1 | (************** Content-type: application/mathematica **************
|
---|
2 |
|
---|
3 | Mathematica-Compatible Notebook
|
---|
4 |
|
---|
5 | This notebook can be used with any Mathematica-compatible
|
---|
6 | application, such as Mathematica, MathReader or Publicon. The data
|
---|
7 | for the notebook starts with the line containing stars above.
|
---|
8 |
|
---|
9 | To get the notebook into a Mathematica-compatible application, do
|
---|
10 | one of the following:
|
---|
11 |
|
---|
12 | * Save the data starting with the line of stars above into a file
|
---|
13 | with a name ending in .nb, then open the file inside the
|
---|
14 | application;
|
---|
15 |
|
---|
16 | * Copy the data starting with the line of stars above to the
|
---|
17 | clipboard, then use the Paste menu command inside the application.
|
---|
18 |
|
---|
19 | Data for notebooks contains only printable 7-bit ASCII and can be
|
---|
20 | sent directly in email or through ftp in text mode. Newlines can be
|
---|
21 | CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
|
---|
22 |
|
---|
23 | NOTE: If you modify the data for this notebook not in a Mathematica-
|
---|
24 | compatible application, you must delete the line below containing
|
---|
25 | the word CacheID, otherwise Mathematica-compatible applications may
|
---|
26 | try to use invalid cache data.
|
---|
27 |
|
---|
28 | For more information on notebooks and Mathematica-compatible
|
---|
29 | applications, contact Wolfram Research:
|
---|
30 | web: http://www.wolfram.com
|
---|
31 | email: info@wolfram.com
|
---|
32 | phone: +1-217-398-0700 (U.S.)
|
---|
33 |
|
---|
34 | Notebook reader applications are available free of charge from
|
---|
35 | Wolfram Research.
|
---|
36 | *******************************************************************)
|
---|
37 |
|
---|
38 | (*CacheID: 232*)
|
---|
39 |
|
---|
40 |
|
---|
41 | (*NotebookFileLineBreakTest
|
---|
42 | NotebookFileLineBreakTest*)
|
---|
43 | (*NotebookOptionsPosition[ 32589, 988]*)
|
---|
44 | (*NotebookOutlinePosition[ 33288, 1012]*)
|
---|
45 | (* CellTagsIndexPosition[ 33244, 1008]*)
|
---|
46 | (*WindowFrame->Normal*)
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | Notebook[{
|
---|
51 |
|
---|
52 | Cell[CellGroupData[{
|
---|
53 | Cell["gg \[Rule] H at NLO in the EFT", "Title",
|
---|
54 | PageWidth->PaperWidth],
|
---|
55 |
|
---|
56 | Cell[CellGroupData[{
|
---|
57 |
|
---|
58 | Cell["Input FeynCalc", "Subsection",
|
---|
59 | PageWidth->PaperWidth],
|
---|
60 |
|
---|
61 | Cell[BoxData[
|
---|
62 | \(<< HighEnergyPhysics`fc`\)], "Input",
|
---|
63 | PageWidth->PaperWidth],
|
---|
64 |
|
---|
65 | Cell[TextData[{
|
---|
66 | StyleBox["FeynCalc",
|
---|
67 | FontWeight->"Bold"],
|
---|
68 | " ",
|
---|
69 | "4.1.0.3b",
|
---|
70 | " ",
|
---|
71 | " Evaluate ?FeynCalc for help or visit ",
|
---|
72 | ButtonBox["www.feyncalc.org",
|
---|
73 | ButtonData:>{
|
---|
74 | URL[ "http://www.feyncalc.org"], None},
|
---|
75 | ButtonStyle->"Hyperlink",
|
---|
76 | ButtonNote->"http://www.feyncalc.org"]
|
---|
77 | }], "Text",
|
---|
78 | GeneratedCell->True,
|
---|
79 | CellAutoOverwrite->True],
|
---|
80 |
|
---|
81 | Cell[BoxData[
|
---|
82 | \(\($LimitTo4 = False;\)\)], "Input",
|
---|
83 | PageWidth->PaperWidth]
|
---|
84 | }, Closed]],
|
---|
85 |
|
---|
86 | Cell[CellGroupData[{
|
---|
87 |
|
---|
88 | Cell["Virtual diagrams :preliminaries", "Section",
|
---|
89 | PageWidth->PaperWidth],
|
---|
90 |
|
---|
91 | Cell[CellGroupData[{
|
---|
92 |
|
---|
93 | Cell["Kinematics", "Subsection",
|
---|
94 | PageWidth->PaperWidth],
|
---|
95 |
|
---|
96 | Cell["\<\
|
---|
97 | -----I take all momenta outgoing
|
---|
98 |
|
---|
99 | p1 + p2 + p3 = 0
|
---|
100 |
|
---|
101 | p1^2=0
|
---|
102 | p2^2=0
|
---|
103 | p3^3=Q^2
|
---|
104 |
|
---|
105 |
|
---|
106 | \
|
---|
107 | \>", "Text",
|
---|
108 | PageWidth->PaperWidth],
|
---|
109 |
|
---|
110 | Cell[BoxData[{
|
---|
111 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
---|
112 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
---|
113 | \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
|
---|
114 | \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
|
---|
115 | \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
|
---|
116 | \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
|
---|
117 | \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
|
---|
118 | \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
|
---|
119 | \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
|
---|
120 | \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
|
---|
121 | \)\), "\[IndentingNewLine]",
|
---|
122 | \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
|
---|
123 | 0;\)\), "\[IndentingNewLine]",
|
---|
124 | \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
|
---|
125 | 0;\)\), "\[IndentingNewLine]",
|
---|
126 | \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
|
---|
127 | Q2;\)\), "\[IndentingNewLine]",
|
---|
128 | \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
|
---|
129 | 2;\)\), "\[IndentingNewLine]",
|
---|
130 | \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
|
---|
131 | Q2/2;\)\), "\[IndentingNewLine]",
|
---|
132 | \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
|
---|
133 | 2;\)\), "\[IndentingNewLine]",
|
---|
134 | \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
|
---|
135 | 0;\)\), "\[IndentingNewLine]",
|
---|
136 | \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
|
---|
137 | 0;\)\), "\[IndentingNewLine]",
|
---|
138 | \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
|
---|
139 | 0;\)\), "\[IndentingNewLine]",
|
---|
140 | \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
|
---|
141 | 0;\)\), "\[IndentingNewLine]",
|
---|
142 | \(\)}], "Input",
|
---|
143 | PageWidth->PaperWidth]
|
---|
144 | }, Closed]],
|
---|
145 |
|
---|
146 | Cell[CellGroupData[{
|
---|
147 |
|
---|
148 | Cell["Verteces and Propagators", "Subsection",
|
---|
149 | PageWidth->PaperWidth],
|
---|
150 |
|
---|
151 | Cell[TextData[{
|
---|
152 | StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
|
---|
153 | outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
|
---|
154 | FontSize->14],
|
---|
155 | Cell[BoxData[
|
---|
156 | \(TraditionalForm\`g\_s\)],
|
---|
157 | FontSize->14],
|
---|
158 | StyleBox[" ) (\[ImaginaryI] ",
|
---|
159 | FontSize->14],
|
---|
160 | Cell[BoxData[
|
---|
161 | \(TraditionalForm\`f\^abc\)],
|
---|
162 | FontSize->14],
|
---|
163 | StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
|
---|
164 | FontSize->14],
|
---|
165 | Cell[BoxData[
|
---|
166 | \(TraditionalForm\`g\_s\)],
|
---|
167 | FontSize->14],
|
---|
168 | ")",
|
---|
169 | StyleBox[" ",
|
---|
170 | FontSize->14],
|
---|
171 | Cell[BoxData[
|
---|
172 | \(TraditionalForm\`\((T\^a)\)\_ij\)],
|
---|
173 | FontSize->14],
|
---|
174 | StyleBox[" ",
|
---|
175 | FontSize->14],
|
---|
176 | Cell[BoxData[
|
---|
177 | \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
|
---|
178 | FontSize->14],
|
---|
179 | StyleBox["\nGluon Propagator= ",
|
---|
180 | FontSize->14],
|
---|
181 | Cell[BoxData[
|
---|
182 | FormBox[
|
---|
183 | FractionBox[
|
---|
184 | StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
|
---|
185 | FontSize->16], \(p\^2\)], TraditionalForm]],
|
---|
186 | FontSize->14],
|
---|
187 | "\nQuark ",
|
---|
188 | StyleBox["Propagator= ",
|
---|
189 | FontSize->14],
|
---|
190 | Cell[BoxData[
|
---|
191 | FormBox[
|
---|
192 | FractionBox[
|
---|
193 | StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
|
---|
194 | FontSize->16], \(p\&^\)], TraditionalForm]],
|
---|
195 | FontSize->14]
|
---|
196 | }], "Text",
|
---|
197 | PageWidth->PaperWidth],
|
---|
198 |
|
---|
199 | Cell[BoxData[{
|
---|
200 | \(\(GGG[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
---|
201 | FV[p1 - p2, m3]\ MT[m1, m2] + FV[p2 - p3, m1]\ MT[m2, m3] +
|
---|
202 | FV[p3 - p1, m2]\ MT[m1, m3];\)\), "\[IndentingNewLine]",
|
---|
203 | \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
---|
204 | FVD[p1 - p2, m3]\ MTD[m1, m2] + FVD[p2 - p3, m1]\ MTD[m2, m3] +
|
---|
205 | FVD[p3 - p1, m2]\ MTD[m1, m3];\)\), "\[IndentingNewLine]",
|
---|
206 | \(\(GGGG[m1_, m2_, m3_, m4_] :=
|
---|
207 | 2\ MT[m1, m2]\ MT[m3, m4] - MT[m1, m3]\ MT[m2, m4] -
|
---|
208 | MT[m1, m4]\ MT[m2, m3];\)\), "\[IndentingNewLine]",
|
---|
209 | \(\(GGGGD[m1_, m2_, m3_, m4_] :=
|
---|
210 | 2\ MTD[m1, m2]\ MTD[m3, m4] - MTD[m1, m3]\ MTD[m2, m4] -
|
---|
211 | MTD[m1, m4]\ MTD[m2, m3];\)\), "\[IndentingNewLine]",
|
---|
212 | \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
|
---|
213 | \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
|
---|
214 | \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
|
---|
215 | PageWidth->PaperWidth]
|
---|
216 | }, Closed]],
|
---|
217 |
|
---|
218 | Cell[CellGroupData[{
|
---|
219 |
|
---|
220 | Cell["Born Matrix element ", "Subsection",
|
---|
221 | PageWidth->PaperWidth],
|
---|
222 |
|
---|
223 | Cell[CellGroupData[{
|
---|
224 |
|
---|
225 | Cell[BoxData[{
|
---|
226 | \(factborn = gs2\), "\[IndentingNewLine]",
|
---|
227 | \(\(Born =
|
---|
228 | factborn \((\
|
---|
229 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ FVD[e1,
|
---|
230 | mu]\ FVD[e2, nu] // Contract;\)\), "\[IndentingNewLine]",
|
---|
231 | \(\(Born4 = Born /. \ D \[Rule] 4;\)\), "\[IndentingNewLine]",
|
---|
232 | \(Born = Born\)}], "Input",
|
---|
233 | PageWidth->PaperWidth],
|
---|
234 |
|
---|
235 | Cell[BoxData[
|
---|
236 | \(TraditionalForm\`gs2\)], "Output"],
|
---|
237 |
|
---|
238 | Cell[BoxData[
|
---|
239 | FormBox[
|
---|
240 | RowBox[{\(1\/2\), " ", "gs2", " ", "Q2", " ",
|
---|
241 | RowBox[{
|
---|
242 | FormBox["e1",
|
---|
243 | "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]",
|
---|
244 | FormBox["e2",
|
---|
245 | "TraditionalForm"]}]}], TraditionalForm]], "Output"]
|
---|
246 | }, Open ]],
|
---|
247 |
|
---|
248 | Cell[CellGroupData[{
|
---|
249 |
|
---|
250 | Cell[BoxData[{
|
---|
251 | \(BornSq =
|
---|
252 | Normal[Series[\((\[IndentingNewLine]gs2^2\ /\((D - 2)\)^2*\((\
|
---|
253 | MTD[mu, nu]\ SPD[p1, p2] -
|
---|
254 | FVD[p1, nu]\ FVD[p2, mu])\) \((\
|
---|
255 | MTD[mu, nu]\ SPD[p1, p2] -
|
---|
256 | FVD[p1, nu]\ FVD[p2, mu])\)\ // Contract)\)\ /. \
|
---|
257 | D \[Rule] 4 - 2 e, {e, 0, 2}]] //
|
---|
258 | Simplify\), "\[IndentingNewLine]",
|
---|
259 | \(\(BornSq4 = BornSq /. \ e \[Rule] 0;\)\)}], "Input"],
|
---|
260 |
|
---|
261 | Cell[BoxData[
|
---|
262 | \(TraditionalForm\`1\/8\ \((e\^2 + e + 1)\)\ gs2\^2\ Q2\^2\)], "Output"]
|
---|
263 | }, Open ]]
|
---|
264 | }, Closed]],
|
---|
265 |
|
---|
266 | Cell[CellGroupData[{
|
---|
267 |
|
---|
268 | Cell["My Scalar Integrals", "Subsection",
|
---|
269 | PageWidth->PaperWidth],
|
---|
270 |
|
---|
271 | Cell[BoxData[{
|
---|
272 | \(\(subInt[expr_] :=
|
---|
273 | expr /. \ {\[IndentingNewLine]B0[x__] \[Rule] \
|
---|
274 | DUPI/\((I\ Pi^2)\)\ MyB0[x], \[IndentingNewLine]C0[
|
---|
275 | x__] \[Rule] \
|
---|
276 | DUPI/\((I\ Pi^2)\)\ MyC0[x], \[IndentingNewLine]D0[
|
---|
277 | x__] \[Rule] \
|
---|
278 | DUPI/\((I\ Pi^2)\)\ MyD0[x]};\)\), "\[IndentingNewLine]",
|
---|
279 | \(\(MyC0[0, 0, Q2, 0, 0,
|
---|
280 | 0] = \((c\[CapitalGamma]*\((2/e^2 - Pi^2 - 2/e*Log[Q2/mu2] +
|
---|
281 | Log[Q2/mu2]^2)\))\)/\((2*
|
---|
282 | Q2)\);\)\), "\[IndentingNewLine]",
|
---|
283 | \(\(MyB0[0, 0, 0] = 0;\)\), "\[IndentingNewLine]",
|
---|
284 | \(\(MyB0[Q2, 0, 0] =
|
---|
285 | c\[CapitalGamma]\ \((1/e + 2 - Log[Q2/mu2])\);\)\), "\n",
|
---|
286 | \(\)}], "Input",
|
---|
287 | PageWidth->PaperWidth],
|
---|
288 |
|
---|
289 | Cell[BoxData[""], "Input"],
|
---|
290 |
|
---|
291 | Cell[BoxData[""], "Input"]
|
---|
292 | }, Closed]]
|
---|
293 | }, Closed]],
|
---|
294 |
|
---|
295 | Cell[CellGroupData[{
|
---|
296 |
|
---|
297 | Cell["CDR", "Section"],
|
---|
298 |
|
---|
299 | Cell[CellGroupData[{
|
---|
300 |
|
---|
301 | Cell["Vertex Diagram ", "Subsection",
|
---|
302 | PageWidth->PaperWidth],
|
---|
303 |
|
---|
304 | Cell[CellGroupData[{
|
---|
305 |
|
---|
306 | Cell[BoxData[{
|
---|
307 | \(\(\(colorvtx = SUNF[b, x, y] SUNF[y, a, x]\ // SUNSimplify\)\(\n\)
|
---|
308 | \)\), "\[IndentingNewLine]",
|
---|
309 | \(\(num =
|
---|
310 | gs2^2*\((\(-gs2\))\)*
|
---|
311 | I*\[IndentingNewLine]\((\
|
---|
312 | MTD[al, be]\ SPD[\(-l\) + p1, p2 + l] - \ \ FVD[\(-l\) + p1,
|
---|
313 | be]\ FVD[p2 + l, al])\)\ *\
|
---|
314 | GGGD[\(-l\), p1, l - p1, ro, mu, al]*\[IndentingNewLine]GGGD[p2,
|
---|
315 | l, \(-l\) - p2, nu, ro, be]*\((\
|
---|
316 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
|
---|
317 | Contract;\)\), "\n",
|
---|
318 | \(\(dens = FAD[l, p1 - l, l + p2];\)\), "\[IndentingNewLine]",
|
---|
319 | \(\(amp = CA\ dens*\ num/\((D - 2)\)^2;\)\), "\n",
|
---|
320 | \(inte1 = \((\(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
|
---|
321 | Factor\) // Simplify)\) /. \ B0[0, 0, 0] \[Rule] 0\ //
|
---|
322 | Simplify\)}], "Input",
|
---|
323 | PageWidth->PaperWidth],
|
---|
324 |
|
---|
325 | Cell[BoxData[
|
---|
326 | FormBox[
|
---|
327 | RowBox[{\(C\_A\), " ",
|
---|
328 | SubscriptBox["\[Delta]",
|
---|
329 | RowBox[{
|
---|
330 | FormBox[
|
---|
331 | FormBox["a",
|
---|
332 | "TraditionalForm"],
|
---|
333 | "TraditionalForm"], "\[NoBreak]",
|
---|
334 | FormBox[
|
---|
335 | FormBox["b",
|
---|
336 | "TraditionalForm"],
|
---|
337 | "TraditionalForm"]}]]}], TraditionalForm]], "Output"],
|
---|
338 |
|
---|
339 | Cell[BoxData[
|
---|
340 | FormBox[
|
---|
341 | RowBox[{"-",
|
---|
342 | RowBox[{
|
---|
343 | RowBox[{"(",
|
---|
344 |
|
---|
345 | RowBox[{\(C\_A\), " ", \(gs2\^3\), " ", \(\[Pi]\^2\),
|
---|
346 | " ", \(Q2\^2\), " ",
|
---|
347 | RowBox[{"(",
|
---|
348 |
|
---|
349 | RowBox[{\(\((\(-20\)\ D\^2 + 73\ D - 52)\)\ \(\(B\_0\)(Q2, 0,
|
---|
350 | 0)\)\), "+",
|
---|
351 | RowBox[{"8", " ", \((D\^2 - 3\ D + 2)\), " ", "Q2", " ",
|
---|
352 | RowBox[{
|
---|
353 | FormBox[\("C"\_"0"\),
|
---|
354 | "TraditionalForm"], "\[NoBreak]", "(", "\[NoBreak]",
|
---|
355 | FormBox["0",
|
---|
356 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
---|
357 | FormBox["0",
|
---|
358 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
---|
359 | "Q2", "\[NoBreak]", ",", "\[NoBreak]",
|
---|
360 | FormBox["0",
|
---|
361 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
---|
362 | FormBox["0",
|
---|
363 | "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
|
---|
364 | FormBox["0",
|
---|
365 | "TraditionalForm"], "\[NoBreak]", ")"}]}]}], ")"}]}],
|
---|
366 | ")"}], "/", \((16\ \((D - 2)\)\^2\ \((D - 1)\)\ DUPI)\)}]}],
|
---|
367 | TraditionalForm]], "Output"]
|
---|
368 | }, Open ]],
|
---|
369 |
|
---|
370 | Cell[BoxData[""], "Input"]
|
---|
371 | }, Open ]],
|
---|
372 |
|
---|
373 | Cell[CellGroupData[{
|
---|
374 |
|
---|
375 | Cell["4-gluon Diagram ", "Subsection",
|
---|
376 | PageWidth->PaperWidth],
|
---|
377 |
|
---|
378 | Cell[CellGroupData[{
|
---|
379 |
|
---|
380 | Cell[BoxData[{
|
---|
381 | \(\(color = SUNF[b, c, y] SUNF[y, a, c]\ // SUNSimplify;\)\), "\n",
|
---|
382 | \(\(num =
|
---|
383 | gs2^2*I*\
|
---|
384 | gs2*\((\ MTD[ro, si]\ SPD[l, \(-l\) + p1 + p2] - \ \ FVD[l,
|
---|
385 | si]\ FVD[\(-l\) + p1 + p2, ro])\)\ *\
|
---|
386 | GGGGD[nu, mu, ro, si]\ *\((\
|
---|
387 | MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
|
---|
388 | Contract;\)\), "\n",
|
---|
389 | \(\(dens = FAD[l, l - p1 - p2];\)\), "\n",
|
---|
390 | \(\(amp = CA/2\ \ dens*num/\((D - 2)\)^2;\)\), "\[IndentingNewLine]",
|
---|
391 | \(inte2 = \(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
|
---|
392 | Factor\) // Simplify\)}], "Input",
|
---|
393 | PageWidth->PaperWidth],
|
---|
394 |
|
---|
395 | Cell[BoxData[
|
---|
396 | \(TraditionalForm\`\(-\(\(C\_A\ \((2\ D - 3)\)\ \((2\ D\^2 - 5\ D +
|
---|
397 | 4)\)\ gs2\^3\ \[Pi]\^2\ Q2\^2\ \(\(B\_0\)(Q2, 0,
|
---|
398 | 0)\)\)\/\(16\ \((D - 2)\)\^2\ \((D -
|
---|
399 | 1)\)\ DUPI\)\)\)\)], "Output"]
|
---|
400 | }, Open ]]
|
---|
401 | }, Open ]],
|
---|
402 |
|
---|
403 | Cell[CellGroupData[{
|
---|
404 |
|
---|
405 | Cell["Sum the virtuals", "Subsection"],
|
---|
406 |
|
---|
407 | Cell[CellGroupData[{
|
---|
408 |
|
---|
409 | Cell[BoxData[
|
---|
410 | \(\(\(\[IndentingNewLine]\)\(res = \ \(\(\(-1\)/
|
---|
411 | 2*\[IndentingNewLine]Normal[
|
---|
412 | Series[\(\(\((inte1 + inte2)\)/BornSq\)/
|
---|
413 | I\)/\((mu2/Q2)\)^\((e)\)\ /. \
|
---|
414 | D \[Rule] 4 - 2 e // \ subInt, {e, 0, 0}]] //
|
---|
415 | Simplify\) // PowerExpand\) // Expand\)\)\)], "Input",
|
---|
416 | PageWidth->PaperWidth],
|
---|
417 |
|
---|
418 | Cell[BoxData[
|
---|
419 | \(TraditionalForm\`1\/2\ C\_A\ c\[CapitalGamma]\ gs2\ \[Pi]\^2 - \(C\_A\ \
|
---|
420 | c\[CapitalGamma]\ gs2\)\/e\^2\)], "Output"]
|
---|
421 | }, Open ]],
|
---|
422 |
|
---|
423 | Cell[CellGroupData[{
|
---|
424 |
|
---|
425 | Cell[BoxData[{
|
---|
426 | \(\(add =
|
---|
427 | 1/2 \((Normal[
|
---|
428 | Series[\((\((1 + \ \(19/
|
---|
429 | 4\)/\[Pi]\ gs2/\((4 \[Pi])\)\ )\)/\((1 +
|
---|
430 | 2\ \(gs2/\((4 \[Pi])\)\)/\[Pi])\))\), {gs2, 0,
|
---|
431 | 1}]] - 1)\) c\[CapitalGamma]\ CA/3\ 16
|
---|
432 | Pi^2\ ;\)\), "\[IndentingNewLine]",
|
---|
433 | \(\(virt = add + res;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
|
---|
434 | \(add\)}], "Input",
|
---|
435 | PageWidth->PaperWidth],
|
---|
436 |
|
---|
437 | Cell[BoxData[
|
---|
438 | \(TraditionalForm\`11\/6\ C\_A\ c\[CapitalGamma]\ gs2\)], "Output"]
|
---|
439 | }, Open ]],
|
---|
440 |
|
---|
441 | Cell[CellGroupData[{
|
---|
442 |
|
---|
443 | Cell[BoxData[
|
---|
444 | \(virt = \(\((\((virt*\(2/gs2\)/c\[CapitalGamma])\) //
|
---|
445 | Expand)\)\(*\)\(as\/\(2 \[Pi]\)\) \(c\[CapitalGamma]\)\(\ \
|
---|
446 | \)\)\)], "Input"],
|
---|
447 |
|
---|
448 | Cell[BoxData[
|
---|
449 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(-\(\(2\ C\_A\)\/e\^2\)\) \
|
---|
450 | + \[Pi]\^2\ C\_A + \(11\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
---|
451 | }, Open ]],
|
---|
452 |
|
---|
453 | Cell[BoxData[
|
---|
454 | \(\[IndentingNewLine]\)], "Input"],
|
---|
455 |
|
---|
456 | Cell[CellGroupData[{
|
---|
457 |
|
---|
458 | Cell[BoxData[
|
---|
459 | \(\(\(32/256\)/3\)/\((1 - e)\)^2\)], "Input"],
|
---|
460 |
|
---|
461 | Cell[BoxData[
|
---|
462 | \(TraditionalForm\`1\/\(24\ \((1 - e)\)\^2\)\)], "Output"]
|
---|
463 | }, Open ]]
|
---|
464 | }, Open ]]
|
---|
465 | }, Closed]],
|
---|
466 |
|
---|
467 | Cell[CellGroupData[{
|
---|
468 |
|
---|
469 | Cell["The real contributions", "Section",
|
---|
470 | PageWidth->PaperWidth],
|
---|
471 |
|
---|
472 | Cell[CellGroupData[{
|
---|
473 |
|
---|
474 | Cell["Kinematics", "Subsection",
|
---|
475 | PageWidth->PaperWidth],
|
---|
476 |
|
---|
477 | Cell["\<\
|
---|
478 | -----I take all momenta outgoing
|
---|
479 |
|
---|
480 | p1 + p2 + p3 + p4 = 0
|
---|
481 |
|
---|
482 | p1^2=0
|
---|
483 | p2^2=0
|
---|
484 | p3^3=0
|
---|
485 | p4^2=mh^2
|
---|
486 |
|
---|
487 | -----invariants
|
---|
488 |
|
---|
489 | s = (p1 + p2)^2 = (p3 + p4)^2=2 p1.p2=mh^2+2 p3.p4
|
---|
490 | t = (p1 + p3)^2 = (p2+ p4)^2 =2 p1.p3=mh^2+2 p2.p4
|
---|
491 | u = (p2 + p3)^2 = (p1 + p4)^2=2 p1.p4+mh^2=+2 p2.p3
|
---|
492 |
|
---|
493 | s + t + u = mh^2
|
---|
494 |
|
---|
495 | \[Sigma]+\[Tau]+\[Upsilon]=1
|
---|
496 |
|
---|
497 | -----scalar products
|
---|
498 |
|
---|
499 | p1.p2=s/2
|
---|
500 | p1.p3=(t)/2
|
---|
501 | p1.p4= (u-mh^2)/2
|
---|
502 | p2.p3= (u)/2
|
---|
503 | p2.p4=(t-mh^2)/2
|
---|
504 | p3.p4=(s-mh^2)/2
|
---|
505 |
|
---|
506 | -----physical region for production p1+p2=-p3-p4
|
---|
507 |
|
---|
508 | s>(mh)^2 ;
|
---|
509 | t<0;
|
---|
510 | u<0;
|
---|
511 |
|
---|
512 | \
|
---|
513 | \>", "Text",
|
---|
514 | PageWidth->PaperWidth],
|
---|
515 |
|
---|
516 | Cell[BoxData[{
|
---|
517 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
---|
518 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
---|
519 | \(\(ScalarProduct[p3, p3] = 0;\)\), "\[IndentingNewLine]",
|
---|
520 | \(\(ScalarProduct[q, p3] = u/2;\)\ (*q =
|
---|
521 | p2 + p3*) \), "\[IndentingNewLine]",
|
---|
522 | \(\(ScalarProduct[q, p2] = u/2;\)\ (*q =
|
---|
523 | p2 + p3*) \), "\[IndentingNewLine]",
|
---|
524 | \(\(ScalarProduct[q, q] = u;\)\ (*q =
|
---|
525 | p2 + p3*) \), "\[IndentingNewLine]",
|
---|
526 | \(\(ScalarProduct[p4, p4] = mh2;\)\), "\[IndentingNewLine]",
|
---|
527 | \(\(ScalarProduct[p1, p2] = s/2;\)\), "\[IndentingNewLine]",
|
---|
528 | \(\(ScalarProduct[p1, p3] = t/2;\)\), "\[IndentingNewLine]",
|
---|
529 | \(\(ScalarProduct[p1, p4] = \((u - mh2)\)/2;\)\), "\[IndentingNewLine]",
|
---|
530 | \(\(ScalarProduct[p2, p3] = u/2;\)\), "\[IndentingNewLine]",
|
---|
531 | \(\(ScalarProduct[p2, p4] = \ \((t - mh2)\)/
|
---|
532 | 2;\)\), "\[IndentingNewLine]",
|
---|
533 | \(\(ScalarProduct[p3, p4] = \((s - mh2)\)/
|
---|
534 | 2\ \ ;\)\), "\[IndentingNewLine]",
|
---|
535 | \(\(ScalarProduct[p3, e3] = 0\ ;\)\), "\[IndentingNewLine]",
|
---|
536 | \(\(ScalarProduct[p1, e1] = 0\ ;\)\), "\[IndentingNewLine]",
|
---|
537 | \(\(ScalarProduct[p2, e2] = 0\ ;\)\), "\[IndentingNewLine]",
|
---|
538 | \(\(s13 = t;\)\), "\[IndentingNewLine]",
|
---|
539 | \(\(s23 = u;\)\)}], "Input",
|
---|
540 | PageWidth->PaperWidth]
|
---|
541 | }, Open ]],
|
---|
542 |
|
---|
543 | Cell[CellGroupData[{
|
---|
544 |
|
---|
545 | Cell["Verteces and Propagators", "Subsection",
|
---|
546 | PageWidth->PaperWidth],
|
---|
547 |
|
---|
548 | Cell[TextData[{
|
---|
549 | StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
|
---|
550 | outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
|
---|
551 | FontSize->14],
|
---|
552 | Cell[BoxData[
|
---|
553 | \(TraditionalForm\`g\_s\)],
|
---|
554 | FontSize->14],
|
---|
555 | StyleBox[" ) (\[ImaginaryI] ",
|
---|
556 | FontSize->14],
|
---|
557 | Cell[BoxData[
|
---|
558 | \(TraditionalForm\`f\^abc\)],
|
---|
559 | FontSize->14],
|
---|
560 | StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
|
---|
561 | FontSize->14],
|
---|
562 | Cell[BoxData[
|
---|
563 | \(TraditionalForm\`g\_s\)],
|
---|
564 | FontSize->14],
|
---|
565 | ")",
|
---|
566 | StyleBox[" ",
|
---|
567 | FontSize->14],
|
---|
568 | Cell[BoxData[
|
---|
569 | \(TraditionalForm\`\((T\^a)\)\_ij\)],
|
---|
570 | FontSize->14],
|
---|
571 | StyleBox[" ",
|
---|
572 | FontSize->14],
|
---|
573 | Cell[BoxData[
|
---|
574 | \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
|
---|
575 | FontSize->14],
|
---|
576 | StyleBox["\nGluon Propagator= ",
|
---|
577 | FontSize->14],
|
---|
578 | Cell[BoxData[
|
---|
579 | FormBox[
|
---|
580 | FractionBox[
|
---|
581 | StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
|
---|
582 | FontSize->16], \(p\^2\)], TraditionalForm]],
|
---|
583 | FontSize->14],
|
---|
584 | "\nQuark ",
|
---|
585 | StyleBox["Propagator= ",
|
---|
586 | FontSize->14],
|
---|
587 | Cell[BoxData[
|
---|
588 | FormBox[
|
---|
589 | FractionBox[
|
---|
590 | StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
|
---|
591 | FontSize->16], \(p\&^\)], TraditionalForm]],
|
---|
592 | FontSize->14]
|
---|
593 | }], "Text",
|
---|
594 | PageWidth->PaperWidth],
|
---|
595 |
|
---|
596 | Cell[BoxData[{
|
---|
597 | \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
|
---|
598 | FourVector[p1 - p2, m3, \ Dimension\ \[Rule] D]\ MTD[m1, m2] +
|
---|
599 | FourVector[p2 - p3, m1, \ Dimension\ \[Rule] \ D]\ MTD[m2, m3] +
|
---|
600 | FourVector[p3 - p1, m2, \ Dimension\ \[Rule] \ D]\ MTD[m1,
|
---|
601 | m3];\)\), "\[IndentingNewLine]",
|
---|
602 | \(\(H[p1_, p2_, m1_, m2_] :=
|
---|
603 | MTD[m1, m2]\ SPD[p1, p2]\ - \
|
---|
604 | FourVector[p1, m2, \ Dimension \[Rule] D]*\[IndentingNewLine]\
|
---|
605 | FourVector[p2, m1, \
|
---|
606 | Dimension\ \[Rule] D];\)\), "\[IndentingNewLine]",
|
---|
607 | \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
|
---|
608 | \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
|
---|
609 | \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
|
---|
610 | PageWidth->PaperWidth]
|
---|
611 | }, Open ]],
|
---|
612 |
|
---|
613 | Cell[CellGroupData[{
|
---|
614 |
|
---|
615 | Cell["Sum over the four Feynman diagrams", "Subsection"],
|
---|
616 |
|
---|
617 | Cell["\<\
|
---|
618 |
|
---|
619 | uno= - gs (-f123) GGGD[p1,p2,-p1-p2,m1,m2,mu] (-I MTD[mu,nu]/s) (I A) \
|
---|
620 | H[p3,p1+p2,m3,nu]//Contract;
|
---|
621 | tre= - gs (-f123) GGGD[p3,p1,-p3-p1,m3,m1,mu] (-I MTD[mu,nu]/t) (I A) \
|
---|
622 | H[p2,p1+p3,m2,nu]//Contract;
|
---|
623 | qua= - gs (-f123) GGGD[p2,p3,-p3-p2,m2,m3,mu] (-I MTD[mu,nu]/u) (I A) \
|
---|
624 | H[p1,p2+p3,m1,nu]//Contract;
|
---|
625 | due= - A gs (-f123) GGGD[p1,p2,p3,m1,m2,m3];
|
---|
626 | res=uno+due+tre+qua//ExpandScalarProduct;\
|
---|
627 | \>", "Input"]
|
---|
628 | }, Open ]],
|
---|
629 |
|
---|
630 | Cell[CellGroupData[{
|
---|
631 |
|
---|
632 | Cell["\<\
|
---|
633 | Now I have to square the amplitude. The sum is performed over the physical \
|
---|
634 | polarizations of the gluons:\
|
---|
635 | \>", "Subsection"],
|
---|
636 |
|
---|
637 | Cell["\<\
|
---|
638 | res1=res;
|
---|
639 | res2=res /. m1->m1p /. m2->m2p /. m3-> m3p;
|
---|
640 | tot=res1*(-MTD[m1,m1p]+(FVD[p1,m1] FVD[p2,m1p]+FVD[p1,m1p] \
|
---|
641 | FVD[p2,m1])/SPD[p1,p2])//Contract;
|
---|
642 | tot=tot*(-MTD[m2,m2p]+(FVD[p2,m2] FVD[p3,m2p]+FVD[p2,m2p] \
|
---|
643 | FVD[p3,m2])/SPD[p3,p2])//Contract;
|
---|
644 | tot=tot*(-MTD[m3,m3p]+(FVD[p1,m3] FVD[p3,m3p]+FVD[p1,m3p] \
|
---|
645 | FVD[p3,m3])/SPD[p3,p1])//Contract;
|
---|
646 | tot=tot*res2//Contract//Expand;\
|
---|
647 | \>", "Input"],
|
---|
648 |
|
---|
649 | Cell[CellGroupData[{
|
---|
650 |
|
---|
651 | Cell["\<\
|
---|
652 | Amp2=((tot//Contract//Factor)/. A-> as/3/Pi/v /. gs^2-> 4 Pi as/. f123^2-> 24 \
|
---|
653 | //Simplify)//Factor\
|
---|
654 | \>", "Input"],
|
---|
655 |
|
---|
656 | Cell[BoxData[
|
---|
657 | \(TraditionalForm\`\(\(1\/\(3\ \[Pi]\ s\ t\ u\ v\^2\)\)\((32\ as\^3\ \((D\
|
---|
658 | \ s\^4 - 2\ s\^4 + 2\ D\ t\ s\^3 - 4\ t\ s\^3 + 2\ D\ u\ s\^3 - 4\ u\ s\^3 +
|
---|
659 | 3\ D\ t\^2\ s\^2 - 6\ t\^2\ s\^2 + 3\ D\ u\^2\ s\^2 -
|
---|
660 | 6\ u\^2\ s\^2 + 8\ D\ t\ u\ s\^2 - 20\ t\ u\ s\^2 +
|
---|
661 | 2\ D\ t\^3\ s - 4\ t\^3\ s + 2\ D\ u\^3\ s - 4\ u\^3\ s +
|
---|
662 | 8\ D\ t\ u\^2\ s - 20\ t\ u\^2\ s + 8\ D\ t\^2\ u\ s -
|
---|
663 | 20\ t\^2\ u\ s + D\ t\^4 - 2\ t\^4 + D\ u\^4 - 2\ u\^4 +
|
---|
664 | 2\ D\ t\ u\^3 - 4\ t\ u\^3 + 3\ D\ t\^2\ u\^2 - 6\ t\^2\ u\^2 +
|
---|
665 | 2\ D\ t\^3\ u - 4\ t\^3\ u)\))\)\)\)], "Output"]
|
---|
666 | }, Open ]],
|
---|
667 |
|
---|
668 | Cell["\<\
|
---|
669 |
|
---|
670 | Amp2=Amp2 /. D->4-2e//Simplify;\
|
---|
671 | \>", "Input"]
|
---|
672 | }, Open ]],
|
---|
673 |
|
---|
674 | Cell[CellGroupData[{
|
---|
675 |
|
---|
676 | Cell["Real Amplitude Squared in D dimensions", "Subsection",
|
---|
677 | PageWidth->PaperWidth],
|
---|
678 |
|
---|
679 | Cell[BoxData[
|
---|
680 | \(\(\(\[IndentingNewLine]\)\(\(Emme =
|
---|
681 | 1/s \(\(\((\((mh2^4 + s^4 + t^4 + u^4)\)\ \((1 - 2\ e)\) + \
|
---|
682 | e/2\ \((mh2^2 + s^2 + t^2 + u^2)\)^2)\)/s\)/t\)/
|
---|
683 | u;\)\[IndentingNewLine]
|
---|
684 | \(RealD = Emme/\((1 - e)\)^2;\)\[IndentingNewLine]
|
---|
685 | \(Real4 = RealD /. \ e \[Rule] 0;\)\)\)\)], "Input",
|
---|
686 | PageWidth->PaperWidth]
|
---|
687 | }, Open ]],
|
---|
688 |
|
---|
689 | Cell[CellGroupData[{
|
---|
690 |
|
---|
691 | Cell["Phase space in D dimensions", "Subsection",
|
---|
692 | PageWidth->PaperWidth],
|
---|
693 |
|
---|
694 | Cell[BoxData[{
|
---|
695 | \(\[IndentingNewLine]\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\
|
---|
696 | \)\(\ \)\)\/mh2)\)\^e\)
|
---|
697 | 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
|
---|
698 | v\^\(-e\)\ \((omv)\)\^\(-e\);\)\), "\[IndentingNewLine]",
|
---|
699 | \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((omv)\), \
|
---|
700 | u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
|
---|
701 | s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
|
---|
702 | \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
|
---|
703 | 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
|
---|
704 | \(\(pgg =
|
---|
705 | 2 \((z\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\)/z +
|
---|
706 | z \((1 - z)\) +
|
---|
707 | 11/12\ DeltaFunction[1 - z])\);\)\), "\[IndentingNewLine]",
|
---|
708 | \(\(s0 = z;\)\)}], "Input",
|
---|
709 | PageWidth->PaperWidth]
|
---|
710 | }, Closed]],
|
---|
711 |
|
---|
712 | Cell[CellGroupData[{
|
---|
713 |
|
---|
714 | Cell["CDR", "Subsection",
|
---|
715 | PageWidth->PaperWidth],
|
---|
716 |
|
---|
717 | Cell[CellGroupData[{
|
---|
718 |
|
---|
719 | Cell[BoxData[{
|
---|
720 | \(intando =
|
---|
721 | FullSimplify[
|
---|
722 | FullSimplify[\(RealD\ PS\ c\[CapitalGamma]\)\/cGamma] \
|
---|
723 | //. \[InvisibleSpace]substu] /. \[InvisibleSpace]omv \[Rule]
|
---|
724 | 1 - v; \), "\n",
|
---|
725 | \(intando = intando\/\((1 - z)\)\^\(\(-2\)\ e - 1\)\)}], "Input"],
|
---|
726 |
|
---|
727 | Cell[BoxData[
|
---|
728 | \(TraditionalForm\`\(-\(\((c\[CapitalGamma]\ \((1\/mh2)\)\^e\ mh2\^e\ \
|
---|
729 | \[Pi]\ \((1 - v)\)\^\(\(-e\) - 1\)\ v\^\(\(-e\) - 1\)\ z\^e\ \((e\ \((3\ \((1 \
|
---|
730 | - v)\)\^4\ \((z - 1)\)\^4 + 3\ v\^4\ \((z - 1)\)\^4 -
|
---|
731 | 2\ v\^2\ \((z\^2 + 1)\)\ \((z - 1)\)\^2 -
|
---|
732 | 2\ \((1 - v)\)\^2\ \((v\^2\ \((z - 1)\)\^2 + z\^2 +
|
---|
733 | 1)\)\ \((z - 1)\)\^2 + 3\ z\^4 - 2\ z\^2 + 3)\) -
|
---|
734 | 2\ \((\((1 - v)\)\^4\ \((z - 1)\)\^4 + v\^4\ \((z - 1)\)\^4 +
|
---|
735 | z\^4 + 1)\))\)\ \(\[CapitalGamma](
|
---|
736 | 1 - 2\ e)\))\)/\((\((e - 1)\)\^2\ \(\[CapitalGamma](1 - e)\)\^3\
|
---|
737 | \ \(\[CapitalGamma](e + 1)\))\)\)\)\)], "Output"]
|
---|
738 | }, Open ]],
|
---|
739 |
|
---|
740 | Cell[BoxData[{
|
---|
741 | \(\(\[Sigma]r =
|
---|
742 | Integrate[intando, {v, 0, 1}, \ GenerateConditions \[Rule] False] //
|
---|
743 | PowerExpand;\)\), "\n",
|
---|
744 | \(\(\[Sigma]r = \(Normal[Series[\[Sigma]r, {e, 0, 1}]] // Factor\) //
|
---|
745 | FullSimplify;\)\), "\n",
|
---|
746 | \(\(\[Sigma]r\ = \[Sigma]r\ \ *\((\(\(-1\)\/\(2 e\)\)
|
---|
747 | DeltaFunction[1 - z] + PlusDistribution[1/\((1 - z)\)] -
|
---|
748 | 2\ e\ PlusDistribution[Log[1 - z]/\((1 - z)\)])\);\)\), "\n",
|
---|
749 | \(\(\[Sigma]r =
|
---|
750 | Normal[Series[\[Sigma]r/\((1 + e + e^2)\), {e, 0, 0}]] //
|
---|
751 | Expand;\)\)}], "Input",
|
---|
752 | PageWidth->PaperWidth]
|
---|
753 | }, Closed]]
|
---|
754 | }, Closed]],
|
---|
755 |
|
---|
756 | Cell[CellGroupData[{
|
---|
757 |
|
---|
758 | Cell["Results", "Section"],
|
---|
759 |
|
---|
760 | Cell[CellGroupData[{
|
---|
761 |
|
---|
762 | Cell["Virtual+Real+Counterterms in CDR", "Subsection"],
|
---|
763 |
|
---|
764 | Cell[BoxData[{
|
---|
765 | \(\(\[Sigma]rn = \(\(\[Sigma]r/c\[CapitalGamma]\)/\[Pi]\)/2\ CA -
|
---|
766 | 1/e\ 2\ Pgg\ z\ CA + 1/e\ 2\ pgg\ z\ CA;\)\), "\n",
|
---|
767 | \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn, DeltaFunction[1 - z]] /.
|
---|
768 | z \[Rule] 1 // FullSimplify)\)*
|
---|
769 | DeltaFunction[
|
---|
770 | 1 - z])\) + \((\((\((Coefficient[\[Sigma]rn,
|
---|
771 | PlusDistribution[1/\((1 - z)\)]] //
|
---|
772 | FullSimplify)\))\)
|
---|
773 | PlusDistribution[
|
---|
774 | 1/\((1 - z)\)])\) + \((\((\((Coefficient[\[Sigma]rn,
|
---|
775 | PlusDistribution[Log[1 - z]/\((1 - z)\)]] //
|
---|
776 | FullSimplify)\))\)
|
---|
777 | PlusDistribution[
|
---|
778 | Log[1 - z]/\((1 - z)\)])\) + \((\(\(\[Sigma]rn /.
|
---|
779 | DeltaFunction[x_] \[Rule] 0\) /.
|
---|
780 | PlusDistribution[Log[1 - z]/\((1 - z)\)] \[Rule] 0\) /.
|
---|
781 | PlusDistribution[1/\((1 - z)\)] \[Rule] 0)\))\);\)\), "\n",
|
---|
782 | \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn,
|
---|
783 | 1/e\ PlusDistribution[1/\((1 - z)\)]]/\((1 - z)\) //
|
---|
784 | FullSimplify)\))\) 1/e)\) + \((\[Sigma]rn -
|
---|
785 | Coefficient[\[Sigma]rn, 1/e\ PlusDistribution[1/\((1 - z)\)]]
|
---|
786 | 1/e\ PlusDistribution[1/\((1 - z)\)])\) //
|
---|
787 | Expand;\)\)}], "Input",
|
---|
788 | PageWidth->PaperWidth],
|
---|
789 |
|
---|
790 | Cell[CellGroupData[{
|
---|
791 |
|
---|
792 | Cell[BoxData[
|
---|
793 | \(divD =
|
---|
794 | Coefficient[\[Sigma]rn,
|
---|
795 | DeltaFunction[1 - z]]*\(as/2\)/\[Pi]\ c\[CapitalGamma]\)], "Input"],
|
---|
796 |
|
---|
797 | Cell[BoxData[
|
---|
798 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(11\ C\_A\)\/\(3\ e\) + \
|
---|
799 | \(2\ C\_A\)\/e\^2 - \(\[Pi]\^2\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
---|
800 | }, Open ]],
|
---|
801 |
|
---|
802 | Cell[CellGroupData[{
|
---|
803 |
|
---|
804 | Cell[BoxData[
|
---|
805 | \(UVC = \ \(\(1/
|
---|
806 | e\)\(\ \)\(4\)\(*\)\(\(-11\)\/6\) \(CA\)\(\ \)\(as\/\(4 \[Pi]\)\) \
|
---|
807 | \(c\[CapitalGamma]\)\(\ \)\)\)], "Input"],
|
---|
808 |
|
---|
809 | Cell[BoxData[
|
---|
810 | \(TraditionalForm\`\(-\(\(11\ as\ C\_A\ c\[CapitalGamma]\)\/\(6\ e\ \[Pi]\
|
---|
811 | \)\)\)\)], "Output"]
|
---|
812 | }, Open ]],
|
---|
813 |
|
---|
814 | Cell[CellGroupData[{
|
---|
815 |
|
---|
816 | Cell[BoxData[
|
---|
817 | \(\((\(\((divD + UVC)\)/as\)/c\[CapitalGamma]\ 2\ \[Pi] //
|
---|
818 | Expand)\)\ as\ \(c\[CapitalGamma]/2\)/\[Pi]\)], "Input"],
|
---|
819 |
|
---|
820 | Cell[BoxData[
|
---|
821 | \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(2\ C\_A\)\/e\^2 - \(\[Pi]\
|
---|
822 | \^2\ C\_A\)\/3 + C\_A\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
|
---|
823 | }, Open ]],
|
---|
824 |
|
---|
825 | Cell[BoxData[
|
---|
826 | \(\(sally =
|
---|
827 | as/\[Pi]\ \((\(-11\)/2\ \((1 - z)\)^3 +
|
---|
828 | 6\ \((1 + z^4 + \((1 - z)\)^4)\)\ PlusDistribution[
|
---|
829 | Log[1 - z]/\((1 - z)\)] -
|
---|
830 | 6\ \((z^2\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\) +
|
---|
831 | z^2 \((1 - z)\))\) Log[z])\);\)\)], "Input"],
|
---|
832 |
|
---|
833 | Cell[BoxData[
|
---|
834 | \(\((\(\(\((\[Sigma]rn*\(as/2\)/\[Pi] /. DeltaFunction[x_] \[Rule] 0)\) -
|
---|
835 | sally /. CA \[Rule] 3\) /. Pgg \[Rule] 0 // Expand\) //
|
---|
836 | Simplify)\) /.
|
---|
837 | PlusDistribution[1/\((1 - z)\)] \[Rule] 1/\((1 - z)\) //
|
---|
838 | Factor\)], "Input"]
|
---|
839 | }, Open ]]
|
---|
840 | }, Closed]],
|
---|
841 |
|
---|
842 | Cell[CellGroupData[{
|
---|
843 |
|
---|
844 | Cell["Gluon initiated process", "Section",
|
---|
845 | PageWidth->PaperWidth],
|
---|
846 |
|
---|
847 | Cell[CellGroupData[{
|
---|
848 |
|
---|
849 | Cell["Kinematics for the Born", "Subsection",
|
---|
850 | PageWidth->PaperWidth],
|
---|
851 |
|
---|
852 | Cell["\<\
|
---|
853 | -----I take all momenta outgoing
|
---|
854 |
|
---|
855 | p1 + p2 + p3 = 0
|
---|
856 |
|
---|
857 | p1^2=0
|
---|
858 | p2^2=0
|
---|
859 | p3^3=Q^2
|
---|
860 |
|
---|
861 |
|
---|
862 | \
|
---|
863 | \>", "Text",
|
---|
864 | PageWidth->PaperWidth],
|
---|
865 |
|
---|
866 | Cell[BoxData[{
|
---|
867 | \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
|
---|
868 | \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
|
---|
869 | \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
|
---|
870 | \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
|
---|
871 | \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
|
---|
872 | \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
|
---|
873 | \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
|
---|
874 | \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
|
---|
875 | \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
|
---|
876 | \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
|
---|
877 | \)\), "\[IndentingNewLine]",
|
---|
878 | \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
|
---|
879 | 0;\)\), "\[IndentingNewLine]",
|
---|
880 | \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
|
---|
881 | 0;\)\), "\[IndentingNewLine]",
|
---|
882 | \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
|
---|
883 | Q2;\)\), "\[IndentingNewLine]",
|
---|
884 | \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
|
---|
885 | 2;\)\), "\[IndentingNewLine]",
|
---|
886 | \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
|
---|
887 | Q2/2;\)\), "\[IndentingNewLine]",
|
---|
888 | \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
|
---|
889 | 2;\)\), "\[IndentingNewLine]",
|
---|
890 | \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
|
---|
891 | 0;\)\), "\[IndentingNewLine]",
|
---|
892 | \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
|
---|
893 | 0;\)\), "\[IndentingNewLine]",
|
---|
894 | \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
|
---|
895 | 0;\)\), "\[IndentingNewLine]",
|
---|
896 | \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
|
---|
897 | 0;\)\), "\[IndentingNewLine]",
|
---|
898 | \(\)}], "Input",
|
---|
899 | PageWidth->PaperWidth]
|
---|
900 | }, Open ]],
|
---|
901 |
|
---|
902 | Cell[CellGroupData[{
|
---|
903 |
|
---|
904 | Cell["Real Amplitude", "Subsection",
|
---|
905 | PageWidth->PaperWidth],
|
---|
906 |
|
---|
907 | Cell[BoxData[{
|
---|
908 | \(\(Emme =
|
---|
909 | CF\ 1/s \((\((s^2 + u^2)\)\ - e\ \((s + u)\)^2)\)/
|
---|
910 | t;\)\), "\[IndentingNewLine]",
|
---|
911 | \(\(RealD = Emme/\((1 - e)\);\)\), "\[IndentingNewLine]",
|
---|
912 | \(\(Real4 = RealD /. \ e \[Rule] 0;\)\)}], "Input"]
|
---|
913 | }, Open ]],
|
---|
914 |
|
---|
915 | Cell[CellGroupData[{
|
---|
916 |
|
---|
917 | Cell["Integration over the phase space in D dimensions", "Subsection",
|
---|
918 | PageWidth->PaperWidth],
|
---|
919 |
|
---|
920 | Cell[BoxData[{
|
---|
921 | \(\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\)\(\ \
|
---|
922 | \)\)\/mh2)\)\^e\)
|
---|
923 | 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
|
---|
924 | v\^\(-e\)\ \((1 - v)\)\^\(-e\);\)\), "\[IndentingNewLine]",
|
---|
925 | \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((1 - v)\), \
|
---|
926 | u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
|
---|
927 | s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
|
---|
928 | \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
|
---|
929 | 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
|
---|
930 | \(\(pgq =
|
---|
931 | CF \((\((1 - z)\)\^2 + 1)\)/z\ //
|
---|
932 | Factor;\)\), "\[IndentingNewLine]",
|
---|
933 | \(\)}], "Input",
|
---|
934 | PageWidth->PaperWidth],
|
---|
935 |
|
---|
936 | Cell[CellGroupData[{
|
---|
937 |
|
---|
938 | Cell["dim-reg", "Subsubsection",
|
---|
939 | PageWidth->PaperWidth],
|
---|
940 |
|
---|
941 | Cell[CellGroupData[{
|
---|
942 |
|
---|
943 | Cell[BoxData[{
|
---|
944 | \(\(\[Sigma]r =
|
---|
945 | Integrate[\((RealD\ PS\ c\[CapitalGamma]/cGamma\ //
|
---|
946 | Simplify)\) //. \ substu // Expand, {v, 0, 1}, \
|
---|
947 | GenerateConditions \[Rule] False] // Simplify;\)\), "\n",
|
---|
948 | \(\(\[Sigma]r =
|
---|
949 | Normal[Series[\[Sigma]r/\((1 + \ e)\), {e, 0, 0}]] /. \
|
---|
950 | gs^2\ \[Rule] \ as\ 4\ \[Pi]\ // FullSimplify;\)\), "\n",
|
---|
951 | \(\(\[Sigma]r = \(\(\(-\[Sigma]r\)/c\[CapitalGamma]\)/\[Pi]\)/2 -
|
---|
952 | 1/e\ z\ \ \ Pgq\ + 1/e\ \ z\ \ pgq;\)\), "\n",
|
---|
953 | \(\[Sigma]r = \(\[Sigma]r // PowerExpand\) // Expand\)}], "Input",
|
---|
954 | PageWidth->PaperWidth],
|
---|
955 |
|
---|
956 | Cell[BoxData[
|
---|
957 | \(TraditionalForm\`\(-\(1\/2\)\)\ C\_F\ z\^2 +
|
---|
958 | 2\ C\_F\ \(log(1 - z)\)\ z\^2 - C\_F\ \(log(z)\)\ z\^2 +
|
---|
959 | 3\ C\_F\ z - \(Pgq\ z\)\/e - 4\ C\_F\ \(log(1 - z)\)\ z +
|
---|
960 | 2\ C\_F\ \(log(z)\)\ z - \(3\ C\_F\)\/2 + 4\ C\_F\ \(log(1 - z)\) -
|
---|
961 | 2\ C\_F\ \(log(z)\)\)], "Output"]
|
---|
962 | }, Open ]],
|
---|
963 |
|
---|
964 | Cell[CellGroupData[{
|
---|
965 |
|
---|
966 | Cell[BoxData[{
|
---|
967 | \(sally =
|
---|
968 | 2*\((\(-\ \ \((1 - z)\)\)\ \((7 - 3 z)\)/3\ +
|
---|
969 | 1/2\ z\ pgq\ \((1 + 2 Log[1 - z] -
|
---|
970 | Log[z])\))\)\), "\[IndentingNewLine]",
|
---|
971 | \(\((\(\((\[Sigma]r - \ sally)\) /. \ CF -> 4/3\) /. \ Pgq \[Rule] 0)\) //
|
---|
972 | Simplify\)}], "Input"],
|
---|
973 |
|
---|
974 | Cell[BoxData[
|
---|
975 | \(TraditionalForm\`2\ \((1\/3\ \((7 - 3\ z)\)\ \((z - 1)\) +
|
---|
976 | 1\/2\ C\_F\ \((z\^2 - 2\ z + 2)\)\ \((2\ \(log(1 - z)\) - log(z) +
|
---|
977 | 1)\))\)\)], "Output"],
|
---|
978 |
|
---|
979 | Cell[BoxData[
|
---|
980 | \(TraditionalForm\`0\)], "Output"]
|
---|
981 | }, Open ]],
|
---|
982 |
|
---|
983 | Cell[BoxData[""], "Input"]
|
---|
984 | }, Open ]]
|
---|
985 | }, Open ]]
|
---|
986 | }, Closed]]
|
---|
987 | }, Open ]]
|
---|
988 | },
|
---|
989 | FrontEndVersion->"4.1 for Macintosh",
|
---|
990 | ScreenRectangle->{{0, 1280}, {0, 832}},
|
---|
991 | WindowSize->{807, 655},
|
---|
992 | WindowMargins->{{Automatic, 126}, {Automatic, 0}},
|
---|
993 | PrintingCopies->1,
|
---|
994 | PrintingPageRange->{Automatic, Automatic}
|
---|
995 | ]
|
---|
996 |
|
---|
997 | (*******************************************************************
|
---|
998 | Cached data follows. If you edit this Notebook file directly, not
|
---|
999 | using Mathematica, you must remove the line containing CacheID at
|
---|
1000 | the top of the file. The cache data will then be recreated when
|
---|
1001 | you save this file from within Mathematica.
|
---|
1002 | *******************************************************************)
|
---|
1003 |
|
---|
1004 | (*CellTagsOutline
|
---|
1005 | CellTagsIndex->{}
|
---|
1006 | *)
|
---|
1007 |
|
---|
1008 | (*CellTagsIndex
|
---|
1009 | CellTagsIndex->{}
|
---|
1010 | *)
|
---|
1011 |
|
---|
1012 | (*NotebookFileOutline
|
---|
1013 | Notebook[{
|
---|
1014 |
|
---|
1015 | Cell[CellGroupData[{
|
---|
1016 | Cell[1727, 52, 72, 1, 108, "Title"],
|
---|
1017 |
|
---|
1018 | Cell[CellGroupData[{
|
---|
1019 | Cell[1824, 57, 61, 1, 46, "Subsection"],
|
---|
1020 | Cell[1888, 60, 82, 2, 27, "Input"],
|
---|
1021 | Cell[1973, 64, 369, 14, 32, "Text"],
|
---|
1022 | Cell[2345, 80, 80, 2, 27, "Input"]
|
---|
1023 | }, Closed]],
|
---|
1024 |
|
---|
1025 | Cell[CellGroupData[{
|
---|
1026 | Cell[2462, 87, 75, 1, 36, "Section"],
|
---|
1027 |
|
---|
1028 | Cell[CellGroupData[{
|
---|
1029 | Cell[2562, 92, 57, 1, 46, "Subsection"],
|
---|
1030 | Cell[2622, 95, 172, 12, 204, "Text"],
|
---|
1031 | Cell[2797, 109, 1720, 33, 450, "Input"]
|
---|
1032 | }, Closed]],
|
---|
1033 |
|
---|
1034 | Cell[CellGroupData[{
|
---|
1035 | Cell[4554, 147, 71, 1, 30, "Subsection"],
|
---|
1036 | Cell[4628, 150, 1246, 46, 152, "Text"],
|
---|
1037 | Cell[5877, 198, 896, 16, 310, "Input"]
|
---|
1038 | }, Closed]],
|
---|
1039 |
|
---|
1040 | Cell[CellGroupData[{
|
---|
1041 | Cell[6810, 219, 67, 1, 30, "Subsection"],
|
---|
1042 |
|
---|
1043 | Cell[CellGroupData[{
|
---|
1044 | Cell[6902, 224, 378, 8, 130, "Input"],
|
---|
1045 | Cell[7283, 234, 54, 1, 70, "Output"],
|
---|
1046 | Cell[7340, 237, 286, 7, 70, "Output"]
|
---|
1047 | }, Open ]],
|
---|
1048 |
|
---|
1049 | Cell[CellGroupData[{
|
---|
1050 | Cell[7663, 249, 488, 9, 110, "Input"],
|
---|
1051 | Cell[8154, 260, 90, 1, 70, "Output"]
|
---|
1052 | }, Open ]]
|
---|
1053 | }, Closed]],
|
---|
1054 |
|
---|
1055 | Cell[CellGroupData[{
|
---|
1056 | Cell[8293, 267, 66, 1, 30, "Subsection"],
|
---|
1057 | Cell[8362, 270, 757, 16, 210, "Input"],
|
---|
1058 | Cell[9122, 288, 26, 0, 30, "Input"],
|
---|
1059 | Cell[9151, 290, 26, 0, 30, "Input"]
|
---|
1060 | }, Closed]]
|
---|
1061 | }, Closed]],
|
---|
1062 |
|
---|
1063 | Cell[CellGroupData[{
|
---|
1064 | Cell[9226, 296, 22, 0, 36, "Section"],
|
---|
1065 |
|
---|
1066 | Cell[CellGroupData[{
|
---|
1067 | Cell[9273, 300, 62, 1, 46, "Subsection"],
|
---|
1068 |
|
---|
1069 | Cell[CellGroupData[{
|
---|
1070 | Cell[9360, 305, 897, 17, 235, "Input"],
|
---|
1071 | Cell[10260, 324, 394, 12, 26, "Output"],
|
---|
1072 | Cell[10657, 338, 1327, 28, 29, "Output"]
|
---|
1073 | }, Open ]],
|
---|
1074 | Cell[11999, 369, 26, 0, 27, "Input"]
|
---|
1075 | }, Open ]],
|
---|
1076 |
|
---|
1077 | Cell[CellGroupData[{
|
---|
1078 | Cell[12062, 374, 63, 1, 46, "Subsection"],
|
---|
1079 |
|
---|
1080 | Cell[CellGroupData[{
|
---|
1081 | Cell[12150, 379, 673, 13, 219, "Input"],
|
---|
1082 | Cell[12826, 394, 251, 4, 48, "Output"]
|
---|
1083 | }, Open ]]
|
---|
1084 | }, Open ]],
|
---|
1085 |
|
---|
1086 | Cell[CellGroupData[{
|
---|
1087 | Cell[13126, 404, 38, 0, 46, "Subsection"],
|
---|
1088 |
|
---|
1089 | Cell[CellGroupData[{
|
---|
1090 | Cell[13189, 408, 389, 7, 107, "Input"],
|
---|
1091 | Cell[13581, 417, 136, 2, 43, "Output"]
|
---|
1092 | }, Open ]],
|
---|
1093 |
|
---|
1094 | Cell[CellGroupData[{
|
---|
1095 | Cell[13754, 424, 474, 10, 155, "Input"],
|
---|
1096 | Cell[14231, 436, 85, 1, 43, "Output"]
|
---|
1097 | }, Open ]],
|
---|
1098 |
|
---|
1099 | Cell[CellGroupData[{
|
---|
1100 | Cell[14353, 442, 164, 3, 40, "Input"],
|
---|
1101 | Cell[14520, 447, 160, 2, 52, "Output"]
|
---|
1102 | }, Open ]],
|
---|
1103 | Cell[14695, 452, 52, 1, 43, "Input"],
|
---|
1104 |
|
---|
1105 | Cell[CellGroupData[{
|
---|
1106 | Cell[14772, 457, 63, 1, 27, "Input"],
|
---|
1107 | Cell[14838, 460, 76, 1, 45, "Output"]
|
---|
1108 | }, Open ]]
|
---|
1109 | }, Open ]]
|
---|
1110 | }, Closed]],
|
---|
1111 |
|
---|
1112 | Cell[CellGroupData[{
|
---|
1113 | Cell[14975, 468, 66, 1, 36, "Section"],
|
---|
1114 |
|
---|
1115 | Cell[CellGroupData[{
|
---|
1116 | Cell[15066, 473, 57, 1, 46, "Subsection"],
|
---|
1117 | Cell[15126, 476, 702, 37, 574, "Text"],
|
---|
1118 | Cell[15831, 515, 1310, 24, 299, "Input"]
|
---|
1119 | }, Open ]],
|
---|
1120 |
|
---|
1121 | Cell[CellGroupData[{
|
---|
1122 | Cell[17178, 544, 71, 1, 46, "Subsection"],
|
---|
1123 | Cell[17252, 547, 1246, 46, 152, "Text"],
|
---|
1124 | Cell[18501, 595, 757, 14, 187, "Input"]
|
---|
1125 | }, Open ]],
|
---|
1126 |
|
---|
1127 | Cell[CellGroupData[{
|
---|
1128 | Cell[19295, 614, 57, 0, 46, "Subsection"],
|
---|
1129 | Cell[19355, 616, 419, 10, 147, "Input"]
|
---|
1130 | }, Open ]],
|
---|
1131 |
|
---|
1132 | Cell[CellGroupData[{
|
---|
1133 | Cell[19811, 631, 137, 3, 46, "Subsection"],
|
---|
1134 | Cell[19951, 636, 396, 10, 147, "Input"],
|
---|
1135 |
|
---|
1136 | Cell[CellGroupData[{
|
---|
1137 | Cell[20372, 650, 124, 3, 42, "Input"],
|
---|
1138 | Cell[20499, 655, 649, 9, 98, "Output"]
|
---|
1139 | }, Open ]],
|
---|
1140 | Cell[21163, 667, 57, 3, 42, "Input"]
|
---|
1141 | }, Open ]],
|
---|
1142 |
|
---|
1143 | Cell[CellGroupData[{
|
---|
1144 | Cell[21257, 675, 85, 1, 46, "Subsection"],
|
---|
1145 | Cell[21345, 678, 368, 7, 123, "Input"]
|
---|
1146 | }, Open ]],
|
---|
1147 |
|
---|
1148 | Cell[CellGroupData[{
|
---|
1149 | Cell[21750, 690, 74, 1, 46, "Subsection"],
|
---|
1150 | Cell[21827, 693, 820, 15, 231, "Input"]
|
---|
1151 | }, Closed]],
|
---|
1152 |
|
---|
1153 | Cell[CellGroupData[{
|
---|
1154 | Cell[22684, 713, 50, 1, 30, "Subsection"],
|
---|
1155 |
|
---|
1156 | Cell[CellGroupData[{
|
---|
1157 | Cell[22759, 718, 277, 6, 98, "Input"],
|
---|
1158 | Cell[23039, 726, 708, 10, 121, "Output"]
|
---|
1159 | }, Open ]],
|
---|
1160 | Cell[23762, 739, 618, 12, 171, "Input"]
|
---|
1161 | }, Closed]]
|
---|
1162 | }, Closed]],
|
---|
1163 |
|
---|
1164 | Cell[CellGroupData[{
|
---|
1165 | Cell[24429, 757, 26, 0, 36, "Section"],
|
---|
1166 |
|
---|
1167 | Cell[CellGroupData[{
|
---|
1168 | Cell[24480, 761, 55, 0, 46, "Subsection"],
|
---|
1169 | Cell[24538, 763, 1409, 24, 299, "Input"],
|
---|
1170 |
|
---|
1171 | Cell[CellGroupData[{
|
---|
1172 | Cell[25972, 791, 136, 3, 27, "Input"],
|
---|
1173 | Cell[26111, 796, 165, 2, 55, "Output"]
|
---|
1174 | }, Open ]],
|
---|
1175 |
|
---|
1176 | Cell[CellGroupData[{
|
---|
1177 | Cell[26313, 803, 155, 3, 42, "Input"],
|
---|
1178 | Cell[26471, 808, 113, 2, 43, "Output"]
|
---|
1179 | }, Open ]],
|
---|
1180 |
|
---|
1181 | Cell[CellGroupData[{
|
---|
1182 | Cell[26621, 815, 144, 2, 27, "Input"],
|
---|
1183 | Cell[26768, 819, 150, 2, 55, "Output"]
|
---|
1184 | }, Open ]],
|
---|
1185 | Cell[26933, 824, 329, 6, 59, "Input"],
|
---|
1186 | Cell[27265, 832, 289, 5, 43, "Input"]
|
---|
1187 | }, Open ]]
|
---|
1188 | }, Closed]],
|
---|
1189 |
|
---|
1190 | Cell[CellGroupData[{
|
---|
1191 | Cell[27603, 843, 67, 1, 36, "Section"],
|
---|
1192 |
|
---|
1193 | Cell[CellGroupData[{
|
---|
1194 | Cell[27695, 848, 70, 1, 46, "Subsection"],
|
---|
1195 | Cell[27768, 851, 172, 12, 174, "Text"],
|
---|
1196 | Cell[27943, 865, 1720, 33, 363, "Input"]
|
---|
1197 | }, Open ]],
|
---|
1198 |
|
---|
1199 | Cell[CellGroupData[{
|
---|
1200 | Cell[29700, 903, 61, 1, 46, "Subsection"],
|
---|
1201 | Cell[29764, 906, 253, 5, 59, "Input"]
|
---|
1202 | }, Open ]],
|
---|
1203 |
|
---|
1204 | Cell[CellGroupData[{
|
---|
1205 | Cell[30054, 916, 95, 1, 46, "Subsection"],
|
---|
1206 | Cell[30152, 919, 712, 14, 186, "Input"],
|
---|
1207 |
|
---|
1208 | Cell[CellGroupData[{
|
---|
1209 | Cell[30889, 937, 57, 1, 42, "Subsubsection"],
|
---|
1210 |
|
---|
1211 | Cell[CellGroupData[{
|
---|
1212 | Cell[30971, 942, 623, 11, 139, "Input"],
|
---|
1213 | Cell[31597, 955, 309, 5, 43, "Output"]
|
---|
1214 | }, Open ]],
|
---|
1215 |
|
---|
1216 | Cell[CellGroupData[{
|
---|
1217 | Cell[31943, 965, 300, 6, 43, "Input"],
|
---|
1218 | Cell[32246, 973, 195, 3, 43, "Output"],
|
---|
1219 | Cell[32444, 978, 52, 1, 26, "Output"]
|
---|
1220 | }, Open ]],
|
---|
1221 | Cell[32511, 982, 26, 0, 27, "Input"]
|
---|
1222 | }, Open ]]
|
---|
1223 | }, Open ]]
|
---|
1224 | }, Closed]]
|
---|
1225 | }, Open ]]
|
---|
1226 | }
|
---|
1227 | ]
|
---|
1228 | *)
|
---|
1229 |
|
---|
1230 |
|
---|
1231 |
|
---|
1232 | (*******************************************************************
|
---|
1233 | End of Mathematica Notebook file.
|
---|
1234 | *******************************************************************)
|
---|
1235 |
|
---|