBox[{"mu", "nu"}]]}], ")"}], " ",
|
---|
998 | RowBox[{"(",
|
---|
999 | RowBox[{
|
---|
1000 | FractionBox[
|
---|
1001 | RowBox[{
|
---|
1002 | SuperscriptBox["pz2", "mu"], " ",
|
---|
1003 | SuperscriptBox["pz2", "nu"]}],
|
---|
1004 | SuperscriptBox["mz", "2"]], "-",
|
---|
1005 | SuperscriptBox["g",
|
---|
1006 | RowBox[{"mu", "nu"}]]}], ")"}]}],
|
---|
1007 | RowBox[{"4", " ",
|
---|
1008 | SuperscriptBox["cw", "4"]}]], TraditionalForm]], "Output",
|
---|
1009 | CellChangeTimes->{
|
---|
1010 | 3.4289272789512367`*^9, 3.428927318445057*^9, {3.4289273534290743`*^9,
|
---|
1011 | 3.428927404797317*^9}, {3.4289274516566753`*^9, 3.42892749447148*^9},
|
---|
1012 | 3.4289291227183*^9, {3.428929370895793*^9, 3.428929376751039*^9},
|
---|
1013 | 3.428929567605669*^9, {3.428938112386113*^9, 3.428938125511932*^9},
|
---|
1014 | 3.4289382307430983`*^9, {3.428938486376433*^9, 3.4289384975076303`*^9},
|
---|
1015 | 3.428939015665769*^9, 3.428939149066834*^9, 3.4289393600066032`*^9,
|
---|
1016 | 3.428939394733592*^9, {3.428939598302187*^9, 3.42893961837188*^9},
|
---|
1017 | 3.428939778926634*^9, 3.4289398622949247`*^9}]
|
---|
1018 | }, Open ]],
|
---|
1019 |
|
---|
1020 | Cell["We constrat the Lorentz indices", "Text",
|
---|
1021 | CellChangeTimes->{{3.428939152271905*^9, 3.428939164364278*^9}}],
|
---|
1022 |
|
---|
1023 | Cell[CellGroupData[{
|
---|
1024 |
|
---|
1025 | Cell[BoxData[
|
---|
1026 | RowBox[{"M2", "=",
|
---|
1027 | RowBox[{
|
---|
1028 | RowBox[{"Contract", "[", "M2", "]"}], "//", "Simplify"}]}]], "Input",
|
---|
1029 | CellChangeTimes->{{3.428939165250428*^9, 3.428939180998008*^9}}],
|
---|
1030 |
|
---|
1031 | Cell[BoxData[
|
---|
1032 | FormBox[
|
---|
1033 | FractionBox[
|
---|
1034 | RowBox[{
|
---|
1035 | SuperscriptBox["gw", "4"], " ",
|
---|
1036 | RowBox[{"(",
|
---|
1037 | RowBox[{
|
---|
1038 | SuperscriptBox["mh", "4"], "-",
|
---|
1039 | RowBox[{"4", " ",
|
---|
1040 | SuperscriptBox["mz", "2"], " ",
|
---|
1041 | SuperscriptBox["mh", "2"]}], "+",
|
---|
1042 | RowBox[{"12", " ",
|
---|
1043 | SuperscriptBox["mz", "4"]}]}], ")"}], " ",
|
---|
1044 | SuperscriptBox["v", "2"]}],
|
---|
1045 | RowBox[{"16", " ",
|
---|
1046 | SuperscriptBox["cw", "4"], " ",
|
---|
1047 | SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
|
---|
1048 | CellChangeTimes->{{3.428939173219203*^9, 3.428939181353017*^9},
|
---|
1049 | 3.428939361929927*^9, 3.428939396412657*^9, 3.428939619873785*^9,
|
---|
1050 | 3.428939782429967*^9, 3.428939869387093*^9}]
|
---|
1051 | }, Open ]],
|
---|
1052 |
|
---|
1053 | Cell["We insert he definition of the Fermi constant", "Text",
|
---|
1054 | CellChangeTimes->{{3.428927552171399*^9, 3.428927561923086*^9}}],
|
---|
1055 |
|
---|
1056 | Cell[CellGroupData[{
|
---|
1057 |
|
---|
1058 | Cell[BoxData[
|
---|
1059 | RowBox[{"M2", "=",
|
---|
1060 | RowBox[{
|
---|
1061 | RowBox[{"M2", "/.",
|
---|
1062 | RowBox[{"v", "\[Rule]",
|
---|
1063 | RowBox[{"1", "/",
|
---|
1064 | RowBox[{"Sqrt", "[",
|
---|
1065 | RowBox[{"Gf", " ",
|
---|
1066 | RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}]}], "/.",
|
---|
1067 | RowBox[{"gw", "\[Rule]",
|
---|
1068 | RowBox[{"Sqrt", "[",
|
---|
1069 | RowBox[{"Gf", " ", "8",
|
---|
1070 | RowBox[{
|
---|
1071 | RowBox[{"mw", "^", "2"}], "/",
|
---|
1072 | RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}]}]], "Input",
|
---|
1073 | CellChangeTimes->{{3.428927568404044*^9, 3.42892758705121*^9}, {
|
---|
1074 | 3.4289381595073957`*^9, 3.4289381716760798`*^9}, {3.428939195889434*^9,
|
---|
1075 | 3.428939216735014*^9}}],
|
---|
1076 |
|
---|
1077 | Cell[BoxData[
|
---|
1078 | FormBox[
|
---|
1079 | FractionBox[
|
---|
1080 | RowBox[{
|
---|
1081 | SqrtBox["2"], " ", "Gf", " ",
|
---|
1082 | SuperscriptBox["mw", "4"], " ",
|
---|
1083 | RowBox[{"(",
|
---|
1084 | RowBox[{
|
---|
1085 | SuperscriptBox["mh", "4"], "-",
|
---|
1086 | RowBox[{"4", " ",
|
---|
1087 | SuperscriptBox["mz", "2"], " ",
|
---|
1088 | SuperscriptBox["mh", "2"]}], "+",
|
---|
1089 | RowBox[{"12", " ",
|
---|
1090 | SuperscriptBox["mz", "4"]}]}], ")"}]}],
|
---|
1091 | RowBox[{
|
---|
1092 | SuperscriptBox["cw", "4"], " ",
|
---|
1093 | SuperscriptBox["mz", "4"]}]], TraditionalForm]], "Output",
|
---|
1094 | CellChangeTimes->{3.428927588058874*^9, 3.4289291256255703`*^9,
|
---|
1095 | 3.428929571106011*^9, 3.428938172246612*^9, 3.428938233053894*^9,
|
---|
1096 | 3.4289384978556747`*^9, 3.428939015694807*^9, 3.428939217535921*^9,
|
---|
1097 | 3.428939398074815*^9, 3.428939621035542*^9, 3.428939786171034*^9,
|
---|
1098 | 3.4289398708976583`*^9}]
|
---|
1099 | }, Open ]]
|
---|
1100 | }, Closed]],
|
---|
1101 |
|
---|
1102 | Cell[CellGroupData[{
|
---|
1103 |
|
---|
1104 | Cell["Phase Space", "Subsection",
|
---|
1105 | CellChangeTimes->{{3.4289292202493353`*^9, 3.428929221917066*^9}}],
|
---|
1106 |
|
---|
1107 | Cell["The two particle phase space is", "Text",
|
---|
1108 | CellChangeTimes->{{3.4289286541859837`*^9, 3.428928662992796*^9}, {
|
---|
1109 | 3.428938253498197*^9, 3.428938253866067*^9}}],
|
---|
1110 |
|
---|
1111 | Cell[CellGroupData[{
|
---|
1112 |
|
---|
1113 | Cell[BoxData[
|
---|
1114 | RowBox[{"d\[CapitalPhi]2", "=",
|
---|
1115 | RowBox[{
|
---|
1116 | RowBox[{"1", "/", "2"}],
|
---|
1117 | RowBox[{
|
---|
1118 | RowBox[{"(",
|
---|
1119 | RowBox[{"2", "Pi"}], ")"}], "^", "4"}],
|
---|
1120 | RowBox[{"\[Delta]", "[",
|
---|
1121 | RowBox[{"P", "-", "pz1", "-", "pz2"}], "]"}],
|
---|
1122 | RowBox[{
|
---|
1123 | RowBox[{
|
---|
1124 | RowBox[{"d3pz1", "/",
|
---|
1125 | RowBox[{
|
---|
1126 | RowBox[{"(",
|
---|
1127 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/", "E1"}],
|
---|
1128 | " ",
|
---|
1129 | RowBox[{
|
---|
1130 | RowBox[{
|
---|
1131 | RowBox[{"d3pz2", "/",
|
---|
1132 | RowBox[{
|
---|
1133 | RowBox[{"(",
|
---|
1134 | RowBox[{"2", "Pi"}], ")"}], "^", "3"}]}], "/", "2"}], "/",
|
---|
1135 | "E2"}]}]}]], "Input",
|
---|
1136 | CellChangeTimes->{{3.428928668808182*^9, 3.428928748243292*^9}, {
|
---|
1137 | 3.4289288594542103`*^9, 3.428928869884198*^9}, {3.42893818360579*^9,
|
---|
1138 | 3.428938207781085*^9}, {3.4289382412163973`*^9, 3.4289382417010736`*^9}, {
|
---|
1139 | 3.428939402360241*^9, 3.428939407583867*^9}, {3.4289397947484217`*^9,
|
---|
1140 | 3.4289398003366203`*^9}, {3.42893988381181*^9, 3.428939884041622*^9}}],
|
---|
1141 |
|
---|
1142 | Cell[BoxData[
|
---|
1143 | FormBox[
|
---|
1144 | FractionBox[
|
---|
1145 | RowBox[{"d3pz1", " ", "d3pz2", " ",
|
---|
1146 | RowBox[{"\[Delta]", "(",
|
---|
1147 | RowBox[{"P", "-", "pz1", "-", "pz2"}], ")"}]}],
|
---|
1148 | RowBox[{"16", " ", "E1", " ", "E2", " ",
|
---|
1149 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
1150 | CellChangeTimes->{{3.428928862716354*^9, 3.428928870072042*^9},
|
---|
1151 | 3.428929126861431*^9, 3.428929574710586*^9, {3.428938234752118*^9,
|
---|
1152 | 3.428938241930442*^9}, 3.428938501869619*^9, 3.4289390157281837`*^9,
|
---|
1153 | 3.428939224535726*^9, 3.4289394090399523`*^9, 3.428939622836937*^9,
|
---|
1154 | 3.428939802399288*^9, 3.4289398723729563`*^9}]
|
---|
1155 | }, Open ]],
|
---|
1156 |
|
---|
1157 | Cell["\<\
|
---|
1158 | Notice the additional factor 1/2 in the phase spac, coming form the fact that \
|
---|
1159 | we have identical particles in the final state.\
|
---|
1160 | \>", "Text",
|
---|
1161 | CellChangeTimes->{{3.428939885985323*^9, 3.428939907485496*^9}}],
|
---|
1162 |
|
---|
1163 | Cell["\<\
|
---|
1164 | Performing the integration over d3pz2 in the rest frame of the H gives\
|
---|
1165 | \>", "Text",
|
---|
1166 | CellChangeTimes->{{3.428928749821361*^9, 3.428928784904477*^9}, {
|
---|
1167 | 3.4289288233373938`*^9, 3.428928824472897*^9}, {3.428938246362335*^9,
|
---|
1168 | 3.428938248774928*^9}, 3.428939418781519*^9, {3.428939816157881*^9,
|
---|
1169 | 3.4289398163019114`*^9}}],
|
---|
1170 |
|
---|
1171 | Cell[CellGroupData[{
|
---|
1172 |
|
---|
1173 | Cell[BoxData[
|
---|
1174 | RowBox[{"PS", "=",
|
---|
1175 | RowBox[{
|
---|
1176 | RowBox[{"1", "/", "2"}], " ",
|
---|
1177 | RowBox[{
|
---|
1178 | RowBox[{"1", "/", "4"}], "/",
|
---|
1179 | RowBox[{
|
---|
1180 | RowBox[{"(",
|
---|
1181 | RowBox[{"2", "Pi"}], ")"}], "^", "2"}]}], " ",
|
---|
1182 | RowBox[{"\[Delta]", "[",
|
---|
1183 | RowBox[{"mh", "-",
|
---|
1184 | RowBox[{"2", "E1"}]}], "]"}],
|
---|
1185 | RowBox[{"d3pz1", "/",
|
---|
1186 | RowBox[{"E1", "^", "2"}]}]}]}]], "Input",
|
---|
1187 | CellChangeTimes->{{3.4289287922794847`*^9, 3.4289288819309*^9}, {
|
---|
1188 | 3.42893825962851*^9, 3.42893826484441*^9}, 3.428939414455236*^9, {
|
---|
1189 | 3.4289398057924757`*^9, 3.42893980595168*^9}, {3.428939917120672*^9,
|
---|
1190 | 3.428939918020076*^9}}],
|
---|
1191 |
|
---|
1192 | Cell[BoxData[
|
---|
1193 | FormBox[
|
---|
1194 | FractionBox[
|
---|
1195 | RowBox[{"d3pz1", " ",
|
---|
1196 | RowBox[{"\[Delta]", "(",
|
---|
1197 | RowBox[{"mh", "-",
|
---|
1198 | RowBox[{"2", " ", "E1"}]}], ")"}]}],
|
---|
1199 | RowBox[{"32", " ",
|
---|
1200 | SuperscriptBox["E1", "2"], " ",
|
---|
1201 | SuperscriptBox["\[Pi]", "2"]}]], TraditionalForm]], "Output",
|
---|
1202 | CellChangeTimes->{{3.428928849656254*^9, 3.428928882523725*^9},
|
---|
1203 | 3.428929068231016*^9, 3.428929127845537*^9, 3.428929574829381*^9,
|
---|
1204 | 3.42893826621164*^9, 3.428938504167341*^9, 3.4289386058116293`*^9,
|
---|
1205 | 3.4289386914875193`*^9, 3.4289390157737207`*^9, {3.428939227658648*^9,
|
---|
1206 | 3.428939241509007*^9}, 3.428939424632287*^9, 3.428939623873477*^9,
|
---|
1207 | 3.4289398062227793`*^9, 3.428939873429842*^9, 3.428939918388637*^9}]
|
---|
1208 | }, Open ]],
|
---|
1209 |
|
---|
1210 | Cell["\<\
|
---|
1211 | Going to spherical coordinates, and usging pz1 dpz1 = E1 dE1, we get\
|
---|
1212 | \>", "Text",
|
---|
1213 | CellChangeTimes->{{3.428928883567082*^9, 3.4289289264749002`*^9}, {
|
---|
1214 | 3.4289382922025423`*^9, 3.428938296218473*^9}, {3.428939420508946*^9,
|
---|
1215 | 3.4289394222210503`*^9}, {3.428939811789967*^9, 3.4289398135420017`*^9}}],
|
---|
1216 |
|
---|
1217 | Cell[CellGroupData[{
|
---|
1218 |
|
---|
1219 | Cell[BoxData[
|
---|
1220 | RowBox[{"PS", "=",
|
---|
1221 | RowBox[{
|
---|
1222 | RowBox[{"PS", "/.",
|
---|
1223 | RowBox[{
|
---|
1224 | RowBox[{"\[Delta]", "[",
|
---|
1225 | RowBox[{"mh", "-",
|
---|
1226 | RowBox[{"2", "E1"}]}], "]"}], "\[Rule]",
|
---|
1227 | RowBox[{
|
---|
1228 | RowBox[{"1", "/", "2"}],
|
---|
1229 | RowBox[{"\[Delta]", "[",
|
---|
1230 | RowBox[{"E1", "-",
|
---|
1231 | RowBox[{"mh", "/", "2"}]}], "]"}]}]}]}], "/.", " ",
|
---|
1232 | RowBox[{"d3pz1", "\[Rule]",
|
---|
1233 | RowBox[{"4", "Pi", " ",
|
---|
1234 | RowBox[{"Sqrt", "[",
|
---|
1235 | RowBox[{
|
---|
1236 | RowBox[{"E1", "^", "2"}], "-",
|
---|
1237 | RowBox[{"mz", "^", "2"}]}], "]"}], "E1", " ", "dE1"}]}]}]}]], "Input",
|
---|
1238 | CellChangeTimes->{{3.4289289441444197`*^9, 3.428929022421103*^9},
|
---|
1239 | 3.428929070151713*^9, {3.4289382799967327`*^9, 3.428938290196628*^9}, {
|
---|
1240 | 3.428938584824209*^9, 3.428938599062233*^9}, {3.428939238657551*^9,
|
---|
1241 | 3.4289392398953457`*^9}, 3.428939430416103*^9, {3.428939810323925*^9,
|
---|
1242 | 3.428939819169014*^9}}],
|
---|
1243 |
|
---|
1244 | Cell[BoxData[
|
---|
1245 | FormBox[
|
---|
1246 | FractionBox[
|
---|
1247 | RowBox[{"dE1", " ",
|
---|
1248 | SqrtBox[
|
---|
1249 | RowBox[{
|
---|
1250 | SuperscriptBox["E1", "2"], "-",
|
---|
1251 | SuperscriptBox["mz", "2"]}]], " ",
|
---|
1252 | RowBox[{"\[Delta]", "(",
|
---|
1253 | RowBox[{"E1", "-",
|
---|
1254 | FractionBox["mh", "2"]}], ")"}]}],
|
---|
1255 | RowBox[{"16", " ", "E1", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
1256 | CellChangeTimes->{
|
---|
1257 | 3.428929025150517*^9, 3.428929070325218*^9, 3.4289291311060667`*^9,
|
---|
1258 | 3.428929574875102*^9, 3.428938297415737*^9, 3.428938505065439*^9, {
|
---|
1259 | 3.428938600499318*^9, 3.428938606660725*^9}, {3.4289386861864023`*^9,
|
---|
1260 | 3.428938692218741*^9}, 3.4289390158068933`*^9, {3.428939229150958*^9,
|
---|
1261 | 3.428939242434461*^9}, 3.4289394312423964`*^9, 3.428939624808075*^9,
|
---|
1262 | 3.4289398195382347`*^9, 3.428939874626782*^9, 3.428939921689764*^9}]
|
---|
1263 | }, Open ]],
|
---|
1264 |
|
---|
1265 | Cell["Performing the integration", "Text",
|
---|
1266 | CellChangeTimes->{{3.428929031938621*^9, 3.428929037282918*^9}}],
|
---|
1267 |
|
---|
1268 | Cell[CellGroupData[{
|
---|
1269 |
|
---|
1270 | Cell[BoxData[
|
---|
1271 | RowBox[{"PS", "=",
|
---|
1272 | RowBox[{
|
---|
1273 | RowBox[{"PS", "/.",
|
---|
1274 | RowBox[{
|
---|
1275 | RowBox[{"dE1", " ",
|
---|
1276 | RowBox[{"\[Delta]", "[",
|
---|
1277 | RowBox[{"E1", "-",
|
---|
1278 | RowBox[{"mh", "/", "2"}]}], "]"}]}], "\[Rule]", "1"}]}], "/.",
|
---|
1279 | RowBox[{"E1", "\[Rule]",
|
---|
1280 | RowBox[{"mh", "/", "2"}]}]}]}]], "Input",
|
---|
1281 | CellChangeTimes->{{3.428929044586605*^9, 3.428929056603554*^9}, {
|
---|
1282 | 3.428938304472186*^9, 3.428938307564096*^9}, {3.428938621479186*^9,
|
---|
1283 | 3.428938627852805*^9}, {3.4289386823375387`*^9, 3.428938682419998*^9}}],
|
---|
1284 |
|
---|
1285 | Cell[BoxData[
|
---|
1286 | FormBox[
|
---|
1287 | FractionBox[
|
---|
1288 | SqrtBox[
|
---|
1289 | RowBox[{
|
---|
1290 | FractionBox[
|
---|
1291 | SuperscriptBox["mh", "2"], "4"], "-",
|
---|
1292 | SuperscriptBox["mz", "2"]}]],
|
---|
1293 | RowBox[{"8", " ", "mh", " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
1294 | CellChangeTimes->{{3.428929056861126*^9, 3.428929071114458*^9},
|
---|
1295 | 3.4289291321148567`*^9, 3.428929574912538*^9, 3.428938307856097*^9,
|
---|
1296 | 3.428938506325878*^9, 3.4289386297502537`*^9, {3.4289386829460487`*^9,
|
---|
1297 | 3.428938694746279*^9}, 3.42893901583956*^9, 3.428939246350231*^9,
|
---|
1298 | 3.4289394342927837`*^9, 3.428939625835762*^9, 3.428939823598246*^9,
|
---|
1299 | 3.428939875651293*^9, 3.4289399228618383`*^9}]
|
---|
1300 | }, Open ]]
|
---|
1301 | }, Closed]],
|
---|
1302 |
|
---|
1303 | Cell[CellGroupData[{
|
---|
1304 |
|
---|
1305 | Cell["Result", "Subsection",
|
---|
1306 | CellChangeTimes->{{3.4289292627868023`*^9, 3.4289292633475027`*^9}}],
|
---|
1307 |
|
---|
1308 | Cell["The decay rate of the H then becomes", "Text",
|
---|
1309 | CellChangeTimes->{{3.428929073874954*^9, 3.428929081291203*^9},
|
---|
1310 | 3.4289383237898083`*^9}],
|
---|
1311 |
|
---|
1312 | Cell[CellGroupData[{
|
---|
1313 |
|
---|
1314 | Cell[BoxData[
|
---|
1315 | RowBox[{"\[CapitalGamma]", "=",
|
---|
1316 | RowBox[{
|
---|
1317 | RowBox[{
|
---|
1318 | RowBox[{
|
---|
1319 | RowBox[{
|
---|
1320 | RowBox[{
|
---|
1321 | RowBox[{
|
---|
1322 | RowBox[{"1", "/", "2"}], "/", "mh"}], " ", "PS", " ", "M2"}], "/.",
|
---|
1323 | RowBox[{"mw", "\[Rule]",
|
---|
1324 | RowBox[{"mz", " ", "cw"}]}]}], "/.",
|
---|
1325 | RowBox[{"mz", "\[Rule]",
|
---|
1326 | RowBox[{"x", " ", "mh"}]}]}], "//", "Simplify"}], "//",
|
---|
1327 | "PowerExpand"}]}]], "Input",
|
---|
1328 | CellChangeTimes->{{3.428929087038114*^9, 3.428929107627933*^9},
|
---|
1329 | 3.428929346599481*^9, {3.428938314727579*^9, 3.428938334043777*^9},
|
---|
1330 | 3.42893864433534*^9, 3.4289389462936773`*^9, {3.42893982964193*^9,
|
---|
1331 | 3.4289398502038717`*^9}}],
|
---|
1332 |
|
---|
1333 | Cell[BoxData[
|
---|
1334 | FormBox[
|
---|
1335 | FractionBox[
|
---|
1336 | RowBox[{"Gf", " ",
|
---|
1337 | SuperscriptBox["mh", "3"], " ",
|
---|
1338 | SqrtBox[
|
---|
1339 | RowBox[{"1", "-",
|
---|
1340 | RowBox[{"4", " ",
|
---|
1341 | SuperscriptBox["x", "2"]}]}]], " ",
|
---|
1342 | RowBox[{"(",
|
---|
1343 | RowBox[{
|
---|
1344 | RowBox[{"12", " ",
|
---|
1345 | SuperscriptBox["x", "4"]}], "-",
|
---|
1346 | RowBox[{"4", " ",
|
---|
1347 | SuperscriptBox["x", "2"]}], "+", "1"}], ")"}]}],
|
---|
1348 | RowBox[{"16", " ",
|
---|
1349 | SqrtBox["2"], " ", "\[Pi]"}]], TraditionalForm]], "Output",
|
---|
1350 | CellChangeTimes->{{3.428929108658009*^9, 3.428929133003119*^9},
|
---|
1351 | 3.4289293476527367`*^9, 3.4289295771229353`*^9, {3.428938319056734*^9,
|
---|
1352 | 3.4289383343919973`*^9}, 3.4289385085419197`*^9, {3.4289386319695272`*^9,
|
---|
1353 | 3.428938644554867*^9}, 3.428938696988208*^9, 3.428938947199583*^9,
|
---|
1354 | 3.42893901589124*^9, 3.428939251053282*^9, 3.4289394364600153`*^9,
|
---|
1355 | 3.4289396272755547`*^9, {3.4289398454713497`*^9, 3.4289398770178833`*^9},
|
---|
1356 | 3.428939924241026*^9}]
|
---|
1357 | }, Open ]]
|
---|
1358 | }, Closed]]
|
---|
1359 | }, Open ]]
|
---|
1360 | }, Open ]]
|
---|
1361 | },
|
---|
1362 | WindowSize->{710, 706},
|
---|
1363 | WindowMargins->{{Automatic, 230}, {Automatic, 4}},
|
---|
1364 | ShowSelection->True,
|
---|
1365 | FrontEndVersion->"6.0 for Mac OS X x86 (32-bit) (April 20, 2007)",
|
---|
1366 | StyleDefinitions->"Default.nb"
|
---|
1367 | ]
|
---|
1368 | (* End of Notebook Content *)
|
---|
1369 |
|
---|
1370 | (* Internal cache information *)
|
---|
1371 | (*CellTagsOutline
|
---|
1372 | CellTagsIndex->{}
|
---|
1373 | *)
|
---|
1374 | (*CellTagsIndex
|
---|
1375 | CellTagsIndex->{}
|
---|
1376 | *)
|
---|
1377 | (*NotebookFileOutline
|
---|
1378 | Notebook[{
|
---|
1379 | Cell[CellGroupData[{
|
---|
1380 | Cell[590, 23, 175, 4, 76, "Title"],
|
---|
1381 | Cell[CellGroupData[{
|
---|
1382 | Cell[790, 31, 36, 0, 34, "Subsection"],
|
---|
1383 | Cell[829, 33, 83, 2, 27, "Input"]
|
---|
1384 | }, Open ]],
|
---|
1385 | Cell[CellGroupData[{
|
---|
1386 | Cell[949, 40, 105, 1, 67, "Section"],
|
---|
1387 | Cell[CellGroupData[{
|
---|
1388 | Cell[1079, 45, 103, 1, 34, "Subsection"],
|
---|
1389 | Cell[1185, 48, 1494, 42, 133, "Input"]
|
---|
1390 | }, Closed]],
|
---|
1391 | Cell[CellGroupData[{
|
---|
1392 | Cell[2716, 95, 111, 1, 26, "Subsection"],
|
---|
1393 | Cell[2830, 98, 228, 3, 26, "Text"],
|
---|
1394 | Cell[CellGroupData[{
|
---|
1395 | Cell[3083, 105, 955, 23, 27, "Input"],
|
---|
1396 | Cell[4041, 130, 682, 16, 70, "Output"]
|
---|
1397 | }, Open ]],
|
---|
1398 | Cell[4738, 149, 127, 1, 26, "Text"],
|
---|
1399 | Cell[CellGroupData[{
|
---|
1400 | Cell[4890, 154, 346, 9, 27, "Input"],
|
---|
1401 | Cell[5239, 165, 485, 13, 70, "Output"]
|
---|
1402 | }, Open ]]
|
---|
1403 | }, Closed]],
|
---|
1404 | Cell[CellGroupData[{
|
---|
1405 | Cell[5773, 184, 101, 1, 26, "Subsection"],
|
---|
1406 | Cell[5877, 187, 164, 2, 26, "Text"],
|
---|
1407 | Cell[CellGroupData[{
|
---|
1408 | Cell[6066, 193, 782, 24, 27, "Input"],
|
---|
1409 | Cell[6851, 219, 479, 10, 70, "Output"]
|
---|
1410 | }, Open ]],
|
---|
1411 | Cell[7345, 232, 259, 5, 26, "Text"],
|
---|
1412 | Cell[CellGroupData[{
|
---|
1413 | Cell[7629, 241, 451, 14, 27, "Input"],
|
---|
1414 | Cell[8083, 257, 547, 13, 70, "Output"]
|
---|
1415 | }, Open ]],
|
---|
1416 | Cell[8645, 273, 209, 4, 26, "Text"],
|
---|
1417 | Cell[CellGroupData[{
|
---|
1418 | Cell[8879, 281, 765, 21, 27, "Input"],
|
---|
1419 | Cell[9647, 304, 627, 16, 70, "Output"]
|
---|
1420 | }, Open ]],
|
---|
1421 | Cell[10289, 323, 108, 1, 26, "Text"],
|
---|
1422 | Cell[CellGroupData[{
|
---|
1423 | Cell[10422, 328, 526, 13, 27, "Input"],
|
---|
1424 | Cell[10951, 343, 496, 12, 70, "Output"]
|
---|
1425 | }, Open ]]
|
---|
1426 | }, Closed]],
|
---|
1427 | Cell[CellGroupData[{
|
---|
1428 | Cell[11496, 361, 98, 1, 26, "Subsection"],
|
---|
1429 | Cell[11597, 364, 146, 2, 26, "Text"],
|
---|
1430 | Cell[CellGroupData[{
|
---|
1431 | Cell[11768, 370, 373, 9, 27, "Input"],
|
---|
1432 | Cell[12144, 381, 837, 23, 60, "Output"]
|
---|
1433 | }, Open ]]
|
---|
1434 | }, Closed]]
|
---|
1435 | }, Open ]],
|
---|
1436 | Cell[CellGroupData[{
|
---|
1437 | Cell[13042, 411, 154, 2, 67, "Section"],
|
---|
1438 | Cell[CellGroupData[{
|
---|
1439 | Cell[13221, 417, 103, 1, 34, "Subsection"],
|
---|
1440 | Cell[13327, 420, 1598, 43, 133, "Input"]
|
---|
1441 | }, Closed]],
|
---|
1442 | Cell[CellGroupData[{
|
---|
1443 | Cell[14962, 468, 111, 1, 26, "Subsection"],
|
---|
1444 | Cell[15076, 471, 228, 3, 26, "Text"],
|
---|
1445 | Cell[CellGroupData[{
|
---|
1446 | Cell[15329, 478, 1514, 40, 43, "Input"],
|
---|
1447 | Cell[16846, 520, 1199, 31, 48, "Output"]
|
---|
1448 | }, Open ]],
|
---|
1449 | Cell[18060, 554, 113, 1, 26, "Text"],
|
---|
1450 | Cell[CellGroupData[{
|
---|
1451 | Cell[18198, 559, 184, 4, 27, "Input"],
|
---|
1452 | Cell[18385, 565, 597, 17, 51, "Output"]
|
---|
1453 | }, Open ]],
|
---|
1454 | Cell[18997, 585, 127, 1, 26, "Text"],
|
---|
1455 | Cell[CellGroupData[{
|
---|
1456 | Cell[19149, 590, 613, 17, 27, "Input"],
|
---|
1457 | Cell[19765, 609, 593, 15, 39, "Output"]
|
---|
1458 | }, Open ]]
|
---|
1459 | }, Closed]],
|
---|
1460 | Cell[CellGroupData[{
|
---|
1461 | Cell[20407, 630, 101, 1, 26, "Subsection"],
|
---|
1462 | Cell[20511, 633, 164, 2, 26, "Text"],
|
---|
1463 | Cell[CellGroupData[{
|
---|
1464 | Cell[20700, 639, 835, 25, 27, "Input"],
|
---|
1465 | Cell[21538, 666, 555, 11, 48, "Output"]
|
---|
1466 | }, Open ]],
|
---|
1467 | Cell[22108, 680, 284, 5, 26, "Text"],
|
---|
1468 | Cell[CellGroupData[{
|
---|
1469 | Cell[22417, 689, 475, 14, 27, "Input"],
|
---|
1470 | Cell[22895, 705, 642, 14, 48, "Output"]
|
---|
1471 | }, Open ]],
|
---|
1472 | Cell[23552, 722, 262, 5, 26, "Text"],
|
---|
1473 | Cell[CellGroupData[{
|
---|
1474 | Cell[23839, 731, 840, 22, 27, "Input"],
|
---|
1475 | Cell[24682, 755, 723, 17, 59, "Output"]
|
---|
1476 | }, Open ]],
|
---|
1477 | Cell[25420, 775, 108, 1, 26, "Text"],
|
---|
1478 | Cell[CellGroupData[{
|
---|
1479 | Cell[25553, 780, 526, 13, 27, "Input"],
|
---|
1480 | Cell[26082, 795, 568, 13, 71, "Output"]
|
---|
1481 | }, Open ]]
|
---|
1482 | }, Closed]],
|
---|
1483 | Cell[CellGroupData[{
|
---|
1484 | Cell[26699, 814, 98, 1, 26, "Subsection"],
|
---|
1485 | Cell[26800, 817, 146, 2, 26, "Text"],
|
---|
1486 | Cell[CellGroupData[{
|
---|
1487 | Cell[26971, 823, 551, 14, 27, "Input"],
|
---|
1488 | Cell[27525, 839, 905, 22, 60, "Output"]
|
---|
1489 | }, Open ]]
|
---|
1490 | }, Closed]]
|
---|
1491 | }, Open ]],
|
---|
1492 | Cell[CellGroupData[{
|
---|
1493 | Cell[28491, 868, 205, 3, 67, "Section"],
|
---|
1494 | Cell[CellGroupData[{
|
---|
1495 | Cell[28721, 875, 103, 1, 34, "Subsection"],
|
---|
1496 | Cell[28827, 878, 1647, 44, 133, "Input"]
|
---|
1497 | }, Closed]],
|
---|
1498 | Cell[CellGroupData[{
|
---|
1499 | Cell[30511, 927, 111, 1, 26, "Subsection"],
|
---|
1500 | Cell[30625, 930, 228, 3, 26, "Text"],
|
---|
1501 | Cell[CellGroupData[{
|
---|
1502 | Cell[30878, 937, 1671, 43, 43, "Input"],
|
---|
1503 | Cell[32552, 982, 1310, 34, 59, "Output"]
|
---|
1504 | }, Open ]],
|
---|
1505 | Cell[33877, 1019, 113, 1, 26, "Text"],
|
---|
1506 | Cell[CellGroupData[{
|
---|
1507 | Cell[34015, 1024, 184, 4, 27, "Input"],
|
---|
1508 | Cell[34202, 1030, 682, 19, 51, "Output"]
|
---|
1509 | }, Open ]],
|
---|
1510 | Cell[34899, 1052, 127, 1, 26, "Text"],
|
---|
1511 | Cell[CellGroupData[{
|
---|
1512 | Cell[35051, 1057, 613, 17, 27, "Input"],
|
---|
1513 | Cell[35667, 1076, 788, 21, 53, "Output"]
|
---|
1514 | }, Open ]]
|
---|
1515 | }, Closed]],
|
---|
1516 | Cell[CellGroupData[{
|
---|
1517 | Cell[36504, 1103, 101, 1, 26, "Subsection"],
|
---|
1518 | Cell[36608, 1106, 164, 2, 26, "Text"],
|
---|
1519 | Cell[CellGroupData[{
|
---|
1520 | Cell[36797, 1112, 962, 27, 27, "Input"],
|
---|
1521 | Cell[37762, 1141, 605, 12, 48, "Output"]
|
---|
1522 | }, Open ]],
|
---|
1523 | Cell[38382, 1156, 217, 4, 26, "Text"],
|
---|
1524 | Cell[38602, 1162, 336, 6, 26, "Text"],
|
---|
1525 | Cell[CellGroupData[{
|
---|
1526 | Cell[38963, 1172, 610, 17, 27, "Input"],
|
---|
1527 | Cell[39576, 1191, 714, 15, 48, "Output"]
|
---|
1528 | }, Open ]],
|
---|
1529 | Cell[40305, 1209, 310, 5, 26, "Text"],
|
---|
1530 | Cell[CellGroupData[{
|
---|
1531 | Cell[40640, 1218, 890, 23, 27, "Input"],
|
---|
1532 | Cell[41533, 1243, 796, 18, 59, "Output"]
|
---|
1533 | }, Open ]],
|
---|
1534 | Cell[42344, 1264, 108, 1, 26, "Text"],
|
---|
1535 | Cell[CellGroupData[{
|
---|
1536 | Cell[42477, 1269, 526, 13, 27, "Input"],
|
---|
1537 | Cell[43006, 1284, 640, 14, 71, "Output"]
|
---|
1538 | }, Open ]]
|
---|
1539 | }, Closed]],
|
---|
1540 | Cell[CellGroupData[{
|
---|
1541 | Cell[43695, 1304, 98, 1, 26, "Subsection"],
|
---|
1542 | Cell[43796, 1307, 146, 2, 26, "Text"],
|
---|
1543 | Cell[CellGroupData[{
|
---|
1544 | Cell[43967, 1313, 646, 17, 27, "Input"],
|
---|
1545 | Cell[44616, 1332, 937, 23, 60, "Output"]
|
---|
1546 | }, Open ]]
|
---|
1547 | }, Closed]]
|
---|
1548 | }, Open ]]
|
---|
1549 | }, Open ]]
|
---|
1550 | }
|
---|
1551 | ]
|
---|
1552 | *)
|
---|
1553 |
|
---|
1554 | (* End of internal cache information *)
|
---|