1 | (************** Content-type: application/mathematica **************
|
---|
2 |
|
---|
3 | Mathematica-Compatible Notebook
|
---|
4 |
|
---|
5 | This notebook can be used with any Mathematica-compatible
|
---|
6 | application, such as Mathematica, MathReader or Publicon. The data
|
---|
7 | for the notebook starts with the line containing stars above.
|
---|
8 |
|
---|
9 | To get the notebook into a Mathematica-compatible application, do
|
---|
10 | one of the following:
|
---|
11 |
|
---|
12 | * Save the data starting with the line of stars above into a file
|
---|
13 | with a name ending in .nb, then open the file inside the
|
---|
14 | application;
|
---|
15 |
|
---|
16 | * Copy the data starting with the line of stars above to the
|
---|
17 | clipboard, then use the Paste menu command inside the application.
|
---|
18 |
|
---|
19 | Data for notebooks contains only printable 7-bit ASCII and can be
|
---|
20 | sent directly in email or through ftp in text mode. Newlines can be
|
---|
21 | CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
|
---|
22 |
|
---|
23 | NOTE: If you modify the data for this notebook not in a Mathematica-
|
---|
24 | compatible application, you must delete the line below containing
|
---|
25 | the word CacheID, otherwise Mathematica-compatible applications may
|
---|
26 | try to use invalid cache data.
|
---|
27 |
|
---|
28 | For more information on notebooks and Mathematica-compatible
|
---|
29 | applications, contact Wolfram Research:
|
---|
30 | web: http://www.wolfram.com
|
---|
31 | email: info@wolfram.com
|
---|
32 | phone: +1-217-398-0700 (U.S.)
|
---|
33 |
|
---|
34 | Notebook reader applications are available free of charge from
|
---|
35 | Wolfram Research.
|
---|
36 | *******************************************************************)
|
---|
37 |
|
---|
38 | (*CacheID: 232*)
|
---|
39 |
|
---|
40 |
|
---|
41 | (*NotebookFileLineBreakTest
|
---|
42 | NotebookFileLineBreakTest*)
|
---|
43 | (*NotebookOptionsPosition[ 81913, 2234]*)
|
---|
44 | (*NotebookOutlinePosition[ 82552, 2256]*)
|
---|
45 | (* CellTagsIndexPosition[ 82508, 2252]*)
|
---|
46 | (*WindowFrame->Normal*)
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | Notebook[{
|
---|
51 |
|
---|
52 | Cell[CellGroupData[{
|
---|
53 | Cell["Phenomenology of pp\[Rule]H+X at NLO", "Subtitle"],
|
---|
54 |
|
---|
55 | Cell[CellGroupData[{
|
---|
56 |
|
---|
57 | Cell["Introduction", "Section"],
|
---|
58 |
|
---|
59 | Cell[TextData[{
|
---|
60 | StyleBox["In this notebook we calculate the inclusive cross section for \
|
---|
61 | Higgs production at hadron colliders, at NLO in the strong coupling. We use \
|
---|
62 | the analytic results obtained in a previous notebook corresponding to the \
|
---|
63 | original calculation by Sally Dawson (Nuclear Physics B (1991) 283). To get \
|
---|
64 | useful numbers we use a modern set of PDF, i.e. the MRST as implemented in ",
|
---|
65 | FontSize->16],
|
---|
66 | StyleBox["Mathematica",
|
---|
67 | FontSize->16,
|
---|
68 | FontSlant->"Italic"],
|
---|
69 | StyleBox[" by J.Andersen (many thanks!). A description of the calculation, \
|
---|
70 | including the formulas used here for the numerical results, is given in the \
|
---|
71 | notes.",
|
---|
72 | FontSize->16]
|
---|
73 | }], "Text"]
|
---|
74 | }, Closed]],
|
---|
75 |
|
---|
76 | Cell[CellGroupData[{
|
---|
77 |
|
---|
78 | Cell["Preliminaries", "Section"],
|
---|
79 |
|
---|
80 | Cell["\<\
|
---|
81 | Off[General::spell];
|
---|
82 | Off[General::spell1];
|
---|
83 | Clear[\"Global`*\"];\
|
---|
84 | \>", "Input"],
|
---|
85 |
|
---|
86 | Cell[CellGroupData[{
|
---|
87 |
|
---|
88 | Cell["Install Vegas", "Subsection"],
|
---|
89 |
|
---|
90 | Cell["\<\
|
---|
91 | I use the Vegas package of CUBA library of T. Hahn \
|
---|
92 | (hep-ph/0404043). If you do not want to use it, use NIntegrate instead of \
|
---|
93 | Vegas\
|
---|
94 | \>", "Text"],
|
---|
95 |
|
---|
96 | Cell[CellGroupData[{
|
---|
97 |
|
---|
98 | Cell[BoxData[
|
---|
99 | \(Install["\</Users/fabiomaltoni/Physics/Codes/CUBA/VegasX\>"]
|
---|
100 | Install["\</Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX\>"]\)], "Input"],
|
---|
101 |
|
---|
102 | Cell[BoxData[
|
---|
103 | \(TraditionalForm\`LinkObject[
|
---|
104 | "/Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX", 3, 3]\ LinkObject[
|
---|
105 | "/Users/fabiomaltoni/Physics/Codes/CUBA/VegasX", 2, 2]\)], "Output"]
|
---|
106 | }, Open ]]
|
---|
107 | }, Closed]],
|
---|
108 |
|
---|
109 | Cell[CellGroupData[{
|
---|
110 |
|
---|
111 | Cell["Call special graphics routines", "Subsection"],
|
---|
112 |
|
---|
113 | Cell["\<\
|
---|
114 | << Graphics`Colors`;
|
---|
115 | << Graphics`Graphics`;\
|
---|
116 | \>", "Input"]
|
---|
117 | }, Closed]],
|
---|
118 |
|
---|
119 | Cell[CellGroupData[{
|
---|
120 |
|
---|
121 | Cell["Install PDF'S: for help read the PDF-HOWTO document", "Subsection"],
|
---|
122 |
|
---|
123 | Cell[CellGroupData[{
|
---|
124 |
|
---|
125 | Cell[BoxData[{
|
---|
126 | \(SetDirectory["\<~/Physics/Teaching/pp>Higgs\ at\ NLO/Jeppe\>"]\), "\
|
---|
127 | \[IndentingNewLine]",
|
---|
128 | \(Install["\<pdf.exe\>"]\)}], "Input"],
|
---|
129 |
|
---|
130 | Cell[BoxData[
|
---|
131 | \(TraditionalForm\`"/Users/fabiomaltoni/Physics/Teaching/pp>Higgs at \
|
---|
132 | NLO/Jeppe"\)], "Output"],
|
---|
133 |
|
---|
134 | Cell[BoxData[
|
---|
135 | \(TraditionalForm\`LinkObject["./pdf.exe", 4, 4]\)], "Output"]
|
---|
136 | }, Open ]],
|
---|
137 |
|
---|
138 | Cell[CellGroupData[{
|
---|
139 |
|
---|
140 | Cell["\<\
|
---|
141 |
|
---|
142 | <<\"loadCTEQ5.m\";\
|
---|
143 | \>", "Input"],
|
---|
144 |
|
---|
145 | Cell[BoxData[
|
---|
146 | \(TraditionalForm\`"Loading Package: PDF"\)], "Print"],
|
---|
147 |
|
---|
148 | Cell[BoxData[
|
---|
149 | \(TraditionalForm\`"PDF's from CTEQ5"\)], "Print"],
|
---|
150 |
|
---|
151 | Cell[BoxData[
|
---|
152 | \(TraditionalForm\`"Eur.Phys.J.C12:375-392,2000 "\)], "Print"],
|
---|
153 |
|
---|
154 | Cell[BoxData[
|
---|
155 | \(TraditionalForm\`"*** Warning *** Unofficial release. "\)], "Print"],
|
---|
156 |
|
---|
157 | Cell[BoxData[
|
---|
158 | \(TraditionalForm\`"*** Cross-check with official Fortran code."\)], \
|
---|
159 | "Print"],
|
---|
160 |
|
---|
161 | Cell[BoxData[
|
---|
162 | \(TraditionalForm\`" Version 1.0: Written by Tamara Trout & Fred Olness, \
|
---|
163 | October 1, 2000"\)], "Print"],
|
---|
164 |
|
---|
165 | Cell[BoxData[
|
---|
166 | \(TraditionalForm\`" "\)], "Print"],
|
---|
167 |
|
---|
168 | Cell[BoxData[
|
---|
169 | \(TraditionalForm\`"In case of problems, contact:"\)], "Print"],
|
---|
170 |
|
---|
171 | Cell[BoxData[
|
---|
172 | \(TraditionalForm\`"Fred Olness: olness@mail.physics.smu.edu"\)], "Print"]
|
---|
173 | }, Open ]],
|
---|
174 |
|
---|
175 | Cell[CellGroupData[{
|
---|
176 |
|
---|
177 | Cell["\<\
|
---|
178 | Wrapper to call the pdf. Notation is self-explanatory. Just notice \
|
---|
179 | that all parton distribution codes usually return x f(x). To avoid confusion, \
|
---|
180 | at expense of a couple more floating point operations, I divide all the \
|
---|
181 | values by the corresponding x. pdfcall calculates the parton-parton \
|
---|
182 | luminoties, gg qg, qq~\
|
---|
183 | \>", "Subsubsection"],
|
---|
184 |
|
---|
185 | Cell["\<\
|
---|
186 | (* MRST *)
|
---|
187 |
|
---|
188 | pdfMRST[X1_,X2_,q_]:=Module[
|
---|
189 | {Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
|
---|
190 | Q=q*1.;
|
---|
191 | xgDF =f[3,X1,Q]/X1;
|
---|
192 | xdbDF=f[8,X1,Q]/X1;
|
---|
193 | xdDF =f[2,X1,Q]/X1+xdbDF;
|
---|
194 | xubDF=f[4,X1,Q]/X1;
|
---|
195 | xuDF =f[1,X1,Q]/X1+xubDF;
|
---|
196 | xsDF =f[6,X1,Q]/X1;
|
---|
197 | xcDF =f[5,X1,Q]/X1;
|
---|
198 | xbDF =f[7,X1,Q]/X1;
|
---|
199 |
|
---|
200 | pd1={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
|
---|
201 | xgDF =f[3,X2,Q]/X2;
|
---|
202 | xdbDF=f[8,X2,Q]/X2;
|
---|
203 | xdDF =f[2,X2,Q]/X2+xdbDF;
|
---|
204 | xubDF=f[4,X2,Q]/X2;
|
---|
205 | xuDF =f[1,X2,Q]/X2+xubDF;
|
---|
206 | xsDF =f[6,X2,Q]/X2;
|
---|
207 | xcDF =f[5,X2,Q]/X2;
|
---|
208 | xbDF =f[7,X2,Q]/X2;
|
---|
209 | pd2={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
|
---|
210 |
|
---|
211 |
|
---|
212 | xgg=pd1[[1]]*pd2[[1]];
|
---|
213 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
214 | ))+
|
---|
215 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
216 | );
|
---|
217 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
218 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
219 |
|
---|
220 | Return[{xgg,xqg,xqq}];
|
---|
221 | ];\
|
---|
222 | \>", "Input"],
|
---|
223 |
|
---|
224 | Cell["\<\
|
---|
225 |
|
---|
226 | (* cteq5 *)\
|
---|
227 | \>", "Input"],
|
---|
228 |
|
---|
229 | Cell["\<\
|
---|
230 | pdfCTEQ[X1_,X2_,q_]:=Module[
|
---|
231 | {Q,pd1,pd2,xgg,xqg,xqq},
|
---|
232 | Q=q*1.;
|
---|
233 |
|
---|
234 | pd1={cteq5pdf[1,0,X1,Q],
|
---|
235 | cteq5pdf[1,2,X1,Q],
|
---|
236 | cteq5pdf[1,-2,X1,Q],
|
---|
237 | cteq5pdf[1,1,X1,Q],
|
---|
238 | cteq5pdf[1,-1,X1,Q],
|
---|
239 | cteq5pdf[1,3,X1,Q],
|
---|
240 | cteq5pdf[1,4,X1,Q],
|
---|
241 | cteq5pdf[1,5,X1,Q]};
|
---|
242 | pd2={cteq5pdf[1,0,X2,Q],
|
---|
243 | cteq5pdf[1,2,X2,Q],
|
---|
244 | cteq5pdf[1,-2,X2,Q],
|
---|
245 | cteq5pdf[1,1,X2,Q],
|
---|
246 | cteq5pdf[1,-1,X2,Q],
|
---|
247 | cteq5pdf[1,3,X2,Q],
|
---|
248 | cteq5pdf[1,4,X2,Q],
|
---|
249 | cteq5pdf[1,5,X2,Q]};
|
---|
250 |
|
---|
251 | xgg=pd1[[1]]*pd2[[1]];
|
---|
252 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
253 | ))+
|
---|
254 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
255 | );
|
---|
256 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
257 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
258 |
|
---|
259 | Return[{xgg,xqg,xqq}];
|
---|
260 | ];
|
---|
261 |
|
---|
262 | pdfCTEQLO[X1_,X2_,q_]:=Module[
|
---|
263 | {Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
|
---|
264 | Q=q*1.;
|
---|
265 |
|
---|
266 | pd1={cteq5pdf[3,0,X1,Q],
|
---|
267 | cteq5pdf[3,2,X1,Q],
|
---|
268 | cteq5pdf[3,-2,X1,Q],
|
---|
269 | cteq5pdf[3,1,X1,Q],
|
---|
270 | cteq5pdf[3,-1,X1,Q],
|
---|
271 | cteq5pdf[3,3,X1,Q],
|
---|
272 | cteq5pdf[3,4,X1,Q],
|
---|
273 | cteq5pdf[3,5,X1,Q]};
|
---|
274 | pd2={cteq5pdf[3,0,X2,Q],
|
---|
275 | cteq5pdf[3,2,X2,Q],
|
---|
276 | cteq5pdf[3,-2,X2,Q],
|
---|
277 | cteq5pdf[3,1,X2,Q],
|
---|
278 | cteq5pdf[3,-1,X2,Q],
|
---|
279 | cteq5pdf[3,3,X2,Q],
|
---|
280 | cteq5pdf[3,4,X2,Q],
|
---|
281 | cteq5pdf[3,5,X2,Q]};
|
---|
282 |
|
---|
283 | xgg=pd1[[1]]*pd2[[1]];
|
---|
284 | xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
|
---|
285 | ))+
|
---|
286 | pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
|
---|
287 | );
|
---|
288 | xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
|
---|
289 | 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
|
---|
290 |
|
---|
291 | Return[{xgg,xqg,xqq}];
|
---|
292 | ];\
|
---|
293 | \>", "Input"]
|
---|
294 | }, Open ]],
|
---|
295 |
|
---|
296 | Cell[CellGroupData[{
|
---|
297 |
|
---|
298 | Cell["Decide the pdf family to be used ", "Subsubsection"],
|
---|
299 |
|
---|
300 | Cell["pdfcall[x__] = pdfCTEQ[x];", "Input"]
|
---|
301 | }, Open ]]
|
---|
302 | }, Open ]],
|
---|
303 |
|
---|
304 | Cell[CellGroupData[{
|
---|
305 |
|
---|
306 | Cell["\<\
|
---|
307 | Alpha_S: Very basic implementation of Alpha_S.
|
---|
308 | Check that the value of Lamda_4 or Lambda_5 is consistent with that of the \
|
---|
309 | PDF.
|
---|
310 | One simple, but indirect way to do it is to compare the value of alphas(MZ) \
|
---|
311 | with the one quoted by MRST.\
|
---|
312 | \>", "Subsection"],
|
---|
313 |
|
---|
314 | Cell[BoxData[{
|
---|
315 | \(\(b[nf_] := \(\((33 - 2\ nf)\)/12\)/
|
---|
316 | Pi;\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
|
---|
317 | \ \ \ \), "\[IndentingNewLine]",
|
---|
318 | \(\(bp[
|
---|
319 | nf_] := \(\(\((153 - 19\ nf)\)/2\)/
|
---|
320 | Pi\)/\((33 - 2\ nf)\);\)\), "\[IndentingNewLine]",
|
---|
321 | \(\(t[nf] :=
|
---|
322 | Log[q^2/\[CapitalLambda][nf]^2];\)\), "\[IndentingNewLine]",
|
---|
323 | \(\(\(mb = 4.75;\)\(\[IndentingNewLine]\)
|
---|
324 | \)\), "\[IndentingNewLine]",
|
---|
325 | \(\(\[CapitalLambda][5] = 0.146;\)\), "\[IndentingNewLine]",
|
---|
326 | \(\(asLO[q_, nf_] = 1/\((b[nf]\ t[nf])\);\)\), "\n",
|
---|
327 | \(\(\[CapitalLambda][5] = 0.226;\)\), "\[IndentingNewLine]",
|
---|
328 | \(\(asNLO[q_, nf_] =
|
---|
329 | 1/\((b[nf]\ t[nf])\) \((1 -
|
---|
330 | bp[nf]/b[nf]\ Log[t[nf]]/t[nf])\);\)\)}], "Input"],
|
---|
331 |
|
---|
332 | Cell[CellGroupData[{
|
---|
333 |
|
---|
334 | Cell["\<\
|
---|
335 | Check the values of alpha_S at the scale MZ\
|
---|
336 | \>", "Subsubsection"],
|
---|
337 |
|
---|
338 | Cell[CellGroupData[{
|
---|
339 |
|
---|
340 | Cell["asNLO[91.118,5]", "Input"],
|
---|
341 |
|
---|
342 | Cell[BoxData[
|
---|
343 | \(TraditionalForm\`0.11799518835498905`\)], "Output"]
|
---|
344 | }, Open ]]
|
---|
345 | }, Open ]]
|
---|
346 | }, Open ]],
|
---|
347 |
|
---|
348 | Cell[CellGroupData[{
|
---|
349 |
|
---|
350 | Cell["Color factors ", "Subsection"],
|
---|
351 |
|
---|
352 | Cell["\<\
|
---|
353 | CF=4/3;
|
---|
354 | CA=3;
|
---|
355 | nf=5;
|
---|
356 | TF=1/2;
|
---|
357 | b0=11/6 CA -2 nf TF/3;
|
---|
358 | \
|
---|
359 | \>", "Input"]
|
---|
360 | }, Closed]]
|
---|
361 | }, Open ]],
|
---|
362 |
|
---|
363 | Cell[CellGroupData[{
|
---|
364 |
|
---|
365 | Cell["LO cross section", "Section"],
|
---|
366 |
|
---|
367 | Cell[CellGroupData[{
|
---|
368 |
|
---|
369 | Cell["\<\
|
---|
370 | Integral of the LO loop. The sign of the Imaginary part is given by \
|
---|
371 | the usual prescription mt^2-i eps which is equivalent to t+i eps in the \
|
---|
372 | notation below.
|
---|
373 | t=mh^2/4/mt^2;\
|
---|
374 | \>", "Subsubsection"],
|
---|
375 |
|
---|
376 | Cell[" ", "Input"],
|
---|
377 |
|
---|
378 | Cell[CellGroupData[{
|
---|
379 |
|
---|
380 | Cell["\<\
|
---|
381 | eps=0.00000001;
|
---|
382 | inte[t_]=3*Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}]//Simplify;
|
---|
383 | Plot[{Re[inte[t+I eps]],Im[inte[t+I \
|
---|
384 | eps]]},{t,0,10},PlotStyle\[Rule]{{Blue,Thickness[0.007]},{Red,Thickness[0.007]\
|
---|
385 | }}];\
|
---|
386 | \>", "Input"],
|
---|
387 |
|
---|
388 | Cell[GraphicsData["PostScript", "\<\
|
---|
389 | %!
|
---|
390 | %%Creator: Mathematica
|
---|
391 | %%AspectRatio: .61803
|
---|
392 | MathPictureStart
|
---|
393 | /Mabs {
|
---|
394 | Mgmatrix idtransform
|
---|
395 | Mtmatrix dtransform
|
---|
396 | } bind def
|
---|
397 | /Mabsadd { Mabs
|
---|
398 | 3 -1 roll add
|
---|
399 | 3 1 roll add
|
---|
400 | exch } bind def
|
---|
401 | %% Graphics
|
---|
402 | %%IncludeResource: font Courier
|
---|
403 | %%IncludeFont: Courier
|
---|
404 | /Courier findfont 10 scalefont setfont
|
---|
405 | % Scaling calculations
|
---|
406 | 0.0238095 0.0952381 0.0147154 0.338579 [
|
---|
407 | [.21429 .00222 -3 -9 ]
|
---|
408 | [.21429 .00222 3 0 ]
|
---|
409 | [.40476 .00222 -3 -9 ]
|
---|
410 | [.40476 .00222 3 0 ]
|
---|
411 | [.59524 .00222 -3 -9 ]
|
---|
412 | [.59524 .00222 3 0 ]
|
---|
413 | [.78571 .00222 -3 -9 ]
|
---|
414 | [.78571 .00222 3 0 ]
|
---|
415 | [.97619 .00222 -6 -9 ]
|
---|
416 | [.97619 .00222 6 0 ]
|
---|
417 | [.01131 .09936 -24 -4.5 ]
|
---|
418 | [.01131 .09936 0 4.5 ]
|
---|
419 | [.01131 .18401 -18 -4.5 ]
|
---|
420 | [.01131 .18401 0 4.5 ]
|
---|
421 | [.01131 .26865 -24 -4.5 ]
|
---|
422 | [.01131 .26865 0 4.5 ]
|
---|
423 | [.01131 .35329 -6 -4.5 ]
|
---|
424 | [.01131 .35329 0 4.5 ]
|
---|
425 | [.01131 .43794 -24 -4.5 ]
|
---|
426 | [.01131 .43794 0 4.5 ]
|
---|
427 | [.01131 .52258 -18 -4.5 ]
|
---|
428 | [.01131 .52258 0 4.5 ]
|
---|
429 | [.01131 .60723 -24 -4.5 ]
|
---|
430 | [.01131 .60723 0 4.5 ]
|
---|
431 | [ 0 0 0 0 ]
|
---|
432 | [ 1 .61803 0 0 ]
|
---|
433 | ] MathScale
|
---|
434 | % Start of Graphics
|
---|
435 | 1 setlinecap
|
---|
436 | 1 setlinejoin
|
---|
437 | newpath
|
---|
438 | 0 g
|
---|
439 | .25 Mabswid
|
---|
440 | [ ] 0 setdash
|
---|
441 | .21429 .01472 m
|
---|
442 | .21429 .02097 L
|
---|
443 | s
|
---|
444 | [(2)] .21429 .00222 0 1 Mshowa
|
---|
445 | .40476 .01472 m
|
---|
446 | .40476 .02097 L
|
---|
447 | s
|
---|
448 | [(4)] .40476 .00222 0 1 Mshowa
|
---|
449 | .59524 .01472 m
|
---|
450 | .59524 .02097 L
|
---|
451 | s
|
---|
452 | [(6)] .59524 .00222 0 1 Mshowa
|
---|
453 | .78571 .01472 m
|
---|
454 | .78571 .02097 L
|
---|
455 | s
|
---|
456 | [(8)] .78571 .00222 0 1 Mshowa
|
---|
457 | .97619 .01472 m
|
---|
458 | .97619 .02097 L
|
---|
459 | s
|
---|
460 | [(10)] .97619 .00222 0 1 Mshowa
|
---|
461 | .125 Mabswid
|
---|
462 | .07143 .01472 m
|
---|
463 | .07143 .01847 L
|
---|
464 | s
|
---|
465 | .11905 .01472 m
|
---|
466 | .11905 .01847 L
|
---|
467 | s
|
---|
468 | .16667 .01472 m
|
---|
469 | .16667 .01847 L
|
---|
470 | s
|
---|
471 | .2619 .01472 m
|
---|
472 | .2619 .01847 L
|
---|
473 | s
|
---|
474 | .30952 .01472 m
|
---|
475 | .30952 .01847 L
|
---|
476 | s
|
---|
477 | .35714 .01472 m
|
---|
478 | .35714 .01847 L
|
---|
479 | s
|
---|
480 | .45238 .01472 m
|
---|
481 | .45238 .01847 L
|
---|
482 | s
|
---|
483 | .5 .01472 m
|
---|
484 | .5 .01847 L
|
---|
485 | s
|
---|
486 | .54762 .01472 m
|
---|
487 | .54762 .01847 L
|
---|
488 | s
|
---|
489 | .64286 .01472 m
|
---|
490 | .64286 .01847 L
|
---|
491 | s
|
---|
492 | .69048 .01472 m
|
---|
493 | .69048 .01847 L
|
---|
494 | s
|
---|
495 | .7381 .01472 m
|
---|
496 | .7381 .01847 L
|
---|
497 | s
|
---|
498 | .83333 .01472 m
|
---|
499 | .83333 .01847 L
|
---|
500 | s
|
---|
501 | .88095 .01472 m
|
---|
502 | .88095 .01847 L
|
---|
503 | s
|
---|
504 | .92857 .01472 m
|
---|
505 | .92857 .01847 L
|
---|
506 | s
|
---|
507 | .25 Mabswid
|
---|
508 | 0 .01472 m
|
---|
509 | 1 .01472 L
|
---|
510 | s
|
---|
511 | .02381 .09936 m
|
---|
512 | .03006 .09936 L
|
---|
513 | s
|
---|
514 | [(0.25)] .01131 .09936 1 0 Mshowa
|
---|
515 | .02381 .18401 m
|
---|
516 | .03006 .18401 L
|
---|
517 | s
|
---|
518 | [(0.5)] .01131 .18401 1 0 Mshowa
|
---|
519 | .02381 .26865 m
|
---|
520 | .03006 .26865 L
|
---|
521 | s
|
---|
522 | [(0.75)] .01131 .26865 1 0 Mshowa
|
---|
523 | .02381 .35329 m
|
---|
524 | .03006 .35329 L
|
---|
525 | s
|
---|
526 | [(1)] .01131 .35329 1 0 Mshowa
|
---|
527 | .02381 .43794 m
|
---|
528 | .03006 .43794 L
|
---|
529 | s
|
---|
530 | [(1.25)] .01131 .43794 1 0 Mshowa
|
---|
531 | .02381 .52258 m
|
---|
532 | .03006 .52258 L
|
---|
533 | s
|
---|
534 | [(1.5)] .01131 .52258 1 0 Mshowa
|
---|
535 | .02381 .60723 m
|
---|
536 | .03006 .60723 L
|
---|
537 | s
|
---|
538 | [(1.75)] .01131 .60723 1 0 Mshowa
|
---|
539 | .125 Mabswid
|
---|
540 | .02381 .03164 m
|
---|
541 | .02756 .03164 L
|
---|
542 | s
|
---|
543 | .02381 .04857 m
|
---|
544 | .02756 .04857 L
|
---|
545 | s
|
---|
546 | .02381 .0655 m
|
---|
547 | .02756 .0655 L
|
---|
548 | s
|
---|
549 | .02381 .08243 m
|
---|
550 | .02756 .08243 L
|
---|
551 | s
|
---|
552 | .02381 .11629 m
|
---|
553 | .02756 .11629 L
|
---|
554 | s
|
---|
555 | .02381 .13322 m
|
---|
556 | .02756 .13322 L
|
---|
557 | s
|
---|
558 | .02381 .15015 m
|
---|
559 | .02756 .15015 L
|
---|
560 | s
|
---|
561 | .02381 .16708 m
|
---|
562 | .02756 .16708 L
|
---|
563 | s
|
---|
564 | .02381 .20093 m
|
---|
565 | .02756 .20093 L
|
---|
566 | s
|
---|
567 | .02381 .21786 m
|
---|
568 | .02756 .21786 L
|
---|
569 | s
|
---|
570 | .02381 .23479 m
|
---|
571 | .02756 .23479 L
|
---|
572 | s
|
---|
573 | .02381 .25172 m
|
---|
574 | .02756 .25172 L
|
---|
575 | s
|
---|
576 | .02381 .28558 m
|
---|
577 | .02756 .28558 L
|
---|
578 | s
|
---|
579 | .02381 .30251 m
|
---|
580 | .02756 .30251 L
|
---|
581 | s
|
---|
582 | .02381 .31944 m
|
---|
583 | .02756 .31944 L
|
---|
584 | s
|
---|
585 | .02381 .33637 m
|
---|
586 | .02756 .33637 L
|
---|
587 | s
|
---|
588 | .02381 .37022 m
|
---|
589 | .02756 .37022 L
|
---|
590 | s
|
---|
591 | .02381 .38715 m
|
---|
592 | .02756 .38715 L
|
---|
593 | s
|
---|
594 | .02381 .40408 m
|
---|
595 | .02756 .40408 L
|
---|
596 | s
|
---|
597 | .02381 .42101 m
|
---|
598 | .02756 .42101 L
|
---|
599 | s
|
---|
600 | .02381 .45487 m
|
---|
601 | .02756 .45487 L
|
---|
602 | s
|
---|
603 | .02381 .4718 m
|
---|
604 | .02756 .4718 L
|
---|
605 | s
|
---|
606 | .02381 .48873 m
|
---|
607 | .02756 .48873 L
|
---|
608 | s
|
---|
609 | .02381 .50566 m
|
---|
610 | .02756 .50566 L
|
---|
611 | s
|
---|
612 | .02381 .53951 m
|
---|
613 | .02756 .53951 L
|
---|
614 | s
|
---|
615 | .02381 .55644 m
|
---|
616 | .02756 .55644 L
|
---|
617 | s
|
---|
618 | .02381 .57337 m
|
---|
619 | .02756 .57337 L
|
---|
620 | s
|
---|
621 | .02381 .5903 m
|
---|
622 | .02756 .5903 L
|
---|
623 | s
|
---|
624 | .25 Mabswid
|
---|
625 | .02381 0 m
|
---|
626 | .02381 .61803 L
|
---|
627 | s
|
---|
628 | 0 0 m
|
---|
629 | 1 0 L
|
---|
630 | 1 .61803 L
|
---|
631 | 0 .61803 L
|
---|
632 | closepath
|
---|
633 | clip
|
---|
634 | newpath
|
---|
635 | 0 0 1 r
|
---|
636 | .007 w
|
---|
637 | .02381 .35329 m
|
---|
638 | .04262 .3703 L
|
---|
639 | .06244 .39214 L
|
---|
640 | .08255 .42072 L
|
---|
641 | .09396 .44167 L
|
---|
642 | .09905 .45278 L
|
---|
643 | .10458 .46661 L
|
---|
644 | .11004 .48287 L
|
---|
645 | .11243 .49122 L
|
---|
646 | .11508 .5017 L
|
---|
647 | .11756 .51355 L
|
---|
648 | .11989 .52899 L
|
---|
649 | .12251 .54656 L
|
---|
650 | .125 .56035 L
|
---|
651 | .12723 .57062 L
|
---|
652 | .12967 .57981 L
|
---|
653 | .13191 .58664 L
|
---|
654 | .13395 .59162 L
|
---|
655 | .13636 .59622 L
|
---|
656 | .1376 .59807 L
|
---|
657 | .13894 .59973 L
|
---|
658 | .14018 .60096 L
|
---|
659 | .14132 .60184 L
|
---|
660 | .14242 .60249 L
|
---|
661 | .14357 .60296 L
|
---|
662 | .14479 .60325 L
|
---|
663 | .14548 .60331 L
|
---|
664 | .14612 .60332 L
|
---|
665 | .14729 .60319 L
|
---|
666 | .14853 .60287 L
|
---|
667 | .14964 .60244 L
|
---|
668 | .15068 .60191 L
|
---|
669 | .15305 .60029 L
|
---|
670 | .1556 .59799 L
|
---|
671 | .15794 .59542 L
|
---|
672 | .16321 .58831 L
|
---|
673 | .18154 .55452 L
|
---|
674 | .22117 .46854 L
|
---|
675 | .25928 .39356 L
|
---|
676 | .29984 .32787 L
|
---|
677 | .33888 .27688 L
|
---|
678 | .38038 .23315 L
|
---|
679 | .42036 .19894 L
|
---|
680 | .45883 .17172 L
|
---|
681 | .49975 .14757 L
|
---|
682 | .53915 .12804 L
|
---|
683 | .57704 .11202 L
|
---|
684 | .61738 .09739 L
|
---|
685 | .6562 .08524 L
|
---|
686 | .69748 .07404 L
|
---|
687 | Mistroke
|
---|
688 | .73724 .06464 L
|
---|
689 | .77548 .05669 L
|
---|
690 | .81618 .04921 L
|
---|
691 | .85536 .04283 L
|
---|
692 | .897 .03681 L
|
---|
693 | .93712 .03165 L
|
---|
694 | .97572 .02719 L
|
---|
695 | .97619 .02714 L
|
---|
696 | Mfstroke
|
---|
697 | 1 0 0 r
|
---|
698 | .02381 .01472 m
|
---|
699 | .02499 .01472 L
|
---|
700 | .02605 .01472 L
|
---|
701 | .02846 .01472 L
|
---|
702 | .03279 .01472 L
|
---|
703 | .04262 .01472 L
|
---|
704 | .05293 .01472 L
|
---|
705 | .06244 .01472 L
|
---|
706 | .07283 .01472 L
|
---|
707 | .0782 .01472 L
|
---|
708 | .0841 .01472 L
|
---|
709 | .08889 .01472 L
|
---|
710 | .09404 .01472 L
|
---|
711 | .09948 .01472 L
|
---|
712 | .10458 .01472 L
|
---|
713 | .10712 .01472 L
|
---|
714 | .10982 .01472 L
|
---|
715 | .11237 .01472 L
|
---|
716 | .1135 .01472 L
|
---|
717 | .11468 .01472 L
|
---|
718 | .11536 .01472 L
|
---|
719 | .11611 .01472 L
|
---|
720 | .11741 .01472 L
|
---|
721 | .11815 .01472 L
|
---|
722 | .11894 .01472 L
|
---|
723 | .11968 .01557 L
|
---|
724 | .12036 .01723 L
|
---|
725 | .12168 .02163 L
|
---|
726 | .12311 .02756 L
|
---|
727 | .12571 .04023 L
|
---|
728 | .1458 .15347 L
|
---|
729 | .16558 .24403 L
|
---|
730 | .17556 .27924 L
|
---|
731 | .18659 .31111 L
|
---|
732 | .20593 .35277 L
|
---|
733 | .21681 .36992 L
|
---|
734 | .22679 .38254 L
|
---|
735 | .23594 .39192 L
|
---|
736 | .24571 .4 L
|
---|
737 | .25644 .40693 L
|
---|
738 | .26641 .41184 L
|
---|
739 | .27666 .4156 L
|
---|
740 | .28243 .41723 L
|
---|
741 | .28776 .41845 L
|
---|
742 | .29282 .41938 L
|
---|
743 | .29755 .42007 L
|
---|
744 | .30248 .42062 L
|
---|
745 | .3051 .42084 L
|
---|
746 | .30791 .42103 L
|
---|
747 | .31046 .42116 L
|
---|
748 | Mistroke
|
---|
749 | .31188 .42122 L
|
---|
750 | .31317 .42126 L
|
---|
751 | .31438 .42128 L
|
---|
752 | .31568 .42131 L
|
---|
753 | .31691 .42132 L
|
---|
754 | .31804 .42132 L
|
---|
755 | .31868 .42132 L
|
---|
756 | .31937 .42132 L
|
---|
757 | .32061 .42131 L
|
---|
758 | .32136 .4213 L
|
---|
759 | .32208 .42129 L
|
---|
760 | .32342 .42126 L
|
---|
761 | .32483 .42122 L
|
---|
762 | .32613 .42117 L
|
---|
763 | .32909 .42104 L
|
---|
764 | .33373 .42076 L
|
---|
765 | .33884 .42034 L
|
---|
766 | .34919 .41922 L
|
---|
767 | .36857 .41627 L
|
---|
768 | .38944 .41216 L
|
---|
769 | .43064 .40226 L
|
---|
770 | .47031 .39155 L
|
---|
771 | .50847 .38087 L
|
---|
772 | .54909 .36953 L
|
---|
773 | .58818 .35886 L
|
---|
774 | .62973 .34793 L
|
---|
775 | .66977 .33786 L
|
---|
776 | .70829 .32862 L
|
---|
777 | .74926 .31928 L
|
---|
778 | .78871 .31076 L
|
---|
779 | .82665 .30297 L
|
---|
780 | .86704 .2951 L
|
---|
781 | .90592 .28792 L
|
---|
782 | .94725 .28068 L
|
---|
783 | .97619 .27584 L
|
---|
784 | Mfstroke
|
---|
785 | % End of Graphics
|
---|
786 | MathPictureEnd
|
---|
787 | \
|
---|
788 | \>"], "Graphics",
|
---|
789 | ImageSize->{439.375, 271.562},
|
---|
790 | ImageMargins->{{43, 0}, {0, 0}},
|
---|
791 | ImageRegion->{{0, 1}, {0, 1}},
|
---|
792 | ImageCache->GraphicsData["Bitmap", "\<\
|
---|
793 | CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`40006g00013b000`400?l00000o`00003ooooooonh
|
---|
794 | ooooo`00oooooonhooooo`00oooooonhooooo`00J_ooool5o`0004cooooo0ol0001<ooooo`?o0000
|
---|
795 | COooool3o`0004[ooooo0ol00004ooooo`;o00001oooool006_ooooo00Co0000oooooooooooo0000
|
---|
796 | COooool00ol0003oooooooooo`1:ooooo`05o`000?ooooooooooooooool00000Boooool01Ol0003o
|
---|
797 | oooooooooooooooo000004[ooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00006
|
---|
798 | ooooo`00K?ooool00ol0003oooooooooo`1:ooooo`Go0000Boooool01Ol0003ooooooooooooooooo
|
---|
799 | 000004_ooooo00Go0000ooooooooooooooooo`00001:ooooo`03o`000?oooooooooo00;ooooo00Co
|
---|
800 | 0000oooooooooooo00001_ooool006gooooo00?o0000ooooooooool0BOooool01?l0003ooooooooo
|
---|
801 | ool0001<ooooo`Co0000COooool3o`0004_ooooo00?o0000ooooooooool00_ooool01?l0003ooooo
|
---|
802 | ooooool00006ooooo`00J_ooool01Ol0003ooooooooooooooooo000004_ooooo00?o0000ooooool0
|
---|
803 | 0000C?ooool00ol0003oooooooooo`1=ooooo`05o`000?ooooooooooooooool00000B_ooool00ol0
|
---|
804 | 003oooooooooo`02ooooo`04o`000?ooooooooooo`0000Kooooo001Zooooo`05o`000?oooooooooo
|
---|
805 | ooooool00000C?ooool2o`0004gooooo00?o0000ooooooooool0C?ooool01Ol0003ooooooooooooo
|
---|
806 | oooo000004Wooooo0_l00004ooooo`04o`000?ooooooooooo`0000Kooooo001[ooooo`?o0000C_oo
|
---|
807 | ool00ol0003oooooooooo`1<ooooo`;o0000COooool3o`0004_ooooo00?o0000ooooooooool00ooo
|
---|
808 | ool2o`0000Oooooo000Mooooo`03o`000?oooooooooo0?ooooooV?ooool001gooooo00?o0000oooo
|
---|
809 | ooooool0oooooonHooooo`007Oooool00ol0003oooooooooo`3ooooooiSooooo000Mooooo`03o`00
|
---|
810 | 0?oooooooooo0?ooooooV?ooool001gooooo00?o0000ooooooooool0oooooonHooooo`007Oooool0
|
---|
811 | 0ol0003oooooooooo`3ooooooiSooooo000Cooooo`Wo0000:_oo003oo`0007;o0000000Looooob[o
|
---|
812 | o`004oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
813 | ool04?ooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
814 | ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
815 | ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
816 | ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
817 | ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
|
---|
818 | ool02?ooool001gooooo00?o0000ooooooooool09?ooool2ool002Oooooo00?o0000ooooooooool0
|
---|
819 | C?ooool00ol0003oooooooooo`1=ooooo`03o`000?oooooooooo04gooooo00?o0000ooooooooool0
|
---|
820 | COooool00ol0003oooooooooo`08ooooo`007Oooool00ol0003oooooooooo`0Tooooo`?oo`009_oo
|
---|
821 | ool00ol0003oooooooooo`1<ooooo`03o`000?oooooooooo04gooooo00?o0000ooooooooool0COoo
|
---|
822 | ool00ol0003oooooooooo`1=ooooo`03o`000?oooooooooo00Sooooo000Mooooo`03o`000?oooooo
|
---|
823 | oooo02Gooooo0_oo003oooooog7ooooo000Mooooo`03o`000?oooooooooo02Gooooo0_oo003ooooo
|
---|
824 | of7ooooo1_l00?l:ooooo`007Oooool00ol0003oooooooooo`0Uooooo`;oo`00oooooomIooooo`ko
|
---|
825 | 003o2_ooool001gooooo0_l0000Vooooo`;oo`00oooooomAoooooa7o003o3oooool001gooooo00?o
|
---|
826 | 0000ooooooooool09Oooool2ool00?ooooooB?oooolBo`00oaOooooo000Mooooo`03o`000?oooooo
|
---|
827 | oooo02Gooooo0ooo003ooooood3ooooo4Ol00?lOooooo`007Oooool00ol0003oooooooooo`0Voooo
|
---|
828 | o`;oo`00ooooooljooooo`ko003o:?ooool001gooooo00?o0000ooooooooool09_ooool2ool00?oo
|
---|
829 | oooo=?ooool=o`00oboooooo000Mooooo`03o`000?oooooooooo02Kooooo0_oo003oooooobgooooo
|
---|
830 | 3_l00?leooooo`007Oooool00ol0003oooooooooo`0Vooooo`;oo`00oooooolUoooooa3o003o>ooo
|
---|
831 | ool001gooooo0_l0000Wooooo`;oo`00oooooolNoooooa3o003o@_ooool001gooooo00?o0000oooo
|
---|
832 | ooooool09_ooool3ool00?oooooo5oooool>o`00od[ooooo000Mooooo`03o`000?oooooooooo02Oo
|
---|
833 | oooo0_oo003ooooooa;ooooo3?l00?mAooooo`007Oooool00ol0003oooooooooo`0Wooooo`;oo`00
|
---|
834 | ooooool=ooooo`_o003oEoooool001gooooo00?o0000ooooooooool09oooool2ool00?oooooo2Ooo
|
---|
835 | ool:o`00oecooooo000Mooooo`03o`000?oooooooooo02Oooooo0_oo003oooooo`Gooooo2Ol00?mQ
|
---|
836 | ooooo`007Oooool00ol0003oooooooooo`0Wooooo`?oo`00ooooool9o`00ofGooooo000Mooooo`;o
|
---|
837 | 0000:Oooool2ool00?_ooooo2Ol00?mYooooo`007Oooool00ol0003oooooooooo`0Xooooo`;oo`00
|
---|
838 | moooool9o`00ofgooooo000Mooooo`03o`000?oooooooooo02Sooooo0_oo003booooo`[o003oLOoo
|
---|
839 | ool001gooooo00?o0000ooooooooool0:?ooool2ool00>kooooo2_l00?meooooo`007Oooool00ol0
|
---|
840 | 003oooooooooo`0Xooooo`?oo`00jOooool9o`00og[ooooo000Mooooo`03o`000?oooooooooo02Wo
|
---|
841 | oooo0_oo003Uooooo`Wo003oO_ooool001gooooo00?o0000ooooooooool0:Oooool2ool00>3ooooo
|
---|
842 | 2_l00?n2ooooo`007Oooool2o`0002[ooooo0_oo003Looooo`[o003oQ_ooool001gooooo00?o0000
|
---|
843 | ooooooooool0:Oooool2ool00=Wooooo2?l00?n;ooooo`007Oooool00ol0003oooooooooo`0Yoooo
|
---|
844 | o`?oo`00eOooool7o`00ohoooooo000Mooooo`03o`000?oooooooooo02[ooooo0_oo003Booooo`Oo
|
---|
845 | 003oT_ooool001gooooo00?o0000ooooooooool0:_ooool2ool00=3ooooo1_l00?nEooooo`000_oo
|
---|
846 | ool2o`0000Cooooo00Co0000oooooooooooooooo1Ol00002ooooo`?o00001oooool00ol0003ooooo
|
---|
847 | ooooo`0Zooooo`;oo`00cOooool6o`00oiSooooo00001Ooooooo0000oooooooooooo000000Sooooo
|
---|
848 | 00Ko0000oooooooooooo0000ooooool00003ooooo`03o`000?oooooooooo00Cooooo00?o0000oooo
|
---|
849 | ooooool0:_ooool2ool00<[ooooo1ol00?nJooooo`0000Goooooo`000?ooooooooooo`000009oooo
|
---|
850 | o`03o`000?oooooooooo00Gooooo00?o0000ooooooooool01?ooool3o`0002[ooooo0ooo0037oooo
|
---|
851 | o`Ko003oWOooool00005ooooool0003oooooooooool000002_ooool00ol0003oooooooooo`04oooo
|
---|
852 | o`03o`000?oooooooooo00Cooooo00?o0000ooooooooool0:oooool2ool00<Cooooo1_l00?nPoooo
|
---|
853 | o`0000Goooooo`000?ooooooooooo`000007ooooo`06o`000?ooooooooooooooool0003ooooo1?l0
|
---|
854 | 0007ooooo`03o`000?oooooooooo02_ooooo0_oo0031ooooo`Oo003oX_ooool00005ooooool0003o
|
---|
855 | ooooooooool000001oooool01ol0003ooooooooooooooooo0000ooooool000002_ooool00ol0003o
|
---|
856 | ooooooooo`0[ooooo`;oo`00__ooool7o`00ojGooooo0002ooooo`;o00002Oooool3o`0000;ooooo
|
---|
857 | 1Ol00006ooooo`03o`000?oooooooooo02_ooooo0_oo002kooooo`Oo003oZ?ooool001gooooo00?o
|
---|
858 | 0000ooooooooool0:oooool2ool00;Sooooo1ol00?n[ooooo`007Oooool00ol0003oooooooooo`0[
|
---|
859 | ooooo`?oo`00]Oooool6o`00ojkooooo000Mooooo`;o0000;Oooool2ool00;;ooooo1_l00?naoooo
|
---|
860 | o`007Oooool00ol0003oooooooooo`0/ooooo`;oo`00[oooool7o`00ok?ooooo000Mooooo`03o`00
|
---|
861 | 0?oooooooooo02cooooo0_oo002]ooooo`Ko003o]_ooool001gooooo00?o0000ooooooooool0;?oo
|
---|
862 | ool2ool00:[ooooo1_l00?niooooo`007Oooool00ol0003oooooooooo`0/ooooo`?oo`00Y_ooool7
|
---|
863 | o`00ok_ooooo000Mooooo`03o`000?oooooooooo02gooooo0_oo002Tooooo`Ko003o__ooool001go
|
---|
864 | oooo00?o0000ooooooooool0;Oooool2ool00:;ooooo1Ol00?o1ooooo`007Oooool00ol0003ooooo
|
---|
865 | ooooo`0]ooooo`;oo`00X?ooool5o`00ol?ooooo000Mooooo`;o0000;_ooool2ool009kooooo1Ol0
|
---|
866 | 0?o5ooooo`007Oooool00ol0003oooooooooo`0]ooooo`?oo`00Voooool5o`00olOooooo000Moooo
|
---|
867 | o`03o`000?oooooooooo02kooooo0_oo002Jooooo`Co003obOooool001gooooo00?o0000oooooooo
|
---|
868 | ool0;_ooool2ool009Sooooo1?l00?o;ooooo`007Oooool00ol0003oooooooooo`0^ooooo`;oo`00
|
---|
869 | U_ooool5o`00olcooooo000Mooooo`03o`000?oooooooooo02kooooo0_oo002Dooooo`Go003oc_oo
|
---|
870 | ool001gooooo00?o0000ooooooooool0;_ooool3ool0097ooooo1Ol00?o@ooooo`007Oooool2o`00
|
---|
871 | 033ooooo0_oo002?ooooo`Go003od_ooool001gooooo00?o0000ooooooooool0;oooool2ool008ko
|
---|
872 | oooo1?l00?oDooooo`007Oooool00ol0003oooooooooo`0_ooooo`;oo`00S?ooool4o`00omKooooo
|
---|
873 | 000Mooooo`03o`000?oooooooooo02oooooo0_oo002:ooooo`Go003oeoooool001gooooo00?o0000
|
---|
874 | ooooooooool0;oooool3ool008Sooooo1?l00?oIooooo`007Oooool00ol0003oooooooooo`0`oooo
|
---|
875 | o`;oo`00Q_ooool4o`00om_ooooo000Mooooo`03o`000?oooooooooo033ooooo0_oo0024ooooo`Go
|
---|
876 | 003og?ooool001gooooo0_l0000aooooo`;oo`00Poooool4o`00omkooooo000Mooooo`03o`000?oo
|
---|
877 | oooooooo033ooooo0_oo0021ooooo`Co003oh?ooool001gooooo00?o0000ooooooooool0<?ooool3
|
---|
878 | ool007kooooo1Ol00?oQooooo`007Oooool00ol0003oooooooooo`0aooooo`;oo`00OOooool4o`00
|
---|
879 | on?ooooo0008ooooo`;o00001?ooool00ol0003oooooooooo`02ooooo`?o00001oooool00ol0003o
|
---|
880 | ooooooooo`0aooooo`;oo`00Noooool4o`00onGooooo0007ooooo`04o`000?ooooooooooo`0000Oo
|
---|
881 | oooo00Go0000ooooooooooooooooo`000006ooooo`03o`000?oooooooooo037ooooo0_oo001joooo
|
---|
882 | o`Co003oi_ooool000Oooooo00Co0000oooooooooooo00002oooool00ol0003oooooooooo`04oooo
|
---|
883 | o`03o`000?oooooooooo037ooooo0_oo001hooooo`Co003oj?ooool000Oooooo00Co0000oooooooo
|
---|
884 | oooo00002oooool00ol0003oooooooooo`04ooooo`?o0000<Oooool3ool007Kooooo1?l00?oYoooo
|
---|
885 | o`001oooool01?l0003oooooooooool00007ooooo`Co00001oooool00ol0003oooooooooo`0boooo
|
---|
886 | o`;oo`00MOooool3o`00on_ooooo0007ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooo
|
---|
887 | ooooool02?ooool00ol0003oooooooooo`0booooo`;oo`00Loooool4o`00oncooooo0008ooooo`;o
|
---|
888 | 00002?ooool5o`0000Kooooo00?o0000ooooooooool0<_ooool2ool007;ooooo1?l00?o]ooooo`00
|
---|
889 | 7Oooool00ol0003oooooooooo`0booooo`;oo`00L?ooool4o`00onoooooo000Mooooo`03o`000?oo
|
---|
890 | oooooooo03;ooooo0ooo001^ooooo`Co003ol?ooool001gooooo00?o0000ooooooooool0<oooool2
|
---|
891 | ool006cooooo1?l00?obooooo`007Oooool2o`0003Cooooo0_oo001[ooooo`Co003oloooool001go
|
---|
892 | oooo00?o0000ooooooooool0<oooool2ool006[ooooo0ol00?oeooooo`007Oooool00ol0003ooooo
|
---|
893 | ooooo`0cooooo`?oo`00J?ooool3o`00ooKooooo000Mooooo`03o`000?oooooooooo03Cooooo0_oo
|
---|
894 | 001Wooooo`?o003omoooool001gooooo00?o0000ooooooooool0=?ooool2ool006Gooooo1?l00?oh
|
---|
895 | ooooo`007Oooool00ol0003oooooooooo`0dooooo`;oo`00I?ooool4o`00ooWooooo000Mooooo`03
|
---|
896 | o`000?oooooooooo03Cooooo0_oo001Sooooo`?o003onoooool001gooooo0_l0000eooooo`?oo`00
|
---|
897 | HOooool3o`00oocooooo000Mooooo`03o`000?oooooooooo03Gooooo0_oo001Oooooo`Co003ooOoo
|
---|
898 | ool001gooooo00?o0000ooooooooool0=Oooool2ool005kooooo1?l00?onooooo`007Oooool00ol0
|
---|
899 | 003oooooooooo`0eooooo`;oo`00GOooool3o`00oooooooo0Oooool001gooooo00?o0000oooooooo
|
---|
900 | ool0=Oooool2ool005cooooo0ol00?ooooooo`;ooooo000Mooooo`03o`000?oooooooooo03Gooooo
|
---|
901 | 0ooo001Jooooo`?o003oooooool3ooooo`007Oooool00ol0003oooooooooo`0fooooo`;oo`00FOoo
|
---|
902 | ool3o`00oooooooo1?ooool001gooooo0_l0000gooooo`;oo`00FOooool2o`00oooooooo1Oooool0
|
---|
903 | 01gooooo00?o0000ooooooooool0=_ooool2ool005Sooooo0ol00?ooooooo`Gooooo000Mooooo`03
|
---|
904 | o`000?oooooooooo03Kooooo0_oo001Gooooo`?o003oooooool6ooooo`007Oooool00ol0003ooooo
|
---|
905 | ooooo`0fooooo`?oo`00EOooool3o`00oooooooo1oooool001gooooo00?o0000ooooooooool0=ooo
|
---|
906 | ool2ool005Cooooo0ol00?ooooooo`Sooooo000Mooooo`03o`000?oooooooooo03Oooooo0_oo001C
|
---|
907 | ooooo`?o003oooooool9ooooo`007Oooool00ol0003oooooooooo`0gooooo`;oo`00D_ooool3o`00
|
---|
908 | oooooooo2_ooool001gooooo0_l0000hooooo`?oo`00D?ooool3o`00oooooooo2oooool001gooooo
|
---|
909 | 00?o0000ooooooooool0>?ooool2ool004oooooo0ol00?ooooooo`cooooo000Mooooo`03o`000?oo
|
---|
910 | oooooooo03Sooooo0_oo001>ooooo`?o003oooooool=ooooo`007Oooool00ol0003oooooooooo`0h
|
---|
911 | ooooo`;oo`00C_ooool2o`00oooooooo3_ooool001gooooo00?o0000ooooooooool0>?ooool3ool0
|
---|
912 | 04cooooo0ol00?ooooooo`kooooo0002ooooo`;o00001?ooool00ol0003oooooooooo`03ooooo`03
|
---|
913 | o`000?oooooooooo00;ooooo0ol00007ooooo`03o`000?oooooooooo03Wooooo0_oo001;ooooo`?o
|
---|
914 | 003oooooool?ooooo`0000Goooooo`000?ooooooooooo`000009ooooo`05o`000?oooooooooooooo
|
---|
915 | ool000000oooool00ol0003oooooooooo`04ooooo`03o`000?oooooooooo03Wooooo0_oo001:oooo
|
---|
916 | o`?o003oooooool@ooooo`0000Goooooo`000?ooooooooooo`00000:ooooo`03o`000?oooooooooo
|
---|
917 | 00Cooooo00?o0000ooooooooool01?ooool3o`0003Wooooo0ooo0018ooooo`?o003ooooooolAoooo
|
---|
918 | o`0000Goooooo`000?ooooooooooo`00000:ooooo`03o`000?oooooooooo00Cooooo00?o0000oooo
|
---|
919 | ooooool01?ooool00ol0003oooooooooo`0jooooo`;oo`00Aoooool3o`00oooooooo4_ooool00005
|
---|
920 | ooooool0003oooooooooool000002oooool00ol0003oooooo`000003o`0000Oooooo00?o0000oooo
|
---|
921 | ooooool0>_ooool2ool004Kooooo0ol00?oooooooa?ooooo00001Ooooooo0000oooooooooooo0000
|
---|
922 | 00Oooooo00Oo0000ooooooooooooooooo`000?oooooo000000[ooooo00?o0000ooooooooool0>_oo
|
---|
923 | ool2ool004Gooooo0ol00?ooooooo`Gooooo1Ooo000:ooooo`000_ooool2o`0000Sooooo1Ol00000
|
---|
924 | 0ooooooo0000o`000003o`0000Kooooo00?o0000ooooooooool0>_ooool3ool004?ooooo0ol00?oo
|
---|
925 | ooooo`_oo`002_ooool001gooooo00?o0000ooooooooool0>oooool2ool004?ooooo0_l00?ojoooo
|
---|
926 | o`goo`003_ooool001gooooo00?o0000ooooooooool0>oooool2ool004;ooooo0ol00?odooooo`go
|
---|
927 | o`005?ooool001gooooo0_l0000looooo`?oo`00@?ooool3o`00onoooooo3Ooo000Jooooo`007Ooo
|
---|
928 | ool00ol0003oooooooooo`0looooo`;oo`00?oooool3o`00on[ooooo3Ooo000Pooooo`007Oooool0
|
---|
929 | 0ol0003oooooooooo`0looooo`;oo`00?_ooool3o`00onKooooo3?oo000Vooooo`007Oooool00ol0
|
---|
930 | 003oooooooooo`0looooo`?oo`00?Oooool2o`00on;ooooo2ooo000/ooooo`007Oooool00ol0003o
|
---|
931 | ooooooooo`0mooooo`;oo`00??ooool3o`00omgooooo2ooo000aooooo`007Oooool00ol0003ooooo
|
---|
932 | ooooo`0mooooo`?oo`00>_ooool3o`00om[ooooo2_oo000fooooo`007Oooool00ol0003ooooooooo
|
---|
933 | o`0nooooo`;oo`00>Oooool3o`00omKooooo2_oo000kooooo`007Oooool00ol0003oooooooooo`0n
|
---|
934 | ooooo`;oo`00>?ooool3o`00om?ooooo2_oo000oooooo`007Oooool2o`0003oooooo0ooo000foooo
|
---|
935 | o`?o003ocoooool:ool004Cooooo000Mooooo`03o`000?oooooooooo03oooooo0_oo000fooooo`;o
|
---|
936 | 003oboooool;ool004Sooooo000Mooooo`03o`000?oooooooooo03oooooo0_oo000eooooo`?o003o
|
---|
937 | a_ooool;ool004gooooo000Mooooo`03o`000?oooooooooo03oooooo0ooo000cooooo`?o003o`_oo
|
---|
938 | ool;ool005;ooooo000Mooooo`03o`000?oooooooooo043ooooo0_oo000booooo`?o003o_oooool:
|
---|
939 | ool005Oooooo000Mooooo`03o`000?oooooooooo043ooooo0ooo000`ooooo`?o003o_?ooool9ool0
|
---|
940 | 05cooooo000Mooooo`03o`000?oooooooooo047ooooo0_oo000`ooooo`;o003o^Oooool9ool0063o
|
---|
941 | oooo000Mooooo`;o0000@_ooool3ool002kooooo0ol00?ndooooo`[oo`00I?ooool001gooooo00?o
|
---|
942 | 0000ooooooooool0@_ooool2ool002gooooo0ol00?n_ooooo`coo`00J?ooool001gooooo00?o0000
|
---|
943 | ooooooooool0@_ooool2ool002cooooo0ol00?n[ooooo`coo`00KOooool001gooooo00?o0000oooo
|
---|
944 | ooooool0@_ooool3ool002[ooooo0ol00?nWooooo`_oo`00Loooool001gooooo00?o0000oooooooo
|
---|
945 | ool0@oooool2ool002[ooooo0_l00?nTooooo`[oo`00N?ooool001gooooo00?o0000ooooooooool0
|
---|
946 | @oooool3ool002Sooooo0ol00?nOooooo`[oo`00OOooool001gooooo00?o0000ooooooooool0A?oo
|
---|
947 | ool2ool002Oooooo0ol00?nLooooo`[oo`00POooool001gooooo0_l00015ooooo`?oo`009_ooool2
|
---|
948 | o`00oiWooooo2Ooo0026ooooo`007Oooool00ol0003oooooooooo`15ooooo`;oo`009Oooool3o`00
|
---|
949 | oiKooooo2?oo002:ooooo`007Oooool00ol0003oooooooooo`15ooooo`?oo`009?ooool2o`00oiCo
|
---|
950 | oooo1ooo002>ooooo`007Oooool00ol0003oooooooooo`16ooooo`;oo`008oooool3o`00oi7ooooo
|
---|
951 | 1ooo002Aooooo`004oooool3o`0000Oooooo00?o0000ooooooooool0A_ooool2ool002;ooooo0ol0
|
---|
952 | 0?n?ooooo`Ooo`00U?ooool001Cooooo00?o0000ooooooooool01_ooool00ol0003oooooooooo`16
|
---|
953 | ooooo`?oo`008Oooool2o`00ohcooooo2?oo002Gooooo`005?ooool00ol0003oooooooooo`06oooo
|
---|
954 | o`03o`000?oooooooooo04Oooooo0_oo000Pooooo`?o003oQoooool:ool009[ooooo000Dooooo`03
|
---|
955 | o`000?oooooooooo00Gooooo0ol00?l00ol0003oooooooooo`15ooooo`?oo`007oooool2o`00ohCo
|
---|
956 | oooo2_oo002Nooooo`005?ooool00ol0003oooooooooo`05ooooo`Co003oB?ooool2ool001kooooo
|
---|
957 | 0ol00?moooooo`[oo`00Xoooool001?ooooo0_l00008ooooo`04o`000?l00?oo003oo`00odOooooo
|
---|
958 | 0ooo000Looooo`?o003oO?ooool:ool00:Oooooo000Dooooo`03o`000?oooooooooo00Kooooo00?o
|
---|
959 | 0000ooooool00?l00_l00?m7ooooo`?oo`006oooool2o`00og[ooooo2?oo002/ooooo`007Oooool0
|
---|
960 | 0ol0003oooooooooo`03o`00odOooooo0ooo000Iooooo`?o003oMoooool7ool00;3ooooo000Moooo
|
---|
961 | o`04o`000?ooooooooooooooo`?o003oAoooool2ool001Wooooo0_l00?meooooo`Ooo`00/oooool0
|
---|
962 | 01gooooo00?o0000ooooooooool00_ooool3o`00odKooooo0ooo000Gooooo`?o003oL_ooool7ool0
|
---|
963 | 0;Kooooo000Mooooo`;o00001?ooool3o`00odKooooo0ooo000Eooooo`?o003oKoooool8ool00;Wo
|
---|
964 | oooo000Mooooo`03o`000?oooooooooo00Cooooo0_l00?m7ooooo`;oo`005Oooool2o`00ofcooooo
|
---|
965 | 2Ooo002looooo`007Oooool00ol0003oooooooooo`04ooooo`?o003oA_ooool3ool001?ooooo0ol0
|
---|
966 | 0?mWooooo`[oo`00`?ooool001gooooo00?o0000ooooooooool01Oooool3o`00odKooooo0ooo000B
|
---|
967 | ooooo`;o003oI?ooool:ool00<Cooooo000Mooooo`03o`000?oooooooooo00Kooooo0ol00?m6oooo
|
---|
968 | o`?oo`004?ooool3o`00of3ooooo2Ooo0039ooooo`007Oooool00ol0003oooooooooo`07ooooo`?o
|
---|
969 | 003oA_ooool3ool000kooooo0ol00?mNooooo`Soo`00cOooool001gooooo00?o0000ooooooooool0
|
---|
970 | 2?ooool3o`00odKooooo0ooo000=ooooo`;o003oG?ooool7ool00=7ooooo000Mooooo`;o00002_oo
|
---|
971 | ool3o`00odKooooo0ooo000;ooooo`?o003oFOooool7ool00=Cooooo000Mooooo`03o`000?oooooo
|
---|
972 | oooo00[ooooo0ol00?m6ooooo`?oo`002_ooool2o`00oeOooooo1ooo003Gooooo`007Oooool00ol0
|
---|
973 | 003oooooooooo`0;ooooo`?o003oA_ooool4ool000Oooooo0ol00?mCooooo`Soo`00f_ooool001go
|
---|
974 | oooo00?o0000ooooooooool03?ooool2o`00odOooooo1?oo0005ooooo`?o003oD?ooool9ool00=go
|
---|
975 | oooo000Mooooo`03o`000?oooooooooo00cooooo0ol00?m8ooooo`?oo`001?ooool2o`00odcooooo
|
---|
976 | 2_oo003Qooooo`007Oooool00ol0003oooooooooo`0=ooooo`?o003oB?ooool4ool00004ooooool0
|
---|
977 | 0?oo003oo`00odSooooo2_oo003Uooooo`007Oooool00ol0003oooooooooo`0>ooooo`;o003oBOoo
|
---|
978 | ool4ool000;o003oAOooool9ool00>[ooooo000Mooooo`;o00003oooool3o`00od[ooooo0ooo0000
|
---|
979 | 0ol00?ooooooooooo`0oooooo`Woo`00k_ooool001gooooo00?o0000ooooooooool03oooool3o`00
|
---|
980 | od[ooooo1?oo000kooooo`[oo`00l_ooool001gooooo00?o0000ooooooooool04?ooool2o`00odWo
|
---|
981 | oooo0_l00?l5ool003Gooooo2_oo003fooooo`007Oooool00ol0003oooooooooo`0@ooooo`?o003o
|
---|
982 | B?ooool2o`00o`;ooooo1Ooo000_ooooo`Woo`00noooool001gooooo00?o0000ooooooooool04Ooo
|
---|
983 | ool3o`00odKooooo0ol00?l4ooooo`Koo`009oooool:ool00?oooooo000Mooooo`03o`000?oooooo
|
---|
984 | oooo01;ooooo0_l00?m6ooooo`;o003o1oooool6ool001oooooo3?oo003oooooo`Cooooo000Moooo
|
---|
985 | o`03o`000?oooooooooo01;ooooo0ol00?m4ooooo`?o003o2_ooool7ool001Gooooo3Ooo003ooooo
|
---|
986 | o`Wooooo000Mooooo`;o00005?ooool3o`00od?ooooo0_l00?l=ooooob7oo`00ooooool?ooooo`00
|
---|
987 | 7Oooool00ol0003oooooooooo`0Dooooo`;o003o@_ooool3o`00oa7ooooo5ooo003ooooooaGooooo
|
---|
988 | 000Mooooo`03o`000?oooooooooo01Cooooo0ol00?m1ooooo`;o003ooooooolnooooo`007Oooool0
|
---|
989 | 0ol0003oooooooooo`0Eooooo`;o003o@?ooool3o`00oooooooo?_ooool001gooooo00?o0000oooo
|
---|
990 | ooooool05Oooool3o`00ocoooooo0_l00?ooooooocoooooo00001?oooooo0000o`000?l00004oooo
|
---|
991 | o`04o`000?ooooooooooooooo`Go00000_ooool3o`0000Oooooo00?o0000ooooooooool05_ooool3
|
---|
992 | o`00ocgooooo0ol00?ooooooocoooooo0002ooooo`03o`000?oooooooooo00Sooooo00Ko0000oooo
|
---|
993 | oooooooo0000ooooool00003ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool05ooo
|
---|
994 | ool2o`00occooooo0ol00?oooooood3ooooo0002ooooo`03o`000?oooooooooo00Wooooo00?o0000
|
---|
995 | ooooooooool01Oooool00ol0003oooooooooo`04ooooo`?o00005oooool3o`00oc_ooooo0_l00?oo
|
---|
996 | oooood7ooooo0002ooooo`03o`000?oooooooooo00[ooooo00?o0000ooooooooool01?ooool00ol0
|
---|
997 | 003oooooooooo`04ooooo`03o`000?oooooooooo01Sooooo0_l00?ljooooo`?o003ooooooom1oooo
|
---|
998 | o`000_ooool00ol0003oooooooooo`07ooooo`06o`000?ooooooooooooooool0003ooooo1?l00007
|
---|
999 | ooooo`03o`000?oooooooooo01Sooooo0ol00?liooooo`;o003ooooooom2ooooo`0000?oooooo`00
|
---|
1000 | 0?l000002Oooool01ol0003ooooooooooooooooo0000ooooool000002_ooool00ol0003ooooooooo
|
---|
1001 | o`0Iooooo`;o003o>?ooool3o`00oooooooo@_ooool000;ooooo00?o0000ooooooooool02?ooool3
|
---|
1002 | o`0000;ooooo1Ol00006ooooo`03o`000?oooooooooo01Wooooo0ol00?lgooooo`;o003ooooooom3
|
---|
1003 | ooooo`007Oooool00ol0003oooooooooo`0Jooooo`;o003o=_ooool3o`00oooooooo@oooool001go
|
---|
1004 | oooo00?o0000ooooooooool06_ooool2o`00ocKooooo0_l00?ooooooodCooooo000Mooooo`;o0000
|
---|
1005 | 6oooool3o`00ocCooooo0ol00?ooooooodCooooo000Mooooo`03o`000?oooooooooo01_ooooo0_l0
|
---|
1006 | 0?ldooooo`;o003ooooooom5ooooo`007Oooool00ol0003oooooooooo`0Kooooo`?o003o<_ooool3
|
---|
1007 | o`00ooooooooAOooool001gooooo00?o0000ooooooooool07?ooool3o`00oc7ooooo0_l00?oooooo
|
---|
1008 | odKooooo000Mooooo`03o`000?oooooooooo01gooooo0_l00?l`ooooo`?o003ooooooom6ooooo`00
|
---|
1009 | 7Oooool00ol0003oooooooooo`0Mooooo`?o003o;oooool2o`00ooooooooAoooool001gooooo00?o
|
---|
1010 | 0000ooooooooool07_ooool2o`00obkooooo0ol00?ooooooodOooooo000Mooooo`;o00007oooool2
|
---|
1011 | o`00obkooooo0_l00?ooooooodSooooo000Mooooo`03o`000?oooooooooo01kooooo0ol00?l/oooo
|
---|
1012 | o`?o003ooooooom8ooooo`007Oooool00ol0003oooooooooo`0Oooooo`;o003o;?ooool2o`00oooo
|
---|
1013 | ooooBOooool001gooooo00?o0000ooooooooool07oooool2o`00ob_ooooo0ol00?ooooooodWooooo
|
---|
1014 | 000Mooooo`03o`000?oooooooooo01oooooo0ol00?lZooooo`;o003ooooooom:ooooo`007Oooool0
|
---|
1015 | 0ol0003oooooooooo`0Pooooo`;o003o:_ooool2o`00ooooooooB_ooool001gooooo00?o0000oooo
|
---|
1016 | ooooool08?ooool2o`00obWooooo0ol00?oooooood[ooooo000Mooooo`03o`000?oooooooooo023o
|
---|
1017 | oooo0_l00?lYooooo`;o003ooooooom;ooooo`007Oooool2o`00027ooooo0ol00?lWooooo`?o003o
|
---|
1018 | oooooom;ooooo`007Oooool00ol0003oooooooooo`0Qooooo`;o003o9oooool2o`00ooooooooC?oo
|
---|
1019 | ool001gooooo00?o0000ooooooooool08Oooool2o`00obKooooo0ol00?ooooooodcooooo000Moooo
|
---|
1020 | o`03o`000?oooooooooo027ooooo0_l00?lVooooo`;o003ooooooom=ooooo`007Oooool00ol0003o
|
---|
1021 | ooooooooo`0Qooooo`?o003o9?ooool3o`00ooooooooCOooool001gooooo00?o0000ooooooooool0
|
---|
1022 | 8_ooool2o`00obCooooo0_l00?ooooooodkooooo000Mooooo`03o`000?oooooooooo02;ooooo0_l0
|
---|
1023 | 0?lTooooo`;o003ooooooom>ooooo`007Oooool2o`0002?ooooo0_l00?lSooooo`?o003ooooooom>
|
---|
1024 | ooooo`007Oooool00ol0003oooooooooo`0Rooooo`?o003o8_ooool2o`00ooooooooCoooool001go
|
---|
1025 | oooo00?o0000ooooooooool08oooool2o`00ob7ooooo0ol00?ooooooodoooooo000Mooooo`03o`00
|
---|
1026 | 0?oooooooooo02?ooooo0_l00?lQooooo`;o003ooooooom@ooooo`001oooool3o`0000Cooooo00?o
|
---|
1027 | 0000ooooooooool00_ooool3o`0000Oooooo00?o0000ooooooooool08oooool2o`00ob3ooooo0ol0
|
---|
1028 | 0?oooooooe3ooooo0008ooooo`03o`000?oooooooooo00Oooooo00Go0000ooooooooooooooooo`00
|
---|
1029 | 0006ooooo`03o`000?oooooooooo02?ooooo0_l00?lPooooo`;o003ooooooomAooooo`002?ooool0
|
---|
1030 | 0ol0003oooooooooo`0;ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool08oooool2
|
---|
1031 | o`00oaoooooo0ol00?oooooooe7ooooo0008ooooo`03o`000?oooooooooo00_ooooo00?o0000oooo
|
---|
1032 | ooooool01?ooool3o`0002?ooooo0ol00?lNooooo`;o003ooooooomBooooo`002?ooool00ol0003o
|
---|
1033 | ooooooooo`07ooooo`Co00001oooool00ol0003oooooooooo`0Tooooo`;o003o7_ooool2o`00oooo
|
---|
1034 | ooooD_ooool000Oooooo0_l00009ooooo`03o`000?oooooooooo00Sooooo00?o0000ooooooooool0
|
---|
1035 | 9?ooool2o`00oagooooo0ol00?oooooooe;ooooo0008ooooo`03o`000?oooooooooo00Oooooo1Ol0
|
---|
1036 | 0006ooooo`03o`000?oooooooooo02Cooooo0_l00?lMooooo`;o003ooooooomCooooo`007Oooool0
|
---|
1037 | 0ol0003oooooooooo`0Tooooo`;o003o7?ooool3o`00ooooooooDoooool001gooooo00?o0000oooo
|
---|
1038 | ooooool09?ooool2o`00oacooooo0_l00?oooooooeCooooo000Mooooo`03o`000?oooooooooo02Co
|
---|
1039 | oooo0_l00?lKooooo`?o003ooooooomDooooo`007Oooool2o`0002Gooooo0ol00?lJooooo`;o003o
|
---|
1040 | oooooomEooooo`007Oooool00ol0003oooooooooo`0Uooooo`;o003o6Oooool3o`00ooooooooEOoo
|
---|
1041 | ool001gooooo00?o0000ooooooooool09Oooool2o`00oaWooooo0_l00?oooooooeKooooo000Moooo
|
---|
1042 | o`03o`000?oooooooooo02Gooooo0_l00?lIooooo`;o003ooooooomFooooo`007Oooool00ol0003o
|
---|
1043 | ooooooooo`0Uooooo`;o003o6?ooool3o`00ooooooooE_ooool001gooooo00?o0000ooooooooool0
|
---|
1044 | 9Oooool2o`00oaSooooo0_l00?oooooooeOooooo000Mooooo`03o`000?oooooooooo02Gooooo0_l0
|
---|
1045 | 0?lGooooo`?o003ooooooomGooooo`007Oooool2o`0002Kooooo0ol00?lFooooo`;o003ooooooomH
|
---|
1046 | ooooo`007Oooool00ol0003oooooooooo`0Vooooo`;o003o5Oooool3o`00ooooooooF?ooool001go
|
---|
1047 | oooo00?o0000ooooooooool09_ooool2o`00oaGooooo0_l00?oooooooeWooooo000Mooooo`03o`00
|
---|
1048 | 0?oooooooooo02Kooooo0_l00?lDooooo`?o003ooooooomIooooo`007Oooool00ol0003ooooooooo
|
---|
1049 | o`0Vooooo`;o003o4oooool3o`00ooooooooF_ooool001gooooo00?o0000ooooooooool09_ooool3
|
---|
1050 | o`00oa;ooooo0_l00?oooooooe_ooooo000Mooooo`03o`000?oooooooooo02Oooooo0_l00?lAoooo
|
---|
1051 | o`?o003ooooooomKooooo`007Oooool2o`0002Sooooo0_l00?lAooooo`;o003ooooooomLooooo`00
|
---|
1052 | 7Oooool00ol0003oooooooooo`0Wooooo`;o003o4?ooool3o`00ooooooooG?ooool001gooooo00?o
|
---|
1053 | 0000ooooooooool09oooool3o`00o`oooooo0_l00?oooooooegooooo000Mooooo`03o`000?oooooo
|
---|
1054 | oooo02Sooooo0_l00?l>ooooo`?o003ooooooomMooooo`007Oooool00ol0003oooooooooo`0Xoooo
|
---|
1055 | o`;o003o3Oooool3o`00ooooooooG_ooool001gooooo00?o0000ooooooooool0:?ooool3o`00o`co
|
---|
1056 | oooo0_l00?oooooooeoooooo000Mooooo`03o`000?oooooooooo02Wooooo0_l00?l;ooooo`?o003o
|
---|
1057 | oooooomOooooo`007Oooool2o`0002[ooooo0_l00?l;ooooo`;o003ooooooomPooooo`007Oooool0
|
---|
1058 | 0ol0003oooooooooo`0Yooooo`?o003o2Oooool3o`00ooooooooH?ooool001gooooo00?o0000oooo
|
---|
1059 | ooooool0:_ooool2o`00o`Sooooo0ol00?ooooooof7ooooo000Mooooo`03o`000?oooooooooo02[o
|
---|
1060 | oooo0ol00?l6ooooo`?o003ooooooomRooooo`007Oooool00ol0003oooooooooo`0[ooooo`?o003o
|
---|
1061 | 1?ooool3o`00ooooooooHoooool00004ooooool0003o0000o`0000Cooooo00?o0000ooooooooool0
|
---|
1062 | 0oooool00ol0003oooooooooo`02ooooo`?o00001oooool00ol0003oooooooooo`0/ooooo`So003o
|
---|
1063 | oooooomTooooo`000_ooool00ol0003oooooooooo`09ooooo`05o`000?ooooooooooooooool00000
|
---|
1064 | 0oooool00ol0003oooooooooo`04ooooo`03o`000?oooooooooo02gooooo1_l00?ooooooofGooooo
|
---|
1065 | 0002ooooo`03o`000?oooooooooo00[ooooo00?o0000ooooooooool01?ooool00ol0003ooooooooo
|
---|
1066 | o`04ooooo`?o0000;_ooool3o`00ooooooooIoooool000;ooooo00?o0000ooooooooool02_ooool0
|
---|
1067 | 0ol0003oooooooooo`04ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool0oooooonH
|
---|
1068 | ooooo`000_ooool00ol0003oooooooooo`0;ooooo`03o`000?oooooo000000?o00001oooool00ol0
|
---|
1069 | 003oooooooooo`3ooooooiSooooo00000ooooooo0000o`000009ooooo`07o`000?oooooooooooooo
|
---|
1070 | ool0003oooooo`00000:ooooo`03o`000?oooooooooo0?ooooooV?ooool000;ooooo00?o0000oooo
|
---|
1071 | ooooool01oooool5o`000003ooooool0003o000000?o00001_ooool00ol0003oooooooooo`3ooooo
|
---|
1072 | oiSooooo000Mooooo`03o`000?oooooooooo0?ooooooV?ooool00?oooooo^?ooool00001\
|
---|
1073 | \>"],
|
---|
1074 | ImageRangeCache->{{{0, 438.375}, {270.562, 0}} -> {-0.732569, -0.112555, \
|
---|
1075 | 0.025053, 0.00704711}}]
|
---|
1076 | }, Open ]],
|
---|
1077 |
|
---|
1078 | Cell["\<\
|
---|
1079 | Plot of the real and imaginary part of 3*I(a) as defined in the \
|
---|
1080 | notes (I use 3*I(a) so that the function goes to 1 as a->0.)\
|
---|
1081 | \>", "Text"]
|
---|
1082 | }, Open ]],
|
---|
1083 |
|
---|
1084 | Cell[CellGroupData[{
|
---|
1085 |
|
---|
1086 | Cell[TextData[{
|
---|
1087 | "Function to be integrated to get the LO cross section. In general, we use \
|
---|
1088 | the convention that all functions to be numerically integrated in the \
|
---|
1089 | hypercubes ",
|
---|
1090 | Cell[BoxData[
|
---|
1091 | \(TraditionalForm\`\([0, 1]\)\^d\)]],
|
---|
1092 | ", where d is the dimension of the integration space. dsigma depends on the \
|
---|
1093 | Higgs mass (mh), the total collider energy (sqrtS) and from the arbitrary \
|
---|
1094 | normalization and factorization scales (mur,muf)."
|
---|
1095 | }], "Subsubsection"],
|
---|
1096 |
|
---|
1097 | Cell["\<\
|
---|
1098 | dsigmaLO[zz_,mh_,sqrtS_,muf_,mur_]:=Module[
|
---|
1099 | {y,x1,x2,gg0,qg0,qq0,s0,ymin,ymax,JAC,v,S,tau0},
|
---|
1100 | Muf=muf*1.;
|
---|
1101 | v=246.;
|
---|
1102 | S=sqrtS^2;
|
---|
1103 | tau0=mh^2/S;
|
---|
1104 | ymax=-Log[Sqrt[tau0]];
|
---|
1105 | ymin=-ymax;
|
---|
1106 | y=ymin+(ymax-ymin)*zz;
|
---|
1107 | JAC=ymax-ymin;
|
---|
1108 | x1=Sqrt[tau0] Exp[y];
|
---|
1109 | x2=Sqrt[tau0] Exp[-y];
|
---|
1110 | {gg0,qg0,qq0}=pdfCTEQLO[x1,x2,Muf];
|
---|
1111 | s0=asLO[mur,5]^2/576/Pi/v^2*tau0;
|
---|
1112 | s0=s0*gg0;
|
---|
1113 | s0=s0*389379660; (*to picobarns*)
|
---|
1114 | s0=s0*JAC;
|
---|
1115 | Return[s0];
|
---|
1116 | ];\
|
---|
1117 | \>", "Input"],
|
---|
1118 |
|
---|
1119 | Cell[CellGroupData[{
|
---|
1120 |
|
---|
1121 | Cell["sLO=NIntegrate[dsigmaLO[xx,100,14000,100,100],{xx,0,1}]", "Input"],
|
---|
1122 |
|
---|
1123 | Cell[BoxData[
|
---|
1124 | \(TraditionalForm\`28.056643821030747`\)], "Output"]
|
---|
1125 | }, Open ]]
|
---|
1126 | }, Open ]],
|
---|
1127 |
|
---|
1128 | Cell[CellGroupData[{
|
---|
1129 |
|
---|
1130 | Cell["\<\
|
---|
1131 | Get the cross section for various Higgs masses and including the \
|
---|
1132 | form factor of the loop.
|
---|
1133 | I first build a table with the results of the cross section in picobarns, and \
|
---|
1134 | then plot it.\
|
---|
1135 | \>", "Subsection"],
|
---|
1136 |
|
---|
1137 | Cell["\<\
|
---|
1138 | resEFT=Table[{i,NIntegrate[dsigmaLO[x,i*1.,14000.,i*1.,i*1.],{x,0,1}\
|
---|
1139 | ]},{i,20,600,10}];\
|
---|
1140 | \>", "Input"],
|
---|
1141 |
|
---|
1142 | Cell["\<\
|
---|
1143 | resFULL=Table[{resEFT[[i]][[1]],Abs[inte[resEFT[[i]][[1]]^2/175^2/4]\
|
---|
1144 | ]^2*resEFT[[i]][[2]]},{i,1,Length[resEFT]}];\
|
---|
1145 | \>", "Input"],
|
---|
1146 |
|
---|
1147 | Cell["resFULL", "Input"],
|
---|
1148 |
|
---|
1149 | Cell[CellGroupData[{
|
---|
1150 |
|
---|
1151 | Cell[TextData[{
|
---|
1152 | "Show[LogListPlot[resEFT, ",
|
---|
1153 | StyleBox["PlotJoined", "MR"],
|
---|
1154 | " ",
|
---|
1155 | StyleBox["->", "MR"],
|
---|
1156 | " ",
|
---|
1157 | StyleBox["True,", "MR"],
|
---|
1158 | "PlotStyle\[Rule]{Red}],\nplotFULL=LogListPlot[resFULL, ",
|
---|
1159 | StyleBox["PlotJoined", "MR"],
|
---|
1160 | " ",
|
---|
1161 | StyleBox["->True,", "MR"],
|
---|
1162 | "PlotStyle\[Rule]{Blue}]];\n\n"
|
---|
1163 | }], "Input"],
|
---|
1164 |
|
---|
1165 | Cell[GraphicsData["PostScript", "\<\
|
---|
1166 | %!
|
---|
1167 | %%Creator: Mathematica
|
---|
1168 | %%AspectRatio: .61803
|
---|
1169 | MathPictureStart
|
---|
1170 | /Mabs {
|
---|
1171 | Mgmatrix idtransform
|
---|
1172 | Mtmatrix dtransform
|
---|
1173 | } bind def
|
---|
1174 | /Mabsadd { Mabs
|
---|
1175 | 3 -1 roll add
|
---|
1176 | 3 1 roll add
|
---|
1177 | exch } bind def
|
---|
1178 | %% Graphics
|
---|
1179 | %%IncludeResource: font Courier
|
---|
1180 | %%IncludeFont: Courier
|
---|
1181 | /Courier findfont 10 scalefont setfont
|
---|
1182 | % Scaling calculations
|
---|
1183 | 0.0238095 0.0015873 0.078927 0.221776 [
|
---|
1184 | [.02381 -0.0125 -3 -9 ]
|
---|
1185 | [.02381 -0.0125 3 0 ]
|
---|
1186 | [.18254 -0.0125 -9 -9 ]
|
---|
1187 | [.18254 -0.0125 9 0 ]
|
---|
1188 | [.34127 -0.0125 -9 -9 ]
|
---|
1189 | [.34127 -0.0125 9 0 ]
|
---|
1190 | [.5 -0.0125 -9 -9 ]
|
---|
1191 | [.5 -0.0125 9 0 ]
|
---|
1192 | [.65873 -0.0125 -9 -9 ]
|
---|
1193 | [.65873 -0.0125 9 0 ]
|
---|
1194 | [.81746 -0.0125 -9 -9 ]
|
---|
1195 | [.81746 -0.0125 9 0 ]
|
---|
1196 | [.97619 -0.0125 -9 -9 ]
|
---|
1197 | [.97619 -0.0125 9 0 ]
|
---|
1198 | [-0.0125 .07893 -10 -6 ]
|
---|
1199 | [-0.0125 .07893 0 6 ]
|
---|
1200 | [-0.0125 .14569 -10 -6 ]
|
---|
1201 | [-0.0125 .14569 0 6 ]
|
---|
1202 | [-0.0125 .23394 -10 -6 ]
|
---|
1203 | [-0.0125 .23394 0 6 ]
|
---|
1204 | [-0.0125 .3007 -16 -6 ]
|
---|
1205 | [-0.0125 .3007 0 6 ]
|
---|
1206 | [-0.0125 .36746 -16 -6 ]
|
---|
1207 | [-0.0125 .36746 0 6 ]
|
---|
1208 | [-0.0125 .45572 -16 -6 ]
|
---|
1209 | [-0.0125 .45572 0 6 ]
|
---|
1210 | [-0.0125 .52248 -22 -6 ]
|
---|
1211 | [-0.0125 .52248 0 6 ]
|
---|
1212 | [-0.0125 .58924 -22 -6 ]
|
---|
1213 | [-0.0125 .58924 0 6 ]
|
---|
1214 | [ -0.0005 0 0 0 ]
|
---|
1215 | [ 1 .61803 0 0 ]
|
---|
1216 | ] MathScale
|
---|
1217 | % Start of Graphics
|
---|
1218 | 1 setlinecap
|
---|
1219 | 1 setlinejoin
|
---|
1220 | newpath
|
---|
1221 | 0 g
|
---|
1222 | .25 Mabswid
|
---|
1223 | [ ] 0 setdash
|
---|
1224 | .02381 0 m
|
---|
1225 | .02381 .00625 L
|
---|
1226 | s
|
---|
1227 | [(0)] .02381 -0.0125 0 1 Mshowa
|
---|
1228 | .18254 0 m
|
---|
1229 | .18254 .00625 L
|
---|
1230 | s
|
---|
1231 | [(100)] .18254 -0.0125 0 1 Mshowa
|
---|
1232 | .34127 0 m
|
---|
1233 | .34127 .00625 L
|
---|
1234 | s
|
---|
1235 | [(200)] .34127 -0.0125 0 1 Mshowa
|
---|
1236 | .5 0 m
|
---|
1237 | .5 .00625 L
|
---|
1238 | s
|
---|
1239 | [(300)] .5 -0.0125 0 1 Mshowa
|
---|
1240 | .65873 0 m
|
---|
1241 | .65873 .00625 L
|
---|
1242 | s
|
---|
1243 | [(400)] .65873 -0.0125 0 1 Mshowa
|
---|
1244 | .81746 0 m
|
---|
1245 | .81746 .00625 L
|
---|
1246 | s
|
---|
1247 | [(500)] .81746 -0.0125 0 1 Mshowa
|
---|
1248 | .97619 0 m
|
---|
1249 | .97619 .00625 L
|
---|
1250 | s
|
---|
1251 | [(600)] .97619 -0.0125 0 1 Mshowa
|
---|
1252 | .125 Mabswid
|
---|
1253 | .05556 0 m
|
---|
1254 | .05556 .00375 L
|
---|
1255 | s
|
---|
1256 | .0873 0 m
|
---|
1257 | .0873 .00375 L
|
---|
1258 | s
|
---|
1259 | .11905 0 m
|
---|
1260 | .11905 .00375 L
|
---|
1261 | s
|
---|
1262 | .15079 0 m
|
---|
1263 | .15079 .00375 L
|
---|
1264 | s
|
---|
1265 | .21429 0 m
|
---|
1266 | .21429 .00375 L
|
---|
1267 | s
|
---|
1268 | .24603 0 m
|
---|
1269 | .24603 .00375 L
|
---|
1270 | s
|
---|
1271 | .27778 0 m
|
---|
1272 | .27778 .00375 L
|
---|
1273 | s
|
---|
1274 | .30952 0 m
|
---|
1275 | .30952 .00375 L
|
---|
1276 | s
|
---|
1277 | .37302 0 m
|
---|
1278 | .37302 .00375 L
|
---|
1279 | s
|
---|
1280 | .40476 0 m
|
---|
1281 | .40476 .00375 L
|
---|
1282 | s
|
---|
1283 | .43651 0 m
|
---|
1284 | .43651 .00375 L
|
---|
1285 | s
|
---|
1286 | .46825 0 m
|
---|
1287 | .46825 .00375 L
|
---|
1288 | s
|
---|
1289 | .53175 0 m
|
---|
1290 | .53175 .00375 L
|
---|
1291 | s
|
---|
1292 | .56349 0 m
|
---|
1293 | .56349 .00375 L
|
---|
1294 | s
|
---|
1295 | .59524 0 m
|
---|
1296 | .59524 .00375 L
|
---|
1297 | s
|
---|
1298 | .62698 0 m
|
---|
1299 | .62698 .00375 L
|
---|
1300 | s
|
---|
1301 | .69048 0 m
|
---|
1302 | .69048 .00375 L
|
---|
1303 | s
|
---|
1304 | .72222 0 m
|
---|
1305 | .72222 .00375 L
|
---|
1306 | s
|
---|
1307 | .75397 0 m
|
---|
1308 | .75397 .00375 L
|
---|
1309 | s
|
---|
1310 | .78571 0 m
|
---|
1311 | .78571 .00375 L
|
---|
1312 | s
|
---|
1313 | .84921 0 m
|
---|
1314 | .84921 .00375 L
|
---|
1315 | s
|
---|
1316 | .88095 0 m
|
---|
1317 | .88095 .00375 L
|
---|
1318 | s
|
---|
1319 | .9127 0 m
|
---|
1320 | .9127 .00375 L
|
---|
1321 | s
|
---|
1322 | .94444 0 m
|
---|
1323 | .94444 .00375 L
|
---|
1324 | s
|
---|
1325 | .25 Mabswid
|
---|
1326 | 0 0 m
|
---|
1327 | 1 0 L
|
---|
1328 | s
|
---|
1329 | 0 .07893 m
|
---|
1330 | .00625 .07893 L
|
---|
1331 | s
|
---|
1332 | gsave
|
---|
1333 | -0.0125 .07893 -71 -10 Mabsadd m
|
---|
1334 | 1 1 Mabs scale
|
---|
1335 | currentpoint translate
|
---|
1336 | 0 20 translate 1 -1 scale
|
---|
1337 | 63.000 13.000 moveto
|
---|
1338 | %%IncludeResource: font Courier
|
---|
1339 | %%IncludeFont: Courier
|
---|
1340 | /Courier findfont 10.000 scalefont
|
---|
1341 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1342 | 0.000 0.000 0.000 setrgbcolor
|
---|
1343 | 0.000 0.000 rmoveto
|
---|
1344 | 63.000 13.000 moveto
|
---|
1345 | %%IncludeResource: font Courier
|
---|
1346 | %%IncludeFont: Courier
|
---|
1347 | /Courier findfont 10.000 scalefont
|
---|
1348 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1349 | 0.000 0.000 0.000 setrgbcolor
|
---|
1350 | (1) show
|
---|
1351 | 69.000 13.000 moveto
|
---|
1352 | %%IncludeResource: font Courier
|
---|
1353 | %%IncludeFont: Courier
|
---|
1354 | /Courier findfont 10.000 scalefont
|
---|
1355 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1356 | 0.000 0.000 0.000 setrgbcolor
|
---|
1357 | 0.000 0.000 rmoveto
|
---|
1358 | 1.000 setlinewidth
|
---|
1359 | grestore
|
---|
1360 | 0 .14569 m
|
---|
1361 | .00625 .14569 L
|
---|
1362 | s
|
---|
1363 | gsave
|
---|
1364 | -0.0125 .14569 -71 -10 Mabsadd m
|
---|
1365 | 1 1 Mabs scale
|
---|
1366 | currentpoint translate
|
---|
1367 | 0 20 translate 1 -1 scale
|
---|
1368 | 63.000 13.000 moveto
|
---|
1369 | %%IncludeResource: font Courier
|
---|
1370 | %%IncludeFont: Courier
|
---|
1371 | /Courier findfont 10.000 scalefont
|
---|
1372 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1373 | 0.000 0.000 0.000 setrgbcolor
|
---|
1374 | 0.000 0.000 rmoveto
|
---|
1375 | 63.000 13.000 moveto
|
---|
1376 | %%IncludeResource: font Courier
|
---|
1377 | %%IncludeFont: Courier
|
---|
1378 | /Courier findfont 10.000 scalefont
|
---|
1379 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1380 | 0.000 0.000 0.000 setrgbcolor
|
---|
1381 | (2) show
|
---|
1382 | 69.000 13.000 moveto
|
---|
1383 | %%IncludeResource: font Courier
|
---|
1384 | %%IncludeFont: Courier
|
---|
1385 | /Courier findfont 10.000 scalefont
|
---|
1386 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1387 | 0.000 0.000 0.000 setrgbcolor
|
---|
1388 | 0.000 0.000 rmoveto
|
---|
1389 | 1.000 setlinewidth
|
---|
1390 | grestore
|
---|
1391 | 0 .23394 m
|
---|
1392 | .00625 .23394 L
|
---|
1393 | s
|
---|
1394 | gsave
|
---|
1395 | -0.0125 .23394 -71 -10 Mabsadd m
|
---|
1396 | 1 1 Mabs scale
|
---|
1397 | currentpoint translate
|
---|
1398 | 0 20 translate 1 -1 scale
|
---|
1399 | 63.000 13.000 moveto
|
---|
1400 | %%IncludeResource: font Courier
|
---|
1401 | %%IncludeFont: Courier
|
---|
1402 | /Courier findfont 10.000 scalefont
|
---|
1403 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1404 | 0.000 0.000 0.000 setrgbcolor
|
---|
1405 | 0.000 0.000 rmoveto
|
---|
1406 | 63.000 13.000 moveto
|
---|
1407 | %%IncludeResource: font Courier
|
---|
1408 | %%IncludeFont: Courier
|
---|
1409 | /Courier findfont 10.000 scalefont
|
---|
1410 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1411 | 0.000 0.000 0.000 setrgbcolor
|
---|
1412 | (5) show
|
---|
1413 | 69.000 13.000 moveto
|
---|
1414 | %%IncludeResource: font Courier
|
---|
1415 | %%IncludeFont: Courier
|
---|
1416 | /Courier findfont 10.000 scalefont
|
---|
1417 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1418 | 0.000 0.000 0.000 setrgbcolor
|
---|
1419 | 0.000 0.000 rmoveto
|
---|
1420 | 1.000 setlinewidth
|
---|
1421 | grestore
|
---|
1422 | 0 .3007 m
|
---|
1423 | .00625 .3007 L
|
---|
1424 | s
|
---|
1425 | gsave
|
---|
1426 | -0.0125 .3007 -77 -10 Mabsadd m
|
---|
1427 | 1 1 Mabs scale
|
---|
1428 | currentpoint translate
|
---|
1429 | 0 20 translate 1 -1 scale
|
---|
1430 | 63.000 13.000 moveto
|
---|
1431 | %%IncludeResource: font Courier
|
---|
1432 | %%IncludeFont: Courier
|
---|
1433 | /Courier findfont 10.000 scalefont
|
---|
1434 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1435 | 0.000 0.000 0.000 setrgbcolor
|
---|
1436 | 0.000 0.000 rmoveto
|
---|
1437 | 63.000 13.000 moveto
|
---|
1438 | %%IncludeResource: font Courier
|
---|
1439 | %%IncludeFont: Courier
|
---|
1440 | /Courier findfont 10.000 scalefont
|
---|
1441 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1442 | 0.000 0.000 0.000 setrgbcolor
|
---|
1443 | (10) show
|
---|
1444 | 75.000 13.000 moveto
|
---|
1445 | %%IncludeResource: font Courier
|
---|
1446 | %%IncludeFont: Courier
|
---|
1447 | /Courier findfont 10.000 scalefont
|
---|
1448 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1449 | 0.000 0.000 0.000 setrgbcolor
|
---|
1450 | 0.000 0.000 rmoveto
|
---|
1451 | 1.000 setlinewidth
|
---|
1452 | grestore
|
---|
1453 | 0 .36746 m
|
---|
1454 | .00625 .36746 L
|
---|
1455 | s
|
---|
1456 | gsave
|
---|
1457 | -0.0125 .36746 -77 -10 Mabsadd m
|
---|
1458 | 1 1 Mabs scale
|
---|
1459 | currentpoint translate
|
---|
1460 | 0 20 translate 1 -1 scale
|
---|
1461 | 63.000 13.000 moveto
|
---|
1462 | %%IncludeResource: font Courier
|
---|
1463 | %%IncludeFont: Courier
|
---|
1464 | /Courier findfont 10.000 scalefont
|
---|
1465 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1466 | 0.000 0.000 0.000 setrgbcolor
|
---|
1467 | 0.000 0.000 rmoveto
|
---|
1468 | 63.000 13.000 moveto
|
---|
1469 | %%IncludeResource: font Courier
|
---|
1470 | %%IncludeFont: Courier
|
---|
1471 | /Courier findfont 10.000 scalefont
|
---|
1472 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1473 | 0.000 0.000 0.000 setrgbcolor
|
---|
1474 | (20) show
|
---|
1475 | 75.000 13.000 moveto
|
---|
1476 | %%IncludeResource: font Courier
|
---|
1477 | %%IncludeFont: Courier
|
---|
1478 | /Courier findfont 10.000 scalefont
|
---|
1479 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1480 | 0.000 0.000 0.000 setrgbcolor
|
---|
1481 | 0.000 0.000 rmoveto
|
---|
1482 | 1.000 setlinewidth
|
---|
1483 | grestore
|
---|
1484 | 0 .45572 m
|
---|
1485 | .00625 .45572 L
|
---|
1486 | s
|
---|
1487 | gsave
|
---|
1488 | -0.0125 .45572 -77 -10 Mabsadd m
|
---|
1489 | 1 1 Mabs scale
|
---|
1490 | currentpoint translate
|
---|
1491 | 0 20 translate 1 -1 scale
|
---|
1492 | 63.000 13.000 moveto
|
---|
1493 | %%IncludeResource: font Courier
|
---|
1494 | %%IncludeFont: Courier
|
---|
1495 | /Courier findfont 10.000 scalefont
|
---|
1496 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1497 | 0.000 0.000 0.000 setrgbcolor
|
---|
1498 | 0.000 0.000 rmoveto
|
---|
1499 | 63.000 13.000 moveto
|
---|
1500 | %%IncludeResource: font Courier
|
---|
1501 | %%IncludeFont: Courier
|
---|
1502 | /Courier findfont 10.000 scalefont
|
---|
1503 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1504 | 0.000 0.000 0.000 setrgbcolor
|
---|
1505 | (50) show
|
---|
1506 | 75.000 13.000 moveto
|
---|
1507 | %%IncludeResource: font Courier
|
---|
1508 | %%IncludeFont: Courier
|
---|
1509 | /Courier findfont 10.000 scalefont
|
---|
1510 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1511 | 0.000 0.000 0.000 setrgbcolor
|
---|
1512 | 0.000 0.000 rmoveto
|
---|
1513 | 1.000 setlinewidth
|
---|
1514 | grestore
|
---|
1515 | 0 .52248 m
|
---|
1516 | .00625 .52248 L
|
---|
1517 | s
|
---|
1518 | gsave
|
---|
1519 | -0.0125 .52248 -83 -10 Mabsadd m
|
---|
1520 | 1 1 Mabs scale
|
---|
1521 | currentpoint translate
|
---|
1522 | 0 20 translate 1 -1 scale
|
---|
1523 | 63.000 13.000 moveto
|
---|
1524 | %%IncludeResource: font Courier
|
---|
1525 | %%IncludeFont: Courier
|
---|
1526 | /Courier findfont 10.000 scalefont
|
---|
1527 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1528 | 0.000 0.000 0.000 setrgbcolor
|
---|
1529 | 0.000 0.000 rmoveto
|
---|
1530 | 63.000 13.000 moveto
|
---|
1531 | %%IncludeResource: font Courier
|
---|
1532 | %%IncludeFont: Courier
|
---|
1533 | /Courier findfont 10.000 scalefont
|
---|
1534 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1535 | 0.000 0.000 0.000 setrgbcolor
|
---|
1536 | (100) show
|
---|
1537 | 81.000 13.000 moveto
|
---|
1538 | %%IncludeResource: font Courier
|
---|
1539 | %%IncludeFont: Courier
|
---|
1540 | /Courier findfont 10.000 scalefont
|
---|
1541 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1542 | 0.000 0.000 0.000 setrgbcolor
|
---|
1543 | 0.000 0.000 rmoveto
|
---|
1544 | 1.000 setlinewidth
|
---|
1545 | grestore
|
---|
1546 | 0 .58924 m
|
---|
1547 | .00625 .58924 L
|
---|
1548 | s
|
---|
1549 | gsave
|
---|
1550 | -0.0125 .58924 -83 -10 Mabsadd m
|
---|
1551 | 1 1 Mabs scale
|
---|
1552 | currentpoint translate
|
---|
1553 | 0 20 translate 1 -1 scale
|
---|
1554 | 63.000 13.000 moveto
|
---|
1555 | %%IncludeResource: font Courier
|
---|
1556 | %%IncludeFont: Courier
|
---|
1557 | /Courier findfont 10.000 scalefont
|
---|
1558 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1559 | 0.000 0.000 0.000 setrgbcolor
|
---|
1560 | 0.000 0.000 rmoveto
|
---|
1561 | 63.000 13.000 moveto
|
---|
1562 | %%IncludeResource: font Courier
|
---|
1563 | %%IncludeFont: Courier
|
---|
1564 | /Courier findfont 10.000 scalefont
|
---|
1565 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1566 | 0.000 0.000 0.000 setrgbcolor
|
---|
1567 | (200) show
|
---|
1568 | 81.000 13.000 moveto
|
---|
1569 | %%IncludeResource: font Courier
|
---|
1570 | %%IncludeFont: Courier
|
---|
1571 | /Courier findfont 10.000 scalefont
|
---|
1572 | [1 0 0 -1 0 0 ] makefont setfont
|
---|
1573 | 0.000 0.000 0.000 setrgbcolor
|
---|
1574 | 0.000 0.000 rmoveto
|
---|
1575 | 1.000 setlinewidth
|
---|
1576 | grestore
|
---|
1577 | .001 w
|
---|
1578 | 0 .18474 m
|
---|
1579 | .00375 .18474 L
|
---|
1580 | s
|
---|
1581 | 0 .21245 m
|
---|
1582 | .00375 .21245 L
|
---|
1583 | s
|
---|
1584 | 0 .2515 m
|
---|
1585 | .00375 .2515 L
|
---|
1586 | s
|
---|
1587 | 0 .26635 m
|
---|
1588 | .00375 .26635 L
|
---|
1589 | s
|
---|
1590 | 0 .27921 m
|
---|
1591 | .00375 .27921 L
|
---|
1592 | s
|
---|
1593 | 0 .29056 m
|
---|
1594 | .00375 .29056 L
|
---|
1595 | s
|
---|
1596 | 0 .40652 m
|
---|
1597 | .00375 .40652 L
|
---|
1598 | s
|
---|
1599 | 0 .43423 m
|
---|
1600 | .00375 .43423 L
|
---|
1601 | s
|
---|
1602 | 0 .47328 m
|
---|
1603 | .00375 .47328 L
|
---|
1604 | s
|
---|
1605 | 0 .48813 m
|
---|
1606 | .00375 .48813 L
|
---|
1607 | s
|
---|
1608 | 0 .50099 m
|
---|
1609 | .00375 .50099 L
|
---|
1610 | s
|
---|
1611 | 0 .51233 m
|
---|
1612 | .00375 .51233 L
|
---|
1613 | s
|
---|
1614 | .25 Mabswid
|
---|
1615 | 0 0 m
|
---|
1616 | 0 .61803 L
|
---|
1617 | s
|
---|
1618 | 0 0 m
|
---|
1619 | 1 0 L
|
---|
1620 | 1 .61803 L
|
---|
1621 | 0 .61803 L
|
---|
1622 | closepath
|
---|
1623 | clip
|
---|
1624 | newpath
|
---|
1625 | 1 0 0 r
|
---|
1626 | .5 Mabswid
|
---|
1627 | .05556 .60332 m
|
---|
1628 | .07143 .56246 L
|
---|
1629 | .0873 .52864 L
|
---|
1630 | .10317 .49984 L
|
---|
1631 | .11905 .47468 L
|
---|
1632 | .13492 .4523 L
|
---|
1633 | .15079 .43206 L
|
---|
1634 | .16667 .41355 L
|
---|
1635 | .18254 .39647 L
|
---|
1636 | .19841 .38059 L
|
---|
1637 | .21429 .36574 L
|
---|
1638 | .23016 .35176 L
|
---|
1639 | .24603 .33854 L
|
---|
1640 | .2619 .326 L
|
---|
1641 | .27778 .31405 L
|
---|
1642 | .29365 .30264 L
|
---|
1643 | .30952 .29171 L
|
---|
1644 | .3254 .28121 L
|
---|
1645 | .34127 .2711 L
|
---|
1646 | .35714 .26135 L
|
---|
1647 | .37302 .25194 L
|
---|
1648 | .38889 .24283 L
|
---|
1649 | .40476 .23401 L
|
---|
1650 | .42063 .22545 L
|
---|
1651 | .43651 .21714 L
|
---|
1652 | .45238 .20905 L
|
---|
1653 | .46825 .20117 L
|
---|
1654 | .48413 .1935 L
|
---|
1655 | .5 .18601 L
|
---|
1656 | .51587 .17869 L
|
---|
1657 | .53175 .17154 L
|
---|
1658 | .54762 .16454 L
|
---|
1659 | .56349 .1577 L
|
---|
1660 | .57937 .15099 L
|
---|
1661 | .59524 .14441 L
|
---|
1662 | .61111 .13797 L
|
---|
1663 | .62698 .13164 L
|
---|
1664 | .64286 .12543 L
|
---|
1665 | .65873 .11933 L
|
---|
1666 | .6746 .11334 L
|
---|
1667 | .69048 .10744 L
|
---|
1668 | .70635 .10165 L
|
---|
1669 | .72222 .09594 L
|
---|
1670 | .7381 .09033 L
|
---|
1671 | .75397 .0848 L
|
---|
1672 | .76984 .07935 L
|
---|
1673 | .78571 .07398 L
|
---|
1674 | .80159 .06868 L
|
---|
1675 | .81746 .06346 L
|
---|
1676 | .83333 .05831 L
|
---|
1677 | Mistroke
|
---|
1678 | .84921 .05322 L
|
---|
1679 | .86508 .0482 L
|
---|
1680 | .88095 .04325 L
|
---|
1681 | .89683 .03835 L
|
---|
1682 | .9127 .03351 L
|
---|
1683 | .92857 .02873 L
|
---|
1684 | .94444 .02401 L
|
---|
1685 | .96032 .01934 L
|
---|
1686 | .97619 .01472 L
|
---|
1687 | Mfstroke
|
---|
1688 | 0 0 1 r
|
---|
1689 | .05556 .60347 m
|
---|
1690 | .07143 .5628 L
|
---|
1691 | .0873 .52923 L
|
---|
1692 | .10317 .50076 L
|
---|
1693 | .11905 .47602 L
|
---|
1694 | .13492 .45412 L
|
---|
1695 | .15079 .43445 L
|
---|
1696 | .16667 .41658 L
|
---|
1697 | .18254 .40023 L
|
---|
1698 | .19841 .38517 L
|
---|
1699 | .21429 .37121 L
|
---|
1700 | .23016 .35822 L
|
---|
1701 | .24603 .3461 L
|
---|
1702 | .2619 .33474 L
|
---|
1703 | .27778 .32408 L
|
---|
1704 | .29365 .31407 L
|
---|
1705 | .30952 .30464 L
|
---|
1706 | .3254 .29578 L
|
---|
1707 | .34127 .28743 L
|
---|
1708 | .35714 .27959 L
|
---|
1709 | .37302 .27223 L
|
---|
1710 | .38889 .26534 L
|
---|
1711 | .40476 .25892 L
|
---|
1712 | .42063 .25295 L
|
---|
1713 | .43651 .24745 L
|
---|
1714 | .45238 .24243 L
|
---|
1715 | .46825 .23791 L
|
---|
1716 | .48413 .23392 L
|
---|
1717 | .5 .23052 L
|
---|
1718 | .51587 .22778 L
|
---|
1719 | .53175 .22583 L
|
---|
1720 | .54762 .2249 L
|
---|
1721 | .56349 .22544 L
|
---|
1722 | .57937 .22909 L
|
---|
1723 | .59524 .23671 L
|
---|
1724 | .61111 .241 L
|
---|
1725 | .62698 .24264 L
|
---|
1726 | .64286 .24222 L
|
---|
1727 | .65873 .24019 L
|
---|
1728 | .6746 .23691 L
|
---|
1729 | .69048 .23265 L
|
---|
1730 | .70635 .2276 L
|
---|
1731 | .72222 .22194 L
|
---|
1732 | .7381 .21579 L
|
---|
1733 | .75397 .20926 L
|
---|
1734 | .76984 .20242 L
|
---|
1735 | .78571 .19533 L
|
---|
1736 | .80159 .18806 L
|
---|
1737 | .81746 .18065 L
|
---|
1738 | .83333 .17312 L
|
---|
1739 | Mistroke
|
---|
1740 | .84921 .16551 L
|
---|
1741 | .86508 .15785 L
|
---|
1742 | .88095 .15015 L
|
---|
1743 | .89683 .14243 L
|
---|
1744 | .9127 .1347 L
|
---|
1745 | .92857 .12697 L
|
---|
1746 | .94444 .11926 L
|
---|
1747 | .96032 .11157 L
|
---|
1748 | .97619 .10391 L
|
---|
1749 | Mfstroke
|
---|
1750 | % End of Graphics
|
---|
1751 | MathPictureEnd
|
---|
1752 | \
|
---|
1753 | \>"], "Graphics",
|
---|
1754 | ImageSize->{413, 255.125},
|
---|
1755 | ImageMargins->{{43, 0}, {0, 0}},
|
---|
1756 | ImageRegion->{{0, 1}, {0, 1}},
|
---|
1757 | ImageCache->GraphicsData["Bitmap", "\<\
|
---|
1758 | CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`40006M0000ob000`400?l00000o`00003ooooooonN
|
---|
1759 | ooooo`00oooooonNooooo`00oooooonNooooo`008_ooool2o`0003Gooooo0ol00004ooooo`;o0000
|
---|
1760 | 1?ooool2o`0002gooooo1Ol00003ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o0000
|
---|
1761 | 1?ooool2o`0002oooooo0ol00003ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o0000
|
---|
1762 | 1?ooool2o`0002kooooo0ol00004ooooo`;o00001?ooool2o`0000Cooooo000Qooooo`04o`000?oo
|
---|
1763 | ooooooooo`0003Gooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00002ooooo`04
|
---|
1764 | o`000?ooooooooooo`0002gooooo00Co0000oooooooooooo00000_ooool01?l0003oooooooooool0
|
---|
1765 | 0002ooooo`04o`000?ooooooooooo`0002cooooo00Go0000ooooooooooooooooo`000002ooooo`04
|
---|
1766 | o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000;oooool01Ol0003ooooooooooooo
|
---|
1767 | oooo000000;ooooo00Co0000oooooooooooo00000_ooool00ol0003oooooooooo`0Zooooo`05o`00
|
---|
1768 | 0?ooooooooooooooool000000_ooool01?l0003oooooooooool00002ooooo`04o`000?oooooooooo
|
---|
1769 | o`0002cooooo00Go0000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo
|
---|
1770 | 00Co0000oooooooooooo00000oooool0027ooooo00Co0000oooooooooooo0000=Oooool00ol0003o
|
---|
1771 | ooooooooo`02ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000;_ooool0
|
---|
1772 | 0ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
|
---|
1773 | <?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000;ooooo00?o0000oooo
|
---|
1774 | ooooool0:_ooool5o`0000;ooooo00Co0000oooooooooooo00000_ooool01?l0003oooooooooool0
|
---|
1775 | 000`ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo00000_ooool00ol0003o
|
---|
1776 | ooooooooo`0Zooooo`05o`000?ooooooooooooooool000000_ooool01?l0003oooooooooool00002
|
---|
1777 | ooooo`04o`000?ooooooooooo`0000?ooooo000Qooooo`04o`000?ooooooooooo`0003Gooooo00?o
|
---|
1778 | 0000ooooooooool00_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002oo
|
---|
1779 | oooo00Go0000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00?o0000
|
---|
1780 | ooooooooool0;?ooool2o`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0003ooooooooo
|
---|
1781 | ool0000/ooooo`04o`000?ooooooooooo`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0
|
---|
1782 | 003oooooooooool0000`ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
|
---|
1783 | 0_ooool00ol0003oooooooooo`0Zooooo`Co00000oooool01?l0003oooooooooool00002ooooo`04
|
---|
1784 | o`000?ooooooooooo`0000?ooooo000Qooooo`04o`000?ooooooooooo`0003Gooooo00?o0000oooo
|
---|
1785 | ooooool00_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002cooooo00Go
|
---|
1786 | 0000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooo
|
---|
1787 | oooo0000<?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000;ooooo00?o
|
---|
1788 | 0000ooooooooool0:oooool00ol0003oooooo`000003ooooo`04o`000?ooooooooooo`0000;ooooo
|
---|
1789 | 00Co0000oooooooooooo0000;?ooool4o`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0
|
---|
1790 | 003oooooooooool0000/ooooo`03o`000?oooooooooo00Cooooo00Co0000oooooooooooo00000_oo
|
---|
1791 | ool01?l0003oooooooooool00003ooooo`008Oooool01?l0003oooooooooool0000dooooo`;o0000
|
---|
1792 | 1?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002cooooo00Go0000oooo
|
---|
1793 | ooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
|
---|
1794 | ;?ooool01Ol0003ooooooooooooooooo000000;ooooo00Co0000oooooooooooo00000_ooool01?l0
|
---|
1795 | 003oooooooooool0000^ooooo`;o00000oooool01?l0003oooooooooool00002ooooo`04o`000?oo
|
---|
1796 | ooooooooo`0002cooooo00?o0000ooooooooool01?ooool01?l0003oooooooooool00002ooooo`04
|
---|
1797 | o`000?ooooooooooo`0002gooooo00?o0000ooooooooool00oooool01?l0003oooooooooool00002
|
---|
1798 | ooooo`04o`000?ooooooooooo`0000?ooooo000Rooooo`;o0000=_ooool00ol0003oooooooooo`03
|
---|
1799 | ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o00001?ooool2o`0002kooooo0ol00004
|
---|
1800 | ooooo`;o00001?ooool2o`00033ooooo00?o0000ooooooooool00_ooool2o`0000Cooooo0_l0000]
|
---|
1801 | ooooo`Go00000oooool2o`0000Cooooo0_l0000_ooooo`;o00001?ooool2o`0000Cooooo0_l00004
|
---|
1802 | ooooo`00oooooonNooooo`00oooooonNooooo`00oooooonNooooo`00oooooonNooooo`00oooooonN
|
---|
1803 | ooooo`006_ooooooo`0008Co0000000Jooooo`03o`000?oooooooooo00Kooooo00?o0000oooooooo
|
---|
1804 | ool02_ooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1805 | ool02Oooool00ol0003oooooooooo`0:ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1806 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
|
---|
1807 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1808 | ool02Oooool00ol0003oooooooooo`0:ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1809 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
|
---|
1810 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1811 | ool02_ooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1812 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
|
---|
1813 | ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
|
---|
1814 | ool02?ooool001[ooooo00?o0000ooooooooool01_ooool00ol0003oooooooooo`0:ooooo`03o`00
|
---|
1815 | 0?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1816 | 0?oooooooooo00[ooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1817 | 0?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1818 | 0?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1819 | 0?oooooooooo00[ooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1820 | 0?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1821 | 0?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`0:ooooo`03o`00
|
---|
1822 | 0?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1823 | 0?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
|
---|
1824 | 0?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`08ooooo`006_oo
|
---|
1825 | ool00ol0003oooooooooo`06ooooo`03o`000?oooooooooo03_ooooo00?o0000ooooooooool0>_oo
|
---|
1826 | ool00ol0003oooooooooo`0jooooo`03o`000?oooooooooo03[ooooo00?o0000ooooooooool0>_oo
|
---|
1827 | ool00ol0003oooooooooo`0jooooo`03o`000?oooooooooo00Sooooo000Jooooo`03o`000?oooooo
|
---|
1828 | oooo0?ooooooPOooool001[ooooo00?o0000ooooooooool0oooooon1ooooo`006_ooool00ol0003o
|
---|
1829 | ooooooooo`3oooooogGooooo0_oo000:ooooo`006_ooool00ol0003oooooooooo`3oooooog;ooooo
|
---|
1830 | 0ooo000<ooooo`006_ooool00ol0003oooooooooo`3oooooofoooooo0ooo000?ooooo`006_ooool0
|
---|
1831 | 0ol0003oooooooooo`3oooooofcooooo0ooo000Booooo`006_ooool00ol0003oooooooooo`3ooooo
|
---|
1832 | ofOooooo1Ooo000Eooooo`006_ooool00ol0003oooooooooo`3oooooof?ooooo1?oo000Jooooo`00
|
---|
1833 | 6_ooool00ol0003oooooooooo`3oooooof3ooooo0ooo000Nooooo`006_ooool00ol0003ooooooooo
|
---|
1834 | o`3ooooooegooooo0ooo000Qooooo`006_ooool00ol0003oooooooooo`3ooooooe[ooooo0ooo000T
|
---|
1835 | ooooo`006_ooool00ol0003oooooooooo`3ooooooeOooooo0ooo000Wooooo`006_ooool00ol0003o
|
---|
1836 | ooooooooo`3ooooooeCooooo0ooo000Zooooo`006_ooool00ol0003oooooooooo`3ooooooe7ooooo
|
---|
1837 | 0ooo000]ooooo`006_ooool00ol0003oooooooooo`3oooooodkooooo0ooo000`ooooo`006_ooool0
|
---|
1838 | 0ol0003oooooooooo`3ooooood[ooooo1?oo000cooooo`006_ooool00ol0003oooooooooo`3ooooo
|
---|
1839 | odOooooo0ooo000gooooo`006_ooool00ol0003oooooooooo`3oooooodCooooo0ooo000jooooo`00
|
---|
1840 | 6_ooool00ol0003oooooooooo`3ooooood7ooooo0ooo000mooooo`006_ooool00ol0003ooooooooo
|
---|
1841 | o`3oooooockooooo0ooo0010ooooo`006_ooool00ol0003oooooooooo`3ooooooc_ooooo0ooo0013
|
---|
1842 | ooooo`006_ooool00ol0003oooooooooo`3oooooocSooooo0ooo0016ooooo`006_ooool00ol0003o
|
---|
1843 | ooooooooo`3oooooocGooooo0ooo0019ooooo`006_ooool00ol0003oooooooooo`3ooooooc;ooooo
|
---|
1844 | 0ooo001<ooooo`006_ooool00ol0003oooooooooo`3ooooooboooooo0ooo001?ooooo`003oooool3
|
---|
1845 | o`0000Sooooo00?o0000ooooooooool0ooooool/ooooo`?oo`00D_ooool0013ooooo00?o0000oooo
|
---|
1846 | ooooool01oooool00ol0003oooooooooo`3oooooobWooooo0ooo001Eooooo`004?ooool00ol0003o
|
---|
1847 | ooooooooo`07ooooo`Co0000oooooolUooooo`?oo`00F?ooool0013ooooo00?o0000ooooooooool0
|
---|
1848 | 1oooool00ol0003oooooooooo`3oooooob?ooooo0ooo001Kooooo`004?ooool00ol0003ooooooooo
|
---|
1849 | o`07ooooo`03o`000?oooooooooo0?oooooo8?ooool3ool005kooooo000?ooooo`;o00002Oooool0
|
---|
1850 | 0ol0003oooooooooo`3ooooooagooooo0ooo001Qooooo`004?ooool00ol0003oooooooooo`07oooo
|
---|
1851 | o`03o`000?oooooooooo0?oooooo6_ooool3ool006Cooooo000Jooooo`03o`000?oooooooooo0?oo
|
---|
1852 | oooo5oooool3ool006Oooooo000Jooooo`03o`000?oooooooooo0?oooooo4oooool4ool006[ooooo
|
---|
1853 | 000Jooooo`03o`000?oooooooooo0?oooooo4?ooool3ool006kooooo000Jooooo`03o`000?oooooo
|
---|
1854 | oooo0?oooooo3Oooool3ool0077ooooo000Jooooo`03o`000?oooooooooo0?oooooo2oooool2ool0
|
---|
1855 | 06Sooooo0_l00?l:ooooo`006_ooool00ol0003oooooooooo`3oooooo`Wooooo0_oo001Xooooo`;o
|
---|
1856 | 003o3?ooool001[ooooo00?o0000ooooooooool0ooooool7ooooo`;oo`00J?ooool2o`00o`kooooo
|
---|
1857 | 000Jooooo`03o`000?oooooooooo0?oooooo1?ooool3ool006Sooooo0_l00?l@ooooo`006_ooool0
|
---|
1858 | 0ol0003oooooooooo`3oooooo`7ooooo0ooo001Yooooo`;o003o4_ooool001[ooooo00?o0000oooo
|
---|
1859 | ooooool0oOooool3ool006[ooooo0_l00?lDooooo`006_ooool00ol0003oooooooooo`3jooooo`?o
|
---|
1860 | o`00Joooool2o`00oaKooooo000Jooooo`03o`000?oooooooooo0?Sooooo0_oo001/ooooo`;o003o
|
---|
1861 | 6?ooool001[ooooo00?o0000ooooooooool0m_ooool2ool006cooooo0_l00?lJooooo`006_ooool0
|
---|
1862 | 0ol0003oooooooooo`3dooooo`;oo`00K?ooool2o`00oacooooo000Jooooo`03o`000?oooooooooo
|
---|
1863 | 0?7ooooo0ooo001/ooooo`;o003o7_ooool001[ooooo00?o0000ooooooooool0k_ooool3ool006go
|
---|
1864 | oooo0_l00?lPooooo`006_ooool00ol0003oooooooooo`3[ooooo`?oo`00K_ooool2o`00ob;ooooo
|
---|
1865 | 000Jooooo`03o`000?oooooooooo0>Sooooo0ooo001_ooooo`;o003o9?ooool000kooooo1Ol00007
|
---|
1866 | ooooo`03o`000?oooooooooo0>Kooooo0_oo001`ooooo`;o003o9_ooool000oooooo00Co0000oooo
|
---|
1867 | oooooooo00001oooool00ol0003oooooooooo`3Tooooo`;oo`00L?ooool2o`00obSooooo000@oooo
|
---|
1868 | o`03o`000?oooooooooo00Oooooo1?l0003Pooooo`?oo`00L?ooool2o`00ob[ooooo000Aooooo`03
|
---|
1869 | o`000?oooooooooo00Kooooo00?o0000ooooooooool0g_ooool3ool0077ooooo0_l00?l/ooooo`00
|
---|
1870 | 3_ooool01Ol0003ooooooooooooooooo000000Oooooo00?o0000ooooooooool0foooool3ool007;o
|
---|
1871 | oooo0_l00?l^ooooo`003_ooool01Ol0003ooooooooooooooooo000000Oooooo00?o0000oooooooo
|
---|
1872 | ool0fOooool2ool007?ooooo0_l00?l`ooooo`003oooool3o`0000Sooooo00?o0000ooooooooool0
|
---|
1873 | eoooool2ool007?ooooo0_l00?lbooooo`006_ooool00ol0003oooooooooo`3Eooooo`;oo`00Looo
|
---|
1874 | ool2o`00ocCooooo000Jooooo`03o`000?oooooooooo0=?ooooo0_oo001booooo`?o003o=_ooool0
|
---|
1875 | 01[ooooo00?o0000ooooooooool0dOooool2ool007;ooooo0_l00?liooooo`006_ooool00ol0003o
|
---|
1876 | ooooooooo`3?ooooo`;oo`00L_ooool2o`00oc_ooooo000Jooooo`03o`000?oooooooooo0<cooooo
|
---|
1877 | 0ooo001booooo`;o003o?Oooool001[ooooo00?o0000ooooooooool0bOooool3ool007?ooooo0_l0
|
---|
1878 | 0?loooooo`006_ooool00ol0003oooooooooo`37ooooo`;oo`00M?ooool2o`00od7ooooo000Joooo
|
---|
1879 | o`03o`000?oooooooooo0<Gooooo0_oo001dooooo`;o003o@oooool001[ooooo00?o0000oooooooo
|
---|
1880 | ool0`oooool2ool007Cooooo0_l00?m5ooooo`006_ooool00ol0003oooooooooo`31ooooo`;oo`00
|
---|
1881 | M?ooool2o`00odOooooo000Jooooo`?o0000_oooool2ool007Cooooo0_l00?m9ooooo`006_ooool0
|
---|
1882 | 0ol0003oooooooooo`2mooooo`;oo`00M?ooool2o`00od_ooooo000Jooooo`03o`000?oooooooooo
|
---|
1883 | 0;_ooooo0_oo001dooooo`;o003oCOooool001[ooooo00?o0000ooooooooool0^Oooool2ool007Co
|
---|
1884 | oooo0_l00?m?ooooo`006_ooool00ol0003oooooooooo`2gooooo`;oo`00M?ooool2o`00oe7ooooo
|
---|
1885 | 000Jooooo`03o`000?oooooooooo0;Gooooo0_oo001dooooo`;o003oDoooool001[ooooo00?o0000
|
---|
1886 | ooooooooool0/oooool2ool007?ooooo0ol00?mEooooo`006_ooool00ol0003oooooooooo`2aoooo
|
---|
1887 | o`;oo`00L_ooool3o`00oeSooooo000Jooooo`03o`000?oooooooooo0:oooooo0_oo001booooo`;o
|
---|
1888 | 003oFoooool001[ooooo00?o0000ooooooooool0[Oooool2ool007;ooooo0_l00?mMooooo`006_oo
|
---|
1889 | ool00ol0003oooooooooo`2[ooooo`;oo`00L_ooool2o`00oeoooooo000Jooooo`?o0000Z?ooool3
|
---|
1890 | ool0077ooooo0ol00?mQooooo`006_ooool00ol0003oooooooooo`2Vooooo`;oo`00LOooool3o`00
|
---|
1891 | ofCooooo000Jooooo`03o`000?oooooooooo0:Cooooo0_oo001aooooo`;o003oIoooool001[ooooo
|
---|
1892 | 00?o0000ooooooooool0X_ooool2ool0077ooooo0_l00?mYooooo`006_ooool00ol0003ooooooooo
|
---|
1893 | o`2Pooooo`;oo`00L?ooool3o`00of_ooooo000Jooooo`03o`000?oooooooooo09kooooo0_oo000W
|
---|
1894 | oooooa;o003o=_ooool3o`00ofkooooo000?ooooo`?o00002?ooool00ol0003oooooooooo`2Loooo
|
---|
1895 | o`;oo`008oooool6o`00oa;ooooo0ol00?l`ooooo`?o003oLOooool000kooooo00Go0000oooooooo
|
---|
1896 | ooooooooo`000007ooooo`03o`000?oooooooooo09[ooooo0_oo000Oooooo`Ko003o6oooool3o`00
|
---|
1897 | ob[ooooo0ol00?mdooooo`004_ooool00ol0003oooooooooo`05ooooo`Co0000Uoooool2ool001go
|
---|
1898 | oooo1?l00?lTooooo`?o003o9?ooool3o`00ogOooooo000Booooo`03o`000?oooooooooo00Gooooo
|
---|
1899 | 00?o0000ooooooooool0Uoooool00ooo003oooooooooo`0Jooooo`?o003o:oooool4o`00oagooooo
|
---|
1900 | 0ol00?mjooooo`003_ooool4o`0000Sooooo00?o0000ooooooooool0UOooool2ool001[ooooo0ol0
|
---|
1901 | 0?lbooooo`?o003o5Oooool5o`00oggooooo000>ooooo`03o`000?oooooooooo00Wooooo00?o0000
|
---|
1902 | ooooooooool0U?ooool00ooo003oooooooooo`0Gooooo`?o003o>?ooool4o`00o`_ooooo1_l00?n2
|
---|
1903 | ooooo`003_ooool5o`0000Oooooo00?o0000ooooooooool0T_ooool2ool001Kooooo1?l00?looooo
|
---|
1904 | o`_o003oR?ooool001[ooooo00?o0000ooooooooool0T?ooool2ool001Gooooo0ol00?oFooooo`00
|
---|
1905 | 6_ooool00ol0003oooooooooo`2>ooooo`;oo`005?ooool3o`00omWooooo000Jooooo`?o0000S?oo
|
---|
1906 | ool2ool001?ooooo0ol00?oLooooo`006_ooool00ol0003oooooooooo`2;ooooo`03ool00?oooooo
|
---|
1907 | oooo013ooooo0ol00?oOooooo`006_ooool00ol0003oooooooooo`29ooooo`;oo`004?ooool3o`00
|
---|
1908 | on;ooooo000Jooooo`03o`000?oooooooooo08Sooooo00?oo`00ooooooooool03Oooool3o`00onGo
|
---|
1909 | oooo000Jooooo`03o`000?oooooooooo08Kooooo0_oo000>ooooo`;o003oj?ooool001[ooooo00?o
|
---|
1910 | 0000ooooooooool0QOooool00ooo003oooooooooo`0<ooooo`;o003oj_ooool001[ooooo0ol00023
|
---|
1911 | ooooo`;oo`003Oooool2o`00oncooooo000Jooooo`03o`000?oooooooooo08;ooooo00?oo`00oooo
|
---|
1912 | ooooool02_ooool3o`00onkooooo000Jooooo`03o`000?oooooooooo083ooooo0_oo000:ooooo`?o
|
---|
1913 | 003olOooool001[ooooo00?o0000ooooooooool0Ooooool00ooo003oooooooooo`08ooooo`;o003o
|
---|
1914 | m?ooool001[ooooo00?o0000ooooooooool0OOooool2ool000Wooooo0_l00?ofooooo`006_ooool3
|
---|
1915 | o`0007cooooo00?oo`00ooooooooool01oooool2o`00ooSooooo000Jooooo`03o`000?oooooooooo
|
---|
1916 | 07[ooooo0_oo0008ooooo`;o003on_ooool001[ooooo00?o0000ooooooooool0NOooool00ooo003o
|
---|
1917 | ooooooooo`06ooooo`;o003oo?ooool001[ooooo00?o0000ooooooooool0Moooool2ool000Oooooo
|
---|
1918 | 0_l00?onooooo`006_ooool3o`0007Kooooo00?oo`00ooooooooool01Oooool2o`00oooooooo0Ooo
|
---|
1919 | ool001[ooooo00?o0000ooooooooool0M?ooool2ool000Kooooo0_l00?ooooooo`?ooooo0009oooo
|
---|
1920 | o`?o00001?ooool2o`0000Sooooo00?o0000ooooooooool0L_ooool2ool000Kooooo0_l00?oooooo
|
---|
1921 | o`Gooooo000:ooooo`03o`000?oooooooooo00;ooooo00Co0000oooooooooooo00001oooool00ol0
|
---|
1922 | 003oooooooooo`1aooooo`03ool00?oooooooooo00Gooooo00?o003oooooooooool0ooooool5oooo
|
---|
1923 | o`002_ooool00ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`0000Oooooo1?l0001^oooo
|
---|
1924 | o`;oo`001_ooool2o`00oooooooo2?ooool000[ooooo00?o0000ooooooooool00_ooool01?l0003o
|
---|
1925 | ooooooooool00007ooooo`03o`000?oooooooooo06gooooo0_oo0007ooooo`03o`00oooooooooooo
|
---|
1926 | 0?oooooo2?ooool000[ooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00007oooo
|
---|
1927 | o`03o`000?oooooooooo06cooooo00?oo`00ooooooooool01Oooool2o`00oooooooo2oooool000Wo
|
---|
1928 | oooo0_l00004ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0J_ooool2ool0
|
---|
1929 | 00Gooooo0ol00?ooooooo`gooooo000:ooooo`03o`000?oooooooooo00?ooooo0_l00008ooooo`03
|
---|
1930 | o`000?oooooooooo06Wooooo00?oo`00ooooooooool00oooool2o`00oooooooo4?ooool001[ooooo
|
---|
1931 | 00?o0000ooooooooool0Ioooool2ool000Cooooo0_l00?oooooooa;ooooo000Jooooo`03o`000?oo
|
---|
1932 | oooooooo06Kooooo00?oo`00ooooooooool00oooool00ol00?ooooooooooo`3ooooooa;ooooo000J
|
---|
1933 | ooooo`03o`000?oooooooooo06Gooooo00?oo`00ooooooooool00_ooool2o`00oooooooo5Oooool0
|
---|
1934 | 01[ooooo00?o0000ooooooooool0I?ooool00ooo003oooooooooo`02ooooo`03o`00oooooooooooo
|
---|
1935 | 0?oooooo5Oooool001[ooooo00?o0000ooooooooool0Hoooool01?oo003oooooooooooooool2o`00
|
---|
1936 | oooooooo6?ooool001[ooooo00?o0000ooooooooool0HOooool2ool000?ooooo00?o003ooooooooo
|
---|
1937 | ool0oooooolHooooo`006_ooool00ol0003oooooooooo`1Pooooo`04ool00?ooooooooooooooo`;o
|
---|
1938 | 003ooooooolKooooo`006_ooool00ol0003oooooooooo`1Oooooo`05ool00?ooooooooooooooool0
|
---|
1939 | 0?l0oooooolMooooo`006_ooool00ol0003oooooooooo`1Nooooo`03ool00?oooooooooo00;o003o
|
---|
1940 | oooooolNooooo`006_ooool00ol0003oooooooooo`1Mooooo`04ool00?ooooooooooo`00oooooooo
|
---|
1941 | 8?ooool001[ooooo00?o0000ooooooooool0Foooool2ool000;ooooo00?o003oooooooooool0oooo
|
---|
1942 | oolOooooo`006_ooool00ol0003oooooooooo`1Jooooo`05ool00?ooooooooooooooool00?l0oooo
|
---|
1943 | oolRooooo`006_ooool00ol0003oooooooooo`1Iooooo`05ool00?ooooooooooooooool00?l0oooo
|
---|
1944 | oolSooooo`006_ooool00ol0003oooooooooo`1Hooooo`03ool00?oooooooooo00;o003ooooooolT
|
---|
1945 | ooooo`006_ooool00ol0003oooooooooo`1Gooooo`04ool00?ooooooooooo`00oooooooo9_ooool0
|
---|
1946 | 01[ooooo00?o0000ooooooooool0EOooool2ool00003ooooool00?oo003o0?oooooo9oooool001[o
|
---|
1947 | oooo00?o0000ooooooooool0E?ooool01?oo003oooooooooool00?ooooooobWooooo000Jooooo`03
|
---|
1948 | o`000?oooooooooo05?ooooo00Coo`00ooooool00?oo003ooooooolZooooo`006_ooool00ol0003o
|
---|
1949 | ooooooooo`1Booooo`03ool00?oooooo003o0?oooooo;?ooool000Sooooo1Ol00003ooooo`;o0000
|
---|
1950 | 2?ooool00ol0003oooooooooo`1Aooooo`03ool00?oooooo003o0?oooooo;Oooool000Wooooo00Co
|
---|
1951 | 0000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo053o
|
---|
1952 | oooo00?oo`00ooooool00?l0ooooool^ooooo`002_ooool00ol0003oooooooooo`02ooooo`04o`00
|
---|
1953 | 0?ooooooooooo`0000Oooooo1?l0001>ooooo`03ool00?oooooo003o0?oooooo;oooool000_ooooo
|
---|
1954 | 00Go0000ooooooooooooooooo`000002ooooo`03o`000?oooooooooo00Gooooo00?o0000oooooooo
|
---|
1955 | ool0C_ooool00ooo003oooooo`00o`3ooooooc3ooooo0008ooooo`05o`000?ooooooooooooooool0
|
---|
1956 | 00000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo04gooooo00?oo`00oooo
|
---|
1957 | ool00?l0oooooolaooooo`002?ooool01Ol0003ooooooooooooooooo000000;ooooo00Co0000oooo
|
---|
1958 | oooooooo00001oooool00ol0003oooooooooo`1<ooooo`03ool00?oooooo003o0?oooooo<_ooool0
|
---|
1959 | 00Wooooo0ol00004ooooo`;o00002?ooool00ol0003oooooooooo`1;ooooo`03ool00?oooooo003o
|
---|
1960 | 0?oooooo<oooool001[ooooo00?o0000ooooooooool0B_ooool00ooo003oooooo`00o`3oooooocCo
|
---|
1961 | oooo000Jooooo`03o`000?oooooooooo04Wooooo00?oo`00ooooool00?l0ooooooleooooo`006_oo
|
---|
1962 | ool00ol0003oooooooooo`18ooooo`03ool00?l00?oo003o0?oooooo=_ooool001[ooooo00?o0000
|
---|
1963 | ooooooooool0Aoooool00ooo003o003oooooo`3oooooocOooooo000Jooooo`03o`000?oooooooooo
|
---|
1964 | 04Kooooo00?oo`00o`00ooooool0oooooolhooooo`006_ooool00ol0003oooooooooo`15ooooo`03
|
---|
1965 | ool00?l00?oooooo0?oooooo>Oooool001[ooooo00?o0000ooooooooool0A?ooool00ooo003o003o
|
---|
1966 | ooooo`3ooooooc[ooooo000Jooooo`03o`000?oooooooooo04Cooooo00?o003oooooooooool0oooo
|
---|
1967 | ooljooooo`006_ooool00ol0003oooooooooo`13ooooo`03ool00?l00?oooooo0?oooooo>oooool0
|
---|
1968 | 01[ooooo00?o0000ooooooooool0@_ooool00ooo003o003oooooo`3ooooooccooooo000Jooooo`?o
|
---|
1969 | 0000@Oooool00ooo003o003oooooo`3oooooocgooooo000Jooooo`03o`000?oooooooooo043ooooo
|
---|
1970 | 00?oo`00o`00ooooool0oooooolnooooo`006_ooool00ol0003oooooooooo`0oooooo`03ool00?l0
|
---|
1971 | 0?oooooo0?oooooo?oooool001[ooooo00?o0000ooooooooool0?_ooool00ooo003o003oooooo`3o
|
---|
1972 | oooood3ooooo000Jooooo`03o`000?oooooooooo03gooooo00?oo`00o`00ooooool0oooooom1oooo
|
---|
1973 | o`006_ooool00ol0003oooooooooo`0looooo`03ool00?l00?oooooo0?oooooo@_ooool001[ooooo
|
---|
1974 | 00?o0000ooooooooool0>oooool00ooo003o003oooooo`3ooooood?ooooo000Jooooo`03o`000?oo
|
---|
1975 | oooooooo03[ooooo00?oo`00o`00ooooool0oooooom4ooooo`006_ooool00ol0003oooooooooo`0i
|
---|
1976 | ooooo`03ool00?l00?oooooo0?ooooooAOooool001[ooooo00?o0000ooooooooool0>?ooool00ooo
|
---|
1977 | 003o003oooooo`3oooooodKooooo000Jooooo`03o`000?oooooooooo03Oooooo00?oo`00o`00oooo
|
---|
1978 | ool0oooooom7ooooo`006_ooool3o`0003Oooooo00?o003oooooooooool0oooooom7ooooo`006_oo
|
---|
1979 | ool00ol0003oooooooooo`0fooooo`03ool00?l00?oooooo0?ooooooB?ooool001[ooooo00?o0000
|
---|
1980 | ooooooooool0=Oooool00ooo003o003oooooo`3oooooodWooooo000Jooooo`03o`000?oooooooooo
|
---|
1981 | 03Cooooo00?oo`00o`00ooooool0oooooom:ooooo`006_ooool00ol0003oooooooooo`0dooooo`03
|
---|
1982 | o`00oooooooooooo0?ooooooB_ooool001[ooooo00?o0000ooooooooool0<oooool00ol00?oooooo
|
---|
1983 | ooooo`3ooooood_ooooo0009ooooo`?o00001?ooool2o`0000Sooooo00?o0000ooooooooool0<_oo
|
---|
1984 | ool00ol00?ooooooooooo`3oooooodcooooo0008ooooo`05o`000?ooooooooooooooool000000_oo
|
---|
1985 | ool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo037ooooo00?o003oooooooooool0
|
---|
1986 | oooooom=ooooo`003?ooool01?l0003oooooooooool00002ooooo`03o`000?oooooooooo00Gooooo
|
---|
1987 | 1?l0000`ooooo`03o`00oooooooooooo0?ooooooCOooool000cooooo00Co0000oooooooooooo0000
|
---|
1988 | 0_ooool00ol0003oooooooooo`05ooooo`03o`000?oooooooooo033ooooo00?o003oooooooooool0
|
---|
1989 | oooooom>ooooo`002?ooool4o`0000?ooooo00Co0000oooooooooooo00001oooool00ol0003ooooo
|
---|
1990 | ooooo`0_ooooo`03o`00oooooooooooo0?ooooooCoooool000Sooooo00?o0000ooooooooool01?oo
|
---|
1991 | ool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo02kooooo00?oo`00o`00ooooool0
|
---|
1992 | oooooom@ooooo`002?ooool5o`0000?ooooo0_l00008ooooo`03o`000?oooooooooo02kooooo00?o
|
---|
1993 | 003oooooooooool0oooooom@ooooo`006_ooool00ol0003oooooooooo`0]ooooo`03o`00oooooooo
|
---|
1994 | oooo0?ooooooDOooool001[ooooo00?o0000ooooooooool0;?ooool00ooo003o003oooooo`3ooooo
|
---|
1995 | oe;ooooo000Jooooo`?o0000:oooool00ooo003o003oooooo`3ooooooe?ooooo000Jooooo`03o`00
|
---|
1996 | 0?oooooooooo02_ooooo00?o003oooooooooool0oooooomCooooo`006_ooool00ol0003ooooooooo
|
---|
1997 | o`0Zooooo`03ool00?l00?oooooo0?ooooooE?ooool001[ooooo00?o0000ooooooooool0:Oooool0
|
---|
1998 | 0ooo003o003oooooo`3ooooooeGooooo000Jooooo`03o`000?oooooooooo02Wooooo00?o003ooooo
|
---|
1999 | ooooool0oooooomEooooo`006_ooool3o`0002Sooooo00?oo`00o`00ooooool0oooooomFooooo`00
|
---|
2000 | 6_ooool00ol0003oooooooooo`0Xooooo`03o`00oooooooooooo0?ooooooE_ooool001[ooooo00?o
|
---|
2001 | 0000ooooooooool09oooool00ol00?ooooooooooo`3ooooooeOooooo000Jooooo`03o`000?oooooo
|
---|
2002 | oooo02Kooooo00?oo`00o`00ooooool0oooooomHooooo`006_ooool00ol0003oooooooooo`0Voooo
|
---|
2003 | o`03o`00oooooooooooo0?ooooooF?ooool001[ooooo0ol0000Uooooo`03o`00oooooooooooo0?oo
|
---|
2004 | ooooFOooool001[ooooo00?o0000ooooooooool09Oooool00ol00?ooooooooooo`3ooooooeWooooo
|
---|
2005 | 000Jooooo`03o`000?oooooooooo02Cooooo00?o003oooooooooool0oooooomJooooo`006_ooool0
|
---|
2006 | 0ol0003oooooooooo`0Tooooo`03o`00oooooooooooo0?ooooooF_ooool001[ooooo00?o0000oooo
|
---|
2007 | ooooool08oooool00ol00?ooooooooooo`3ooooooe_ooooo000Jooooo`?o00008oooool00ol00?oo
|
---|
2008 | ooooooooo`3ooooooe_ooooo000Jooooo`03o`000?oooooooooo02;ooooo00?o003oooooooooool0
|
---|
2009 | oooooomLooooo`000oooool3o`0000Cooooo0_l00004ooooo`;o00002?ooool00ol0003ooooooooo
|
---|
2010 | o`0Qooooo`03o`00oooooooooooo0?ooooooGOooool000Cooooo00?o0000ooooooooool00_ooool0
|
---|
2011 | 1?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0
|
---|
2012 | 8Oooool00ol00?ooooooooooo`3ooooooegooooo0004ooooo`03o`000?oooooooooo00;ooooo00Co
|
---|
2013 | 0000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`Co00007oooool00ol00?oo
|
---|
2014 | ooooooooo`3ooooooekooooo0004ooooo`03o`000?oooooooooo00;ooooo00Co0000oooooooooooo
|
---|
2015 | 00000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo023ooooo00?o003ooooo
|
---|
2016 | ooooool0oooooomNooooo`001?ooool00ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`00
|
---|
2017 | 00;ooooo00Co0000oooooooooooo00001oooool00ol0003oooooooooo`0Oooooo`03o`00oooooooo
|
---|
2018 | oooo0?ooooooGoooool000?ooooo0_l00004ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000
|
---|
2019 | oooooooooooo00001oooool00ol0003oooooooooo`0Oooooo`03o`00oooooooooooo0?ooooooGooo
|
---|
2020 | ool000Cooooo00?o0000ooooooooool00oooool2o`0000Cooooo0_l00008ooooo`03o`000?oooooo
|
---|
2021 | oooo01kooooo00?o003oooooooooool0oooooomPooooo`006_ooool00ol0003oooooooooo`0Noooo
|
---|
2022 | o`03o`00oooooooooooo0?ooooooH?ooool001[ooooo00?o0000ooooooooool07Oooool00ol00?oo
|
---|
2023 | ooooooooo`3oooooof7ooooo000Jooooo`03o`000?oooooooooo01gooooo00?o003oooooooooool0
|
---|
2024 | oooooomQooooo`006_ooool00ol0003oooooooooo`0Looooo`03o`00oooooooooooo0?ooooooH_oo
|
---|
2025 | ool001[ooooo00?o0000ooooooooool07?ooool00ol00?ooooooooooo`3oooooof;ooooo000Joooo
|
---|
2026 | o`03o`000?oooooooooo01cooooo00?o003oooooooooool0oooooomRooooo`006_ooool00ol0003o
|
---|
2027 | ooooooooo`0Kooooo`03o`00oooooooooooo0?ooooooHoooool001[ooooo00?o0000ooooooooool0
|
---|
2028 | 6oooool00ol00?ooooooooooo`3oooooof?ooooo000Jooooo`03o`000?oooooooooo01[ooooo00?o
|
---|
2029 | 003oooooooooool0oooooomTooooo`006_ooool00ol0003oooooooooo`0Jooooo`03o`00oooooooo
|
---|
2030 | oooo0?ooooooI?ooool001[ooooo00?o0000ooooooooool06Oooool00ol00?ooooooooooo`3ooooo
|
---|
2031 | ofGooooo000Jooooo`03o`000?oooooooooo01Wooooo00?o003oooooooooool0oooooomUooooo`00
|
---|
2032 | 6_ooool00ol0003oooooooooo`0Hooooo`03o`00oooooooooooo0?ooooooI_ooool001[ooooo00?o
|
---|
2033 | 0000ooooooooool06?ooool00ol00?ooooooooooo`3oooooofKooooo000Jooooo`03o`000?oooooo
|
---|
2034 | oooo01Sooooo00?o003oooooooooool0oooooomVooooo`006_ooool00ol0003oooooooooo`0Goooo
|
---|
2035 | o`03o`00oooooooooooo0?ooooooIoooool001[ooooo00?o0000ooooooooool05oooool00ol00?oo
|
---|
2036 | ooooooooo`3oooooofOooooo000Jooooo`03o`000?oooooooooo01Oooooo00?o003oooooooooool0
|
---|
2037 | oooooomWooooo`000_ooool5o`0000?ooooo0_l00004ooooo`;o00002?ooool00ol0003ooooooooo
|
---|
2038 | o`0Fooooo`03o`00oooooooooooo0?ooooooJ?ooool000?ooooo00Co0000oooooooooooo00000_oo
|
---|
2039 | ool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooooooo
|
---|
2040 | ool05_ooool00ol00?ooooooooooo`3oooooofSooooo0004ooooo`03o`000?oooooooooo00;ooooo
|
---|
2041 | 00Co0000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`Co00005?ooool00ol0
|
---|
2042 | 0?ooooooooooo`3oooooofWooooo0005ooooo`05o`000?ooooooooooooooool000000_ooool01?l0
|
---|
2043 | 003oooooooooool00002ooooo`03o`000?oooooooooo00Gooooo00?o0000ooooooooool05Oooool0
|
---|
2044 | 0ol00?ooooooooooo`3oooooofWooooo0002ooooo`05o`000?ooooooooooooooool000000_ooool0
|
---|
2045 | 1?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0
|
---|
2046 | 5Oooool00ol00?ooooooooooo`3oooooofWooooo0002ooooo`05o`000?ooooooooooooooool00000
|
---|
2047 | 0_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooo
|
---|
2048 | ooooool05?ooool00ol00?ooooooooooo`3oooooof[ooooo0003ooooo`?o00001?ooool2o`0000Co
|
---|
2049 | oooo0_l00008ooooo`03o`000?oooooooooo01Cooooo00?o003oooooooooool0oooooomZooooo`00
|
---|
2050 | 6_ooool00ol0003oooooooooo`0Dooooo`03o`00oooooooooooo0?ooooooJ_ooool001[ooooo00?o
|
---|
2051 | 0000ooooooooool04oooool00ol00?ooooooooooo`3oooooof_ooooo000Jooooo`03o`000?oooooo
|
---|
2052 | oooo0?ooooooPOooool001[ooooo00?o0000ooooooooool0oooooon1ooooo`006_ooool00ol0003o
|
---|
2053 | ooooooooo`3ooooooh7ooooo000Jooooo`03o`000?oooooooooo0?ooooooPOooool001[ooooo00?o
|
---|
2054 | 0000ooooooooool0oooooon1ooooo`00oooooonNooooo`00\
|
---|
2055 | \>"],
|
---|
2056 | ImageRangeCache->{{{0, 412}, {254.125, 0}} -> {-58.8613, -0.530814, \
|
---|
2057 | 1.63559, 0.0117063}}]
|
---|
2058 | }, Open ]],
|
---|
2059 |
|
---|
2060 | Cell["\<\
|
---|
2061 | Cross section (pb) as a function of the Higgs mass. This plot shows \
|
---|
2062 | how well the EFT does. For a Higgs<200 GeV the approximation is very \
|
---|
2063 | good.\
|
---|
2064 | \>", "Text"]
|
---|
2065 | }, Open ]],
|
---|
2066 |
|
---|
2067 | Cell[CellGroupData[{
|
---|
2068 |
|
---|
2069 | Cell["Various ways to do the integration over the x1 and x2.", "Subsection"],
|
---|
2070 |
|
---|
2071 | Cell[CellGroupData[{
|
---|
2072 |
|
---|
2073 | Cell["\<\
|
---|
2074 |
|
---|
2075 | uno=Integrate[x1*x2,{x1,t0,1},{x2,t0/x1,1}]//Expand
|
---|
2076 | due=Integrate[ta,{ta,t0,1},{y,Log[Sqrt[ta]],-Log[Sqrt[ta]]}]//PowerExpand//\
|
---|
2077 | Expand
|
---|
2078 | tre=Integrate[t0/z \
|
---|
2079 | t0/z^2,{z,t0,1},{y,Log[Sqrt[t0/z]],-Log[Sqrt[t0/z]]}]//PowerExpand//Expand\
|
---|
2080 | \>\
|
---|
2081 | ", "Input"],
|
---|
2082 |
|
---|
2083 | Cell[BoxData[
|
---|
2084 | \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"],
|
---|
2085 |
|
---|
2086 | Cell[BoxData[
|
---|
2087 | \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"],
|
---|
2088 |
|
---|
2089 | Cell[BoxData[
|
---|
2090 | \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"]
|
---|
2091 | }, Open ]]
|
---|
2092 | }, Closed]]
|
---|
2093 | }, Closed]],
|
---|
2094 |
|
---|
2095 | Cell[CellGroupData[{
|
---|
2096 |
|
---|
2097 | Cell["NLO cross section", "Section"],
|
---|
2098 |
|
---|
2099 | Cell["\<\
|
---|
2100 | We have integrate over the angular variables, so we are only left \
|
---|
2101 | with two integrations. One is over z (=mh/S/x1/x2) and the other over the \
|
---|
2102 | rapidity y of the partonic cms. For every point in the phase space we have to \
|
---|
2103 | calculate an event and a corresponding counter-event with z=1 to implement \
|
---|
2104 | the + distributions in the gg channel. Various contributions add to the final \
|
---|
2105 | result:
|
---|
2106 |
|
---|
2107 | virtual: gg>h at 1-loop + corrections to the effective lagrangian (UV and IR \
|
---|
2108 | divergent)
|
---|
2109 | real: qq~ >h g (finite)
|
---|
2110 | qg > qh (collinear divergent)
|
---|
2111 | gg>gh (soft and collinear divergent)
|
---|
2112 | \
|
---|
2113 | \>", "Text",
|
---|
2114 | FontSize->16],
|
---|
2115 |
|
---|
2116 | Cell[CellGroupData[{
|
---|
2117 |
|
---|
2118 | Cell["Born+Virtual ", "Subsection"],
|
---|
2119 |
|
---|
2120 | Cell[TextData[{
|
---|
2121 | "dsigmaBV[yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
|
---|
2122 | StyleBox["(* local variables *)",
|
---|
2123 | FontColor->RGBColor[0, 1, 0]],
|
---|
2124 | "\n{y0,x10,x20,sig0,ymax0,JAC0,v,S,tau0,beta,gg0,qg0,qq0},\nMuf=muf 1.;\n\
|
---|
2125 | Mur=mur 1.;\nv=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nbeta=Sqrt[1-tau0];\n\n",
|
---|
2126 | StyleBox["(* calculate quantities for z=1 *)",
|
---|
2127 | FontColor->RGBColor[1, 0, 0]],
|
---|
2128 | "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\nJAC0=2*ymax0;\n\
|
---|
2129 | x10=Sqrt[tau0] Exp[y0];\nx20=Sqrt[tau0] Exp[-y0];\n\
|
---|
2130 | {gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
|
---|
2131 | StyleBox["(* sigma0 *)",
|
---|
2132 | FontColor->RGBColor[1, 0, 0]],
|
---|
2133 | "\nsig0=asNLO[Mur,5]^2/576/Pi/v^2*tau0;\nsig0=sig0+sig0*asNLO[Mur,5]/2/Pi*\n\
|
---|
2134 | (11/3 CA+ 2 Pi^2 - 2 b0 2 Log[Muf/Mur]+\n16 CA Log[beta] Log[mh/Muf]+16 CA \
|
---|
2135 | Log[beta]^2);\nsig0=sig0*gg0;\nsig0=sig0*389379660; (*to picobarns*)\n\
|
---|
2136 | sig0=sig0*JAC0;\n\n\
|
---|
2137 | (*Print[{muf,mur,v,S,tau0,beta,ymax0,y0,JAC0,x10,x20,gg0,qg0,qq0,sig0}];*)\n\
|
---|
2138 | Return[sig0];\n];"
|
---|
2139 | }], "Input"]
|
---|
2140 | }, Open ]],
|
---|
2141 |
|
---|
2142 | Cell[CellGroupData[{
|
---|
2143 |
|
---|
2144 | Cell["Real contributions", "Subsection"],
|
---|
2145 |
|
---|
2146 | Cell[TextData[{
|
---|
2147 | "dsigmaR[xx_,yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
|
---|
2148 | StyleBox["(* local variables *)",
|
---|
2149 | FontColor->RGBColor[0, 1, 0]],
|
---|
2150 | "\n{v,S,tau0,\n y,y0,z,tau,\n x1,x2,x10,x20,\n ymax0,ymax,\n JAC,JAC0,\n \
|
---|
2151 | gg,qg,qq,gg0,qg0,qq0,\n qqterm,qgterm,ggterm,ggterm0,\n sig,sig0,\n Muf},\n\n\
|
---|
2152 | v=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nMuf=muf*1.0;\n\n",
|
---|
2153 | StyleBox["(* calculate quantities for an event *)",
|
---|
2154 | FontColor->RGBColor[1, 0, 0]],
|
---|
2155 | "\nz=tau0+(1-tau0)*xx;\ntau=tau0/z;\nymax =-Log[Sqrt[tau]];\n\
|
---|
2156 | y=-ymax+2*ymax*yy;\nJAC =2*ymax*(1-tau0)*tau0/z^2;\nx1=Sqrt[tau] Exp[y];\n\
|
---|
2157 | x2=tau/x1;\n",
|
---|
2158 | StyleBox["(* call the pdf *)\n",
|
---|
2159 | FontColor->RGBColor[1, 0, 0]],
|
---|
2160 | "\n{gg,qg,qq}=pdfcall[x1,x2,Muf];\n\n",
|
---|
2161 | StyleBox["(* calculate quantities for counter-event *)",
|
---|
2162 | FontColor->RGBColor[1, 0, 0]],
|
---|
2163 | "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\n\
|
---|
2164 | JAC0=2*ymax0*(1-tau0)*tau0;\nx10=Sqrt[tau0] Exp[y0];\nx20=tau0/x10;\n",
|
---|
2165 | StyleBox["(* call the pdf at z=1 *)",
|
---|
2166 | FontColor->RGBColor[1, 0, 0]],
|
---|
2167 | "\n{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
|
---|
2168 | StyleBox["(* sigma0 *)",
|
---|
2169 | FontColor->RGBColor[1, 0, 0]],
|
---|
2170 | "\nsig0=asNLO[mur,5]^2/576/Pi/v^2;\nsig0=sig0*asNLO[mur,5]/2/Pi;\n\n",
|
---|
2171 | StyleBox["(* qq channnel : no counter event *)",
|
---|
2172 | FontColor->RGBColor[1, 0, 0]],
|
---|
2173 | "\nqqterm=64/27*(1-z)^3;\nqqterm=qqterm*sig0*JAC*qq;\n\n",
|
---|
2174 | StyleBox["(* qg channnel : no counter event *)",
|
---|
2175 | FontColor->RGBColor[1, 0, 0]],
|
---|
2176 | "\nqgterm=CF*( (1+(1-z)^2)/z (2*Log[mh/muf]+2 Log[1-z]-Log[z])\n \
|
---|
2177 | +(z^2-3/2(1-z)^2)/z )*z;\nqgterm=qgterm*sig0*JAC*qg;\n\n",
|
---|
2178 | StyleBox["(* gg channnel *)",
|
---|
2179 | FontColor->RGBColor[1, 0, 0]],
|
---|
2180 | "\nggterm=CA*(2 (2 (z/(1-z)+(1-z)/z+z (1-z) )) * (2*Log[mh/muf])-\n \
|
---|
2181 | 11/3 (1-z)^3/z -\n 4 (1-z+z^2)^2/z/(1-z) Log[z]+\n 8 \
|
---|
2182 | (1-z+z^2)^2/z Log[1-z]/(1-z) )*z;\nggterm=ggterm*sig0*JAC*gg;\n",
|
---|
2183 | StyleBox["(* gg counter-event *)",
|
---|
2184 | FontColor->RGBColor[1, 0, 0]],
|
---|
2185 | "\nggterm0=CA*(-4/(1-z) 2*Log[mh/muf] - 8*Log[1-z]/(1-z) );\n\
|
---|
2186 | ggterm0=ggterm0*sig0*JAC0*gg0;\n\n\n",
|
---|
2187 | StyleBox["(* total *)",
|
---|
2188 | FontColor->RGBColor[1, 0, 0]],
|
---|
2189 | "\nsig=0;\nsig=sig+qqterm;\nsig=sig+qgterm;\nsig=sig+ggterm+ggterm0;\n\
|
---|
2190 | sig=sig*389379660; (*to picobarns*)\n\nReturn[sig];\n\n];\n"
|
---|
2191 | }], "Input"],
|
---|
2192 |
|
---|
2193 | Cell[CellGroupData[{
|
---|
2194 |
|
---|
2195 | Cell["\<\
|
---|
2196 | virt=NIntegrate[dsigmaBV[xvar,100,14000,100,100],{xvar,0,1}];
|
---|
2197 | virt\
|
---|
2198 | \>", "Input"],
|
---|
2199 |
|
---|
2200 | Cell[BoxData[
|
---|
2201 | \(TraditionalForm\`33.56877602575538`\)], "Output"]
|
---|
2202 | }, Open ]],
|
---|
2203 |
|
---|
2204 | Cell[CellGroupData[{
|
---|
2205 |
|
---|
2206 | Cell["\<\
|
---|
2207 | eps=0.0000000001;
|
---|
2208 | real=Vegas[dsigmaR[xvar,yvar,100,14000,100,100],{xvar,eps,1-eps},{yvar,eps,1-\
|
---|
2209 | eps},Compiled->False,NStart->1000,MaxPoints->10000]\
|
---|
2210 | \>", "Input"],
|
---|
2211 |
|
---|
2212 | Cell[BoxData[
|
---|
2213 | \(TraditionalForm\`"\nIteration 1: 1000 integrand evaluations so far\n\
|
---|
2214 | [1] 16.6638 +- 0.729445 \tchisq -0 (0 df)"\)], "Print"],
|
---|
2215 |
|
---|
2216 | Cell[BoxData[
|
---|
2217 | \(TraditionalForm\`"\nIteration 2: 2500 integrand evaluations so far\n\
|
---|
2218 | [1] 16.6521 +- 0.173781 \tchisq 0.000273976 (1 df)"\)], "Print"],
|
---|
2219 |
|
---|
2220 | Cell[BoxData[
|
---|
2221 | \(TraditionalForm\`$Aborted\)], "Output"]
|
---|
2222 | }, Open ]],
|
---|
2223 |
|
---|
2224 | Cell[CellGroupData[{
|
---|
2225 |
|
---|
2226 | Cell["asNLO[100,5]", "Input"],
|
---|
2227 |
|
---|
2228 | Cell[BoxData[
|
---|
2229 | \(TraditionalForm\`0.11636176382460801`\)], "Output"]
|
---|
2230 | }, Open ]]
|
---|
2231 | }, Open ]]
|
---|
2232 | }, Open ]]
|
---|
2233 | }, Open ]]
|
---|
2234 | },
|
---|
2235 | FrontEndVersion->"4.1 for Macintosh",
|
---|
2236 | ScreenRectangle->{{0, 1280}, {0, 832}},
|
---|
2237 | WindowSize->{872, 573},
|
---|
2238 | WindowMargins->{{131, Automatic}, {106, Automatic}}
|
---|
2239 | ]
|
---|
2240 |
|
---|
2241 | (*******************************************************************
|
---|
2242 | Cached data follows. If you edit this Notebook file directly, not
|
---|
2243 | using Mathematica, you must remove the line containing CacheID at
|
---|
2244 | the top of the file. The cache data will then be recreated when
|
---|
2245 | you save this file from within Mathematica.
|
---|
2246 | *******************************************************************)
|
---|
2247 |
|
---|
2248 | (*CellTagsOutline
|
---|
2249 | CellTagsIndex->{}
|
---|
2250 | *)
|
---|
2251 |
|
---|
2252 | (*CellTagsIndex
|
---|
2253 | CellTagsIndex->{}
|
---|
2254 | *)
|
---|
2255 |
|
---|
2256 | (*NotebookFileOutline
|
---|
2257 | Notebook[{
|
---|
2258 |
|
---|
2259 | Cell[CellGroupData[{
|
---|
2260 | Cell[1727, 52, 56, 0, 65, "Subtitle"],
|
---|
2261 |
|
---|
2262 | Cell[CellGroupData[{
|
---|
2263 | Cell[1808, 56, 31, 0, 56, "Section"],
|
---|
2264 | Cell[1842, 58, 687, 14, 114, "Text"]
|
---|
2265 | }, Closed]],
|
---|
2266 |
|
---|
2267 | Cell[CellGroupData[{
|
---|
2268 | Cell[2566, 77, 32, 0, 36, "Section"],
|
---|
2269 | Cell[2601, 79, 88, 4, 57, "Input"],
|
---|
2270 |
|
---|
2271 | Cell[CellGroupData[{
|
---|
2272 | Cell[2714, 87, 35, 0, 46, "Subsection"],
|
---|
2273 | Cell[2752, 89, 159, 4, 32, "Text"],
|
---|
2274 |
|
---|
2275 | Cell[CellGroupData[{
|
---|
2276 | Cell[2936, 97, 161, 2, 43, "Input"],
|
---|
2277 | Cell[3100, 101, 201, 3, 28, "Output"]
|
---|
2278 | }, Open ]]
|
---|
2279 | }, Closed]],
|
---|
2280 |
|
---|
2281 | Cell[CellGroupData[{
|
---|
2282 | Cell[3350, 110, 52, 0, 30, "Subsection"],
|
---|
2283 | Cell[3405, 112, 68, 3, 42, "Input"]
|
---|
2284 | }, Closed]],
|
---|
2285 |
|
---|
2286 | Cell[CellGroupData[{
|
---|
2287 | Cell[3510, 120, 73, 0, 30, "Subsection"],
|
---|
2288 |
|
---|
2289 | Cell[CellGroupData[{
|
---|
2290 | Cell[3608, 124, 155, 3, 43, "Input"],
|
---|
2291 | Cell[3766, 129, 113, 2, 28, "Output"],
|
---|
2292 | Cell[3882, 133, 80, 1, 28, "Output"]
|
---|
2293 | }, Open ]],
|
---|
2294 |
|
---|
2295 | Cell[CellGroupData[{
|
---|
2296 | Cell[3999, 139, 44, 3, 42, "Input"],
|
---|
2297 | Cell[4046, 144, 72, 1, 24, "Print"],
|
---|
2298 | Cell[4121, 147, 68, 1, 24, "Print"],
|
---|
2299 | Cell[4192, 150, 80, 1, 24, "Print"],
|
---|
2300 | Cell[4275, 153, 88, 1, 24, "Print"],
|
---|
2301 | Cell[4366, 156, 97, 2, 24, "Print"],
|
---|
2302 | Cell[4466, 160, 122, 2, 24, "Print"],
|
---|
2303 | Cell[4591, 164, 53, 1, 24, "Print"],
|
---|
2304 | Cell[4647, 167, 81, 1, 24, "Print"],
|
---|
2305 | Cell[4731, 170, 92, 1, 24, "Print"]
|
---|
2306 | }, Open ]],
|
---|
2307 |
|
---|
2308 | Cell[CellGroupData[{
|
---|
2309 | Cell[4860, 176, 349, 6, 58, "Subsubsection"],
|
---|
2310 | Cell[5212, 184, 945, 37, 522, "Input"],
|
---|
2311 | Cell[6160, 223, 37, 3, 42, "Input"],
|
---|
2312 | Cell[6200, 228, 1739, 64, 897, "Input"]
|
---|
2313 | }, Open ]],
|
---|
2314 |
|
---|
2315 | Cell[CellGroupData[{
|
---|
2316 | Cell[7976, 297, 58, 0, 42, "Subsubsection"],
|
---|
2317 | Cell[8037, 299, 43, 0, 27, "Input"]
|
---|
2318 | }, Open ]]
|
---|
2319 | }, Open ]],
|
---|
2320 |
|
---|
2321 | Cell[CellGroupData[{
|
---|
2322 | Cell[8129, 305, 267, 6, 82, "Subsection"],
|
---|
2323 | Cell[8399, 313, 778, 16, 155, "Input"],
|
---|
2324 |
|
---|
2325 | Cell[CellGroupData[{
|
---|
2326 | Cell[9202, 333, 76, 2, 42, "Subsubsection"],
|
---|
2327 |
|
---|
2328 | Cell[CellGroupData[{
|
---|
2329 | Cell[9303, 339, 32, 0, 27, "Input"],
|
---|
2330 | Cell[9338, 341, 71, 1, 28, "Output"]
|
---|
2331 | }, Open ]]
|
---|
2332 | }, Open ]]
|
---|
2333 | }, Open ]],
|
---|
2334 |
|
---|
2335 | Cell[CellGroupData[{
|
---|
2336 | Cell[9470, 349, 36, 0, 46, "Subsection"],
|
---|
2337 | Cell[9509, 351, 76, 7, 102, "Input"]
|
---|
2338 | }, Closed]]
|
---|
2339 | }, Open ]],
|
---|
2340 |
|
---|
2341 | Cell[CellGroupData[{
|
---|
2342 | Cell[9634, 364, 35, 0, 56, "Section"],
|
---|
2343 |
|
---|
2344 | Cell[CellGroupData[{
|
---|
2345 | Cell[9694, 368, 207, 5, 58, "Subsubsection"],
|
---|
2346 | Cell[9904, 375, 18, 0, 27, "Input"],
|
---|
2347 |
|
---|
2348 | Cell[CellGroupData[{
|
---|
2349 | Cell[9947, 379, 236, 6, 72, "Input"],
|
---|
2350 | Cell[10186, 387, 28784, 687, 280, 5861, 400, "GraphicsData", "PostScript", \
|
---|
2351 | "Graphics"]
|
---|
2352 | }, Open ]],
|
---|
2353 | Cell[38985, 1077, 150, 3, 32, "Text"]
|
---|
2354 | }, Open ]],
|
---|
2355 |
|
---|
2356 | Cell[CellGroupData[{
|
---|
2357 | Cell[39172, 1085, 468, 9, 74, "Subsubsection"],
|
---|
2358 | Cell[39643, 1096, 420, 20, 297, "Input"],
|
---|
2359 |
|
---|
2360 | Cell[CellGroupData[{
|
---|
2361 | Cell[40088, 1120, 72, 0, 27, "Input"],
|
---|
2362 | Cell[40163, 1122, 70, 1, 28, "Output"]
|
---|
2363 | }, Open ]]
|
---|
2364 | }, Open ]],
|
---|
2365 |
|
---|
2366 | Cell[CellGroupData[{
|
---|
2367 | Cell[40282, 1129, 215, 5, 64, "Subsection"],
|
---|
2368 | Cell[40500, 1136, 113, 3, 27, "Input"],
|
---|
2369 | Cell[40616, 1141, 139, 3, 42, "Input"],
|
---|
2370 | Cell[40758, 1146, 24, 0, 27, "Input"],
|
---|
2371 |
|
---|
2372 | Cell[CellGroupData[{
|
---|
2373 | Cell[40807, 1150, 319, 12, 72, "Input"],
|
---|
2374 | Cell[41129, 1164, 34897, 892, 264, 10632, 588, "GraphicsData", "PostScript", \
|
---|
2375 | "Graphics"]
|
---|
2376 | }, Open ]],
|
---|
2377 | Cell[76041, 2059, 170, 4, 30, "Text"]
|
---|
2378 | }, Open ]],
|
---|
2379 |
|
---|
2380 | Cell[CellGroupData[{
|
---|
2381 | Cell[76248, 2068, 76, 0, 46, "Subsection"],
|
---|
2382 |
|
---|
2383 | Cell[CellGroupData[{
|
---|
2384 | Cell[76349, 2072, 259, 8, 72, "Input"],
|
---|
2385 | Cell[76611, 2082, 93, 1, 46, "Output"],
|
---|
2386 | Cell[76707, 2085, 93, 1, 46, "Output"],
|
---|
2387 | Cell[76803, 2088, 93, 1, 46, "Output"]
|
---|
2388 | }, Open ]]
|
---|
2389 | }, Closed]]
|
---|
2390 | }, Closed]],
|
---|
2391 |
|
---|
2392 | Cell[CellGroupData[{
|
---|
2393 | Cell[76957, 2096, 36, 0, 36, "Section"],
|
---|
2394 | Cell[76996, 2098, 636, 15, 194, "Text"],
|
---|
2395 |
|
---|
2396 | Cell[CellGroupData[{
|
---|
2397 | Cell[77657, 2117, 35, 0, 46, "Subsection"],
|
---|
2398 | Cell[77695, 2119, 958, 19, 462, "Input"]
|
---|
2399 | }, Open ]],
|
---|
2400 |
|
---|
2401 | Cell[CellGroupData[{
|
---|
2402 | Cell[78690, 2143, 40, 0, 46, "Subsection"],
|
---|
2403 | Cell[78733, 2145, 2219, 45, 1107, "Input"],
|
---|
2404 |
|
---|
2405 | Cell[CellGroupData[{
|
---|
2406 | Cell[80977, 2194, 91, 3, 42, "Input"],
|
---|
2407 | Cell[81071, 2199, 69, 1, 28, "Output"]
|
---|
2408 | }, Open ]],
|
---|
2409 |
|
---|
2410 | Cell[CellGroupData[{
|
---|
2411 | Cell[81177, 2205, 173, 4, 57, "Input"],
|
---|
2412 | Cell[81353, 2211, 147, 2, 60, "Print"],
|
---|
2413 | Cell[81503, 2215, 156, 2, 60, "Print"],
|
---|
2414 | Cell[81662, 2219, 59, 1, 28, "Output"]
|
---|
2415 | }, Open ]],
|
---|
2416 |
|
---|
2417 | Cell[CellGroupData[{
|
---|
2418 | Cell[81758, 2225, 29, 0, 27, "Input"],
|
---|
2419 | Cell[81790, 2227, 71, 1, 28, "Output"]
|
---|
2420 | }, Open ]]
|
---|
2421 | }, Open ]]
|
---|
2422 | }, Open ]]
|
---|
2423 | }, Open ]]
|
---|
2424 | }
|
---|
2425 | ]
|
---|
2426 | *)
|
---|
2427 |
|
---|
2428 |
|
---|
2429 |
|
---|
2430 | (*******************************************************************
|
---|
2431 | End of Mathematica Notebook file.
|
---|
2432 | *******************************************************************)
|
---|
2433 |
|
---|