GIFSchool: HiggsGG-NLO.nb

File HiggsGG-NLO.nb, 38.8 KB (added by (none), 13 years ago)
Line 
1(************** Content-type: application/mathematica **************
2
3 Mathematica-Compatible Notebook
4
5This notebook can be used with any Mathematica-compatible
6application, such as Mathematica, MathReader or Publicon. The data
7for the notebook starts with the line containing stars above.
8
9To get the notebook into a Mathematica-compatible application, do
10one of the following:
11
12* Save the data starting with the line of stars above into a file
13 with a name ending in .nb, then open the file inside the
14 application;
15
16* Copy the data starting with the line of stars above to the
17 clipboard, then use the Paste menu command inside the application.
18
19Data for notebooks contains only printable 7-bit ASCII and can be
20sent directly in email or through ftp in text mode. Newlines can be
21CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
22
23NOTE: If you modify the data for this notebook not in a Mathematica-
24compatible application, you must delete the line below containing
25the word CacheID, otherwise Mathematica-compatible applications may
26try to use invalid cache data.
27
28For more information on notebooks and Mathematica-compatible
29applications, contact Wolfram Research:
30 web: http://www.wolfram.com
31 email: info@wolfram.com
32 phone: +1-217-398-0700 (U.S.)
33
34Notebook reader applications are available free of charge from
35Wolfram Research.
36*******************************************************************)
37
38(*CacheID: 232*)
39
40
41(*NotebookFileLineBreakTest
42NotebookFileLineBreakTest*)
43(*NotebookOptionsPosition[ 32589, 988]*)
44(*NotebookOutlinePosition[ 33288, 1012]*)
45(* CellTagsIndexPosition[ 33244, 1008]*)
46(*WindowFrame->Normal*)
47
48
49
50Notebook[{
51
52Cell[CellGroupData[{
53Cell["gg \[Rule] H at NLO in the EFT", "Title",
54 PageWidth->PaperWidth],
55
56Cell[CellGroupData[{
57
58Cell["Input FeynCalc", "Subsection",
59 PageWidth->PaperWidth],
60
61Cell[BoxData[
62 \(<< HighEnergyPhysics`fc`\)], "Input",
63 PageWidth->PaperWidth],
64
65Cell[TextData[{
66 StyleBox["FeynCalc",
67 FontWeight->"Bold"],
68 " ",
69 "4.1.0.3b",
70 " ",
71 " Evaluate ?FeynCalc for help or visit ",
72 ButtonBox["www.feyncalc.org",
73 ButtonData:>{
74 URL[ "http://www.feyncalc.org"], None},
75 ButtonStyle->"Hyperlink",
76 ButtonNote->"http://www.feyncalc.org"]
77}], "Text",
78 GeneratedCell->True,
79 CellAutoOverwrite->True],
80
81Cell[BoxData[
82 \(\($LimitTo4 = False;\)\)], "Input",
83 PageWidth->PaperWidth]
84}, Closed]],
85
86Cell[CellGroupData[{
87
88Cell["Virtual diagrams :preliminaries", "Section",
89 PageWidth->PaperWidth],
90
91Cell[CellGroupData[{
92
93Cell["Kinematics", "Subsection",
94 PageWidth->PaperWidth],
95
96Cell["\<\
97-----I take all momenta outgoing
98
99 p1 + p2 + p3 = 0
100
101 p1^2=0
102 p2^2=0
103 p3^3=Q^2
104
105
106 \
107\>", "Text",
108 PageWidth->PaperWidth],
109
110Cell[BoxData[{
111 \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
112 \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
113 \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
114 \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
115 \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
116 \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
117 \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
118 \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
119 \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
120 \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
121 \)\), "\[IndentingNewLine]",
122 \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
123 0;\)\), "\[IndentingNewLine]",
124 \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
125 0;\)\), "\[IndentingNewLine]",
126 \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
127 Q2;\)\), "\[IndentingNewLine]",
128 \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
129 2;\)\), "\[IndentingNewLine]",
130 \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
131 Q2/2;\)\), "\[IndentingNewLine]",
132 \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
133 2;\)\), "\[IndentingNewLine]",
134 \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
135 0;\)\), "\[IndentingNewLine]",
136 \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
137 0;\)\), "\[IndentingNewLine]",
138 \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
139 0;\)\), "\[IndentingNewLine]",
140 \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
141 0;\)\), "\[IndentingNewLine]",
142 \(\)}], "Input",
143 PageWidth->PaperWidth]
144}, Closed]],
145
146Cell[CellGroupData[{
147
148Cell["Verteces and Propagators", "Subsection",
149 PageWidth->PaperWidth],
150
151Cell[TextData[{
152 StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
153outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
154 FontSize->14],
155 Cell[BoxData[
156 \(TraditionalForm\`g\_s\)],
157 FontSize->14],
158 StyleBox[" ) (\[ImaginaryI] ",
159 FontSize->14],
160 Cell[BoxData[
161 \(TraditionalForm\`f\^abc\)],
162 FontSize->14],
163 StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
164 FontSize->14],
165 Cell[BoxData[
166 \(TraditionalForm\`g\_s\)],
167 FontSize->14],
168 ")",
169 StyleBox[" ",
170 FontSize->14],
171 Cell[BoxData[
172 \(TraditionalForm\`\((T\^a)\)\_ij\)],
173 FontSize->14],
174 StyleBox[" ",
175 FontSize->14],
176 Cell[BoxData[
177 \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
178 FontSize->14],
179 StyleBox["\nGluon Propagator= ",
180 FontSize->14],
181 Cell[BoxData[
182 FormBox[
183 FractionBox[
184 StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
185 FontSize->16], \(p\^2\)], TraditionalForm]],
186 FontSize->14],
187 "\nQuark ",
188 StyleBox["Propagator= ",
189 FontSize->14],
190 Cell[BoxData[
191 FormBox[
192 FractionBox[
193 StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
194 FontSize->16], \(p\&^\)], TraditionalForm]],
195 FontSize->14]
196}], "Text",
197 PageWidth->PaperWidth],
198
199Cell[BoxData[{
200 \(\(GGG[p1_, p2_, p3_, m1_, m2_, m3_] :=
201 FV[p1 - p2, m3]\ MT[m1, m2] + FV[p2 - p3, m1]\ MT[m2, m3] +
202 FV[p3 - p1, m2]\ MT[m1, m3];\)\), "\[IndentingNewLine]",
203 \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
204 FVD[p1 - p2, m3]\ MTD[m1, m2] + FVD[p2 - p3, m1]\ MTD[m2, m3] +
205 FVD[p3 - p1, m2]\ MTD[m1, m3];\)\), "\[IndentingNewLine]",
206 \(\(GGGG[m1_, m2_, m3_, m4_] :=
207 2\ MT[m1, m2]\ MT[m3, m4] - MT[m1, m3]\ MT[m2, m4] -
208 MT[m1, m4]\ MT[m2, m3];\)\), "\[IndentingNewLine]",
209 \(\(GGGGD[m1_, m2_, m3_, m4_] :=
210 2\ MTD[m1, m2]\ MTD[m3, m4] - MTD[m1, m3]\ MTD[m2, m4] -
211 MTD[m1, m4]\ MTD[m2, m3];\)\), "\[IndentingNewLine]",
212 \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
213 \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
214 \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
215 PageWidth->PaperWidth]
216}, Closed]],
217
218Cell[CellGroupData[{
219
220Cell["Born Matrix element ", "Subsection",
221 PageWidth->PaperWidth],
222
223Cell[CellGroupData[{
224
225Cell[BoxData[{
226 \(factborn = gs2\), "\[IndentingNewLine]",
227 \(\(Born =
228 factborn \((\
229 MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ FVD[e1,
230 mu]\ FVD[e2, nu] // Contract;\)\), "\[IndentingNewLine]",
231 \(\(Born4 = Born /. \ D \[Rule] 4;\)\), "\[IndentingNewLine]",
232 \(Born = Born\)}], "Input",
233 PageWidth->PaperWidth],
234
235Cell[BoxData[
236 \(TraditionalForm\`gs2\)], "Output"],
237
238Cell[BoxData[
239 FormBox[
240 RowBox[{\(1\/2\), " ", "gs2", " ", "Q2", " ",
241 RowBox[{
242 FormBox["e1",
243 "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]",
244 FormBox["e2",
245 "TraditionalForm"]}]}], TraditionalForm]], "Output"]
246}, Open ]],
247
248Cell[CellGroupData[{
249
250Cell[BoxData[{
251 \(BornSq =
252 Normal[Series[\((\[IndentingNewLine]gs2^2\ /\((D - 2)\)^2*\((\
253 MTD[mu, nu]\ SPD[p1, p2] -
254 FVD[p1, nu]\ FVD[p2, mu])\) \((\
255 MTD[mu, nu]\ SPD[p1, p2] -
256 FVD[p1, nu]\ FVD[p2, mu])\)\ // Contract)\)\ /. \
257 D \[Rule] 4 - 2 e, {e, 0, 2}]] //
258 Simplify\), "\[IndentingNewLine]",
259 \(\(BornSq4 = BornSq /. \ e \[Rule] 0;\)\)}], "Input"],
260
261Cell[BoxData[
262 \(TraditionalForm\`1\/8\ \((e\^2 + e + 1)\)\ gs2\^2\ Q2\^2\)], "Output"]
263}, Open ]]
264}, Closed]],
265
266Cell[CellGroupData[{
267
268Cell["My Scalar Integrals", "Subsection",
269 PageWidth->PaperWidth],
270
271Cell[BoxData[{
272 \(\(subInt[expr_] :=
273 expr /. \ {\[IndentingNewLine]B0[x__] \[Rule] \
274 DUPI/\((I\ Pi^2)\)\ MyB0[x], \[IndentingNewLine]C0[
275 x__] \[Rule] \
276 DUPI/\((I\ Pi^2)\)\ MyC0[x], \[IndentingNewLine]D0[
277 x__] \[Rule] \
278 DUPI/\((I\ Pi^2)\)\ MyD0[x]};\)\), "\[IndentingNewLine]",
279 \(\(MyC0[0, 0, Q2, 0, 0,
280 0] = \((c\[CapitalGamma]*\((2/e^2 - Pi^2 - 2/e*Log[Q2/mu2] +
281 Log[Q2/mu2]^2)\))\)/\((2*
282 Q2)\);\)\), "\[IndentingNewLine]",
283 \(\(MyB0[0, 0, 0] = 0;\)\), "\[IndentingNewLine]",
284 \(\(MyB0[Q2, 0, 0] =
285 c\[CapitalGamma]\ \((1/e + 2 - Log[Q2/mu2])\);\)\), "\n",
286 \(\)}], "Input",
287 PageWidth->PaperWidth],
288
289Cell[BoxData[""], "Input"],
290
291Cell[BoxData[""], "Input"]
292}, Closed]]
293}, Closed]],
294
295Cell[CellGroupData[{
296
297Cell["CDR", "Section"],
298
299Cell[CellGroupData[{
300
301Cell["Vertex Diagram ", "Subsection",
302 PageWidth->PaperWidth],
303
304Cell[CellGroupData[{
305
306Cell[BoxData[{
307 \(\(\(colorvtx = SUNF[b, x, y] SUNF[y, a, x]\ // SUNSimplify\)\(\n\)
308 \)\), "\[IndentingNewLine]",
309 \(\(num =
310 gs2^2*\((\(-gs2\))\)*
311 I*\[IndentingNewLine]\((\
312 MTD[al, be]\ SPD[\(-l\) + p1, p2 + l] - \ \ FVD[\(-l\) + p1,
313 be]\ FVD[p2 + l, al])\)\ *\
314 GGGD[\(-l\), p1, l - p1, ro, mu, al]*\[IndentingNewLine]GGGD[p2,
315 l, \(-l\) - p2, nu, ro, be]*\((\
316 MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
317 Contract;\)\), "\n",
318 \(\(dens = FAD[l, p1 - l, l + p2];\)\), "\[IndentingNewLine]",
319 \(\(amp = CA\ dens*\ num/\((D - 2)\)^2;\)\), "\n",
320 \(inte1 = \((\(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
321 Factor\) // Simplify)\) /. \ B0[0, 0, 0] \[Rule] 0\ //
322 Simplify\)}], "Input",
323 PageWidth->PaperWidth],
324
325Cell[BoxData[
326 FormBox[
327 RowBox[{\(C\_A\), " ",
328 SubscriptBox["\[Delta]",
329 RowBox[{
330 FormBox[
331 FormBox["a",
332 "TraditionalForm"],
333 "TraditionalForm"], "\[NoBreak]",
334 FormBox[
335 FormBox["b",
336 "TraditionalForm"],
337 "TraditionalForm"]}]]}], TraditionalForm]], "Output"],
338
339Cell[BoxData[
340 FormBox[
341 RowBox[{"-",
342 RowBox[{
343 RowBox[{"(",
344
345 RowBox[{\(C\_A\), " ", \(gs2\^3\), " ", \(\[Pi]\^2\),
346 " ", \(Q2\^2\), " ",
347 RowBox[{"(",
348
349 RowBox[{\(\((\(-20\)\ D\^2 + 73\ D - 52)\)\ \(\(B\_0\)(Q2, 0,
350 0)\)\), "+",
351 RowBox[{"8", " ", \((D\^2 - 3\ D + 2)\), " ", "Q2", " ",
352 RowBox[{
353 FormBox[\("C"\_"0"\),
354 "TraditionalForm"], "\[NoBreak]", "(", "\[NoBreak]",
355 FormBox["0",
356 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
357 FormBox["0",
358 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
359 "Q2", "\[NoBreak]", ",", "\[NoBreak]",
360 FormBox["0",
361 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
362 FormBox["0",
363 "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
364 FormBox["0",
365 "TraditionalForm"], "\[NoBreak]", ")"}]}]}], ")"}]}],
366 ")"}], "/", \((16\ \((D - 2)\)\^2\ \((D - 1)\)\ DUPI)\)}]}],
367 TraditionalForm]], "Output"]
368}, Open ]],
369
370Cell[BoxData[""], "Input"]
371}, Open ]],
372
373Cell[CellGroupData[{
374
375Cell["4-gluon Diagram ", "Subsection",
376 PageWidth->PaperWidth],
377
378Cell[CellGroupData[{
379
380Cell[BoxData[{
381 \(\(color = SUNF[b, c, y] SUNF[y, a, c]\ // SUNSimplify;\)\), "\n",
382 \(\(num =
383 gs2^2*I*\
384 gs2*\((\ MTD[ro, si]\ SPD[l, \(-l\) + p1 + p2] - \ \ FVD[l,
385 si]\ FVD[\(-l\) + p1 + p2, ro])\)\ *\
386 GGGGD[nu, mu, ro, si]\ *\((\
387 MTD[mu, nu]\ SPD[p1, p2] - FVD[p1, nu]\ FVD[p2, mu])\)\ //
388 Contract;\)\), "\n",
389 \(\(dens = FAD[l, l - p1 - p2];\)\), "\n",
390 \(\(amp = CA/2\ \ dens*num/\((D - 2)\)^2;\)\), "\[IndentingNewLine]",
391 \(inte2 = \(\((\(OneLoop[l, amp/DUPI] // PaVeReduce\) // Simplify)\) //
392 Factor\) // Simplify\)}], "Input",
393 PageWidth->PaperWidth],
394
395Cell[BoxData[
396 \(TraditionalForm\`\(-\(\(C\_A\ \((2\ D - 3)\)\ \((2\ D\^2 - 5\ D +
397 4)\)\ gs2\^3\ \[Pi]\^2\ Q2\^2\ \(\(B\_0\)(Q2, 0,
398 0)\)\)\/\(16\ \((D - 2)\)\^2\ \((D -
399 1)\)\ DUPI\)\)\)\)], "Output"]
400}, Open ]]
401}, Open ]],
402
403Cell[CellGroupData[{
404
405Cell["Sum the virtuals", "Subsection"],
406
407Cell[CellGroupData[{
408
409Cell[BoxData[
410 \(\(\(\[IndentingNewLine]\)\(res = \ \(\(\(-1\)/
411 2*\[IndentingNewLine]Normal[
412 Series[\(\(\((inte1 + inte2)\)/BornSq\)/
413 I\)/\((mu2/Q2)\)^\((e)\)\ /. \
414 D \[Rule] 4 - 2 e // \ subInt, {e, 0, 0}]] //
415 Simplify\) // PowerExpand\) // Expand\)\)\)], "Input",
416 PageWidth->PaperWidth],
417
418Cell[BoxData[
419 \(TraditionalForm\`1\/2\ C\_A\ c\[CapitalGamma]\ gs2\ \[Pi]\^2 - \(C\_A\ \
420c\[CapitalGamma]\ gs2\)\/e\^2\)], "Output"]
421}, Open ]],
422
423Cell[CellGroupData[{
424
425Cell[BoxData[{
426 \(\(add =
427 1/2 \((Normal[
428 Series[\((\((1 + \ \(19/
429 4\)/\[Pi]\ gs2/\((4 \[Pi])\)\ )\)/\((1 +
430 2\ \(gs2/\((4 \[Pi])\)\)/\[Pi])\))\), {gs2, 0,
431 1}]] - 1)\) c\[CapitalGamma]\ CA/3\ 16
432 Pi^2\ ;\)\), "\[IndentingNewLine]",
433 \(\(virt = add + res;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
434 \(add\)}], "Input",
435 PageWidth->PaperWidth],
436
437Cell[BoxData[
438 \(TraditionalForm\`11\/6\ C\_A\ c\[CapitalGamma]\ gs2\)], "Output"]
439}, Open ]],
440
441Cell[CellGroupData[{
442
443Cell[BoxData[
444 \(virt = \(\((\((virt*\(2/gs2\)/c\[CapitalGamma])\) //
445 Expand)\)\(*\)\(as\/\(2 \[Pi]\)\) \(c\[CapitalGamma]\)\(\ \
446\)\)\)], "Input"],
447
448Cell[BoxData[
449 \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(-\(\(2\ C\_A\)\/e\^2\)\) \
450+ \[Pi]\^2\ C\_A + \(11\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
451}, Open ]],
452
453Cell[BoxData[
454 \(\[IndentingNewLine]\)], "Input"],
455
456Cell[CellGroupData[{
457
458Cell[BoxData[
459 \(\(\(32/256\)/3\)/\((1 - e)\)^2\)], "Input"],
460
461Cell[BoxData[
462 \(TraditionalForm\`1\/\(24\ \((1 - e)\)\^2\)\)], "Output"]
463}, Open ]]
464}, Open ]]
465}, Closed]],
466
467Cell[CellGroupData[{
468
469Cell["The real contributions", "Section",
470 PageWidth->PaperWidth],
471
472Cell[CellGroupData[{
473
474Cell["Kinematics", "Subsection",
475 PageWidth->PaperWidth],
476
477Cell["\<\
478-----I take all momenta outgoing
479
480 p1 + p2 + p3 + p4 = 0
481
482 p1^2=0
483 p2^2=0
484 p3^3=0
485 p4^2=mh^2
486
487-----invariants
488
489 s = (p1 + p2)^2 = (p3 + p4)^2=2 p1.p2=mh^2+2 p3.p4
490 t = (p1 + p3)^2 = (p2+ p4)^2 =2 p1.p3=mh^2+2 p2.p4
491 u = (p2 + p3)^2 = (p1 + p4)^2=2 p1.p4+mh^2=+2 p2.p3
492
493 s + t + u = mh^2
494
495 \[Sigma]+\[Tau]+\[Upsilon]=1
496
497 -----scalar products
498
499 p1.p2=s/2
500 p1.p3=(t)/2
501 p1.p4= (u-mh^2)/2
502 p2.p3= (u)/2
503 p2.p4=(t-mh^2)/2
504 p3.p4=(s-mh^2)/2
505
506-----physical region for production p1+p2=-p3-p4
507
508 s>(mh)^2 ;
509 t<0;
510 u<0;
511
512\
513\>", "Text",
514 PageWidth->PaperWidth],
515
516Cell[BoxData[{
517 \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
518 \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
519 \(\(ScalarProduct[p3, p3] = 0;\)\), "\[IndentingNewLine]",
520 \(\(ScalarProduct[q, p3] = u/2;\)\ (*q =
521 p2 + p3*) \), "\[IndentingNewLine]",
522 \(\(ScalarProduct[q, p2] = u/2;\)\ (*q =
523 p2 + p3*) \), "\[IndentingNewLine]",
524 \(\(ScalarProduct[q, q] = u;\)\ (*q =
525 p2 + p3*) \), "\[IndentingNewLine]",
526 \(\(ScalarProduct[p4, p4] = mh2;\)\), "\[IndentingNewLine]",
527 \(\(ScalarProduct[p1, p2] = s/2;\)\), "\[IndentingNewLine]",
528 \(\(ScalarProduct[p1, p3] = t/2;\)\), "\[IndentingNewLine]",
529 \(\(ScalarProduct[p1, p4] = \((u - mh2)\)/2;\)\), "\[IndentingNewLine]",
530 \(\(ScalarProduct[p2, p3] = u/2;\)\), "\[IndentingNewLine]",
531 \(\(ScalarProduct[p2, p4] = \ \((t - mh2)\)/
532 2;\)\), "\[IndentingNewLine]",
533 \(\(ScalarProduct[p3, p4] = \((s - mh2)\)/
534 2\ \ ;\)\), "\[IndentingNewLine]",
535 \(\(ScalarProduct[p3, e3] = 0\ ;\)\), "\[IndentingNewLine]",
536 \(\(ScalarProduct[p1, e1] = 0\ ;\)\), "\[IndentingNewLine]",
537 \(\(ScalarProduct[p2, e2] = 0\ ;\)\), "\[IndentingNewLine]",
538 \(\(s13 = t;\)\), "\[IndentingNewLine]",
539 \(\(s23 = u;\)\)}], "Input",
540 PageWidth->PaperWidth]
541}, Open ]],
542
543Cell[CellGroupData[{
544
545Cell["Verteces and Propagators", "Subsection",
546 PageWidth->PaperWidth],
547
548Cell[TextData[{
549 StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
550outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
551 FontSize->14],
552 Cell[BoxData[
553 \(TraditionalForm\`g\_s\)],
554 FontSize->14],
555 StyleBox[" ) (\[ImaginaryI] ",
556 FontSize->14],
557 Cell[BoxData[
558 \(TraditionalForm\`f\^abc\)],
559 FontSize->14],
560 StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
561 FontSize->14],
562 Cell[BoxData[
563 \(TraditionalForm\`g\_s\)],
564 FontSize->14],
565 ")",
566 StyleBox[" ",
567 FontSize->14],
568 Cell[BoxData[
569 \(TraditionalForm\`\((T\^a)\)\_ij\)],
570 FontSize->14],
571 StyleBox[" ",
572 FontSize->14],
573 Cell[BoxData[
574 \(TraditionalForm\`\[Gamma]\^\[Mu]\)],
575 FontSize->14],
576 StyleBox["\nGluon Propagator= ",
577 FontSize->14],
578 Cell[BoxData[
579 FormBox[
580 FractionBox[
581 StyleBox[\(\(-\[ImaginaryI]\)\ g\^\[Mu]\[Nu]\),
582 FontSize->16], \(p\^2\)], TraditionalForm]],
583 FontSize->14],
584 "\nQuark ",
585 StyleBox["Propagator= ",
586 FontSize->14],
587 Cell[BoxData[
588 FormBox[
589 FractionBox[
590 StyleBox[\(\(\[ImaginaryI]\)\(\ \)\),
591 FontSize->16], \(p\&^\)], TraditionalForm]],
592 FontSize->14]
593}], "Text",
594 PageWidth->PaperWidth],
595
596Cell[BoxData[{
597 \(\(GGGD[p1_, p2_, p3_, m1_, m2_, m3_] :=
598 FourVector[p1 - p2, m3, \ Dimension\ \[Rule] D]\ MTD[m1, m2] +
599 FourVector[p2 - p3, m1, \ Dimension\ \[Rule] \ D]\ MTD[m2, m3] +
600 FourVector[p3 - p1, m2, \ Dimension\ \[Rule] \ D]\ MTD[m1,
601 m3];\)\), "\[IndentingNewLine]",
602 \(\(H[p1_, p2_, m1_, m2_] :=
603 MTD[m1, m2]\ SPD[p1, p2]\ - \
604 FourVector[p1, m2, \ Dimension \[Rule] D]*\[IndentingNewLine]\
605 FourVector[p2, m1, \
606 Dimension\ \[Rule] D];\)\), "\[IndentingNewLine]",
607 \(\(PropQuark = I;\)\), "\[IndentingNewLine]",
608 \(\(PropGluon\ = \(-I\);\)\), "\[IndentingNewLine]",
609 \(\(vtx = \(-I\)\ gs;\)\)}], "Input",
610 PageWidth->PaperWidth]
611}, Open ]],
612
613Cell[CellGroupData[{
614
615Cell["Sum over the four Feynman diagrams", "Subsection"],
616
617Cell["\<\
618
619uno= - gs (-f123) GGGD[p1,p2,-p1-p2,m1,m2,mu] (-I MTD[mu,nu]/s) (I A) \
620H[p3,p1+p2,m3,nu]//Contract;
621tre= - gs (-f123) GGGD[p3,p1,-p3-p1,m3,m1,mu] (-I MTD[mu,nu]/t) (I A) \
622H[p2,p1+p3,m2,nu]//Contract;
623qua= - gs (-f123) GGGD[p2,p3,-p3-p2,m2,m3,mu] (-I MTD[mu,nu]/u) (I A) \
624H[p1,p2+p3,m1,nu]//Contract;
625due= - A gs (-f123) GGGD[p1,p2,p3,m1,m2,m3];
626res=uno+due+tre+qua//ExpandScalarProduct;\
627\>", "Input"]
628}, Open ]],
629
630Cell[CellGroupData[{
631
632Cell["\<\
633Now I have to square the amplitude. The sum is performed over the physical \
634polarizations of the gluons:\
635\>", "Subsection"],
636
637Cell["\<\
638res1=res;
639res2=res /. m1->m1p /. m2->m2p /. m3-> m3p;
640tot=res1*(-MTD[m1,m1p]+(FVD[p1,m1] FVD[p2,m1p]+FVD[p1,m1p] \
641FVD[p2,m1])/SPD[p1,p2])//Contract;
642tot=tot*(-MTD[m2,m2p]+(FVD[p2,m2] FVD[p3,m2p]+FVD[p2,m2p] \
643FVD[p3,m2])/SPD[p3,p2])//Contract;
644tot=tot*(-MTD[m3,m3p]+(FVD[p1,m3] FVD[p3,m3p]+FVD[p1,m3p] \
645FVD[p3,m3])/SPD[p3,p1])//Contract;
646tot=tot*res2//Contract//Expand;\
647\>", "Input"],
648
649Cell[CellGroupData[{
650
651Cell["\<\
652Amp2=((tot//Contract//Factor)/. A-> as/3/Pi/v /. gs^2-> 4 Pi as/. f123^2-> 24 \
653//Simplify)//Factor\
654\>", "Input"],
655
656Cell[BoxData[
657 \(TraditionalForm\`\(\(1\/\(3\ \[Pi]\ s\ t\ u\ v\^2\)\)\((32\ as\^3\ \((D\
658\ s\^4 - 2\ s\^4 + 2\ D\ t\ s\^3 - 4\ t\ s\^3 + 2\ D\ u\ s\^3 - 4\ u\ s\^3 +
659 3\ D\ t\^2\ s\^2 - 6\ t\^2\ s\^2 + 3\ D\ u\^2\ s\^2 -
660 6\ u\^2\ s\^2 + 8\ D\ t\ u\ s\^2 - 20\ t\ u\ s\^2 +
661 2\ D\ t\^3\ s - 4\ t\^3\ s + 2\ D\ u\^3\ s - 4\ u\^3\ s +
662 8\ D\ t\ u\^2\ s - 20\ t\ u\^2\ s + 8\ D\ t\^2\ u\ s -
663 20\ t\^2\ u\ s + D\ t\^4 - 2\ t\^4 + D\ u\^4 - 2\ u\^4 +
664 2\ D\ t\ u\^3 - 4\ t\ u\^3 + 3\ D\ t\^2\ u\^2 - 6\ t\^2\ u\^2 +
665 2\ D\ t\^3\ u - 4\ t\^3\ u)\))\)\)\)], "Output"]
666}, Open ]],
667
668Cell["\<\
669
670Amp2=Amp2 /. D->4-2e//Simplify;\
671\>", "Input"]
672}, Open ]],
673
674Cell[CellGroupData[{
675
676Cell["Real Amplitude Squared in D dimensions", "Subsection",
677 PageWidth->PaperWidth],
678
679Cell[BoxData[
680 \(\(\(\[IndentingNewLine]\)\(\(Emme =
681 1/s \(\(\((\((mh2^4 + s^4 + t^4 + u^4)\)\ \((1 - 2\ e)\) + \
682 e/2\ \((mh2^2 + s^2 + t^2 + u^2)\)^2)\)/s\)/t\)/
683 u;\)\[IndentingNewLine]
684 \(RealD = Emme/\((1 - e)\)^2;\)\[IndentingNewLine]
685 \(Real4 = RealD /. \ e \[Rule] 0;\)\)\)\)], "Input",
686 PageWidth->PaperWidth]
687}, Open ]],
688
689Cell[CellGroupData[{
690
691Cell["Phase space in D dimensions", "Subsection",
692 PageWidth->PaperWidth],
693
694Cell[BoxData[{
695 \(\[IndentingNewLine]\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\
696\)\(\ \)\)\/mh2)\)\^e\)
697 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
698v\^\(-e\)\ \((omv)\)\^\(-e\);\)\), "\[IndentingNewLine]",
699 \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((omv)\), \
700 u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
701 s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
702 \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
703 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
704 \(\(pgg =
705 2 \((z\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\)/z +
706 z \((1 - z)\) +
707 11/12\ DeltaFunction[1 - z])\);\)\), "\[IndentingNewLine]",
708 \(\(s0 = z;\)\)}], "Input",
709 PageWidth->PaperWidth]
710}, Closed]],
711
712Cell[CellGroupData[{
713
714Cell["CDR", "Subsection",
715 PageWidth->PaperWidth],
716
717Cell[CellGroupData[{
718
719Cell[BoxData[{
720 \(intando =
721 FullSimplify[
722 FullSimplify[\(RealD\ PS\ c\[CapitalGamma]\)\/cGamma] \
723//. \[InvisibleSpace]substu] /. \[InvisibleSpace]omv \[Rule]
724 1 - v; \), "\n",
725 \(intando = intando\/\((1 - z)\)\^\(\(-2\)\ e - 1\)\)}], "Input"],
726
727Cell[BoxData[
728 \(TraditionalForm\`\(-\(\((c\[CapitalGamma]\ \((1\/mh2)\)\^e\ mh2\^e\ \
729\[Pi]\ \((1 - v)\)\^\(\(-e\) - 1\)\ v\^\(\(-e\) - 1\)\ z\^e\ \((e\ \((3\ \((1 \
730- v)\)\^4\ \((z - 1)\)\^4 + 3\ v\^4\ \((z - 1)\)\^4 -
731 2\ v\^2\ \((z\^2 + 1)\)\ \((z - 1)\)\^2 -
732 2\ \((1 - v)\)\^2\ \((v\^2\ \((z - 1)\)\^2 + z\^2 +
733 1)\)\ \((z - 1)\)\^2 + 3\ z\^4 - 2\ z\^2 + 3)\) -
734 2\ \((\((1 - v)\)\^4\ \((z - 1)\)\^4 + v\^4\ \((z - 1)\)\^4 +
735 z\^4 + 1)\))\)\ \(\[CapitalGamma](
736 1 - 2\ e)\))\)/\((\((e - 1)\)\^2\ \(\[CapitalGamma](1 - e)\)\^3\
737\ \(\[CapitalGamma](e + 1)\))\)\)\)\)], "Output"]
738}, Open ]],
739
740Cell[BoxData[{
741 \(\(\[Sigma]r =
742 Integrate[intando, {v, 0, 1}, \ GenerateConditions \[Rule] False] //
743 PowerExpand;\)\), "\n",
744 \(\(\[Sigma]r = \(Normal[Series[\[Sigma]r, {e, 0, 1}]] // Factor\) //
745 FullSimplify;\)\), "\n",
746 \(\(\[Sigma]r\ = \[Sigma]r\ \ *\((\(\(-1\)\/\(2 e\)\)
747 DeltaFunction[1 - z] + PlusDistribution[1/\((1 - z)\)] -
748 2\ e\ PlusDistribution[Log[1 - z]/\((1 - z)\)])\);\)\), "\n",
749 \(\(\[Sigma]r =
750 Normal[Series[\[Sigma]r/\((1 + e + e^2)\), {e, 0, 0}]] //
751 Expand;\)\)}], "Input",
752 PageWidth->PaperWidth]
753}, Closed]]
754}, Closed]],
755
756Cell[CellGroupData[{
757
758Cell["Results", "Section"],
759
760Cell[CellGroupData[{
761
762Cell["Virtual+Real+Counterterms in CDR", "Subsection"],
763
764Cell[BoxData[{
765 \(\(\[Sigma]rn = \(\(\[Sigma]r/c\[CapitalGamma]\)/\[Pi]\)/2\ CA -
766 1/e\ 2\ Pgg\ z\ CA + 1/e\ 2\ pgg\ z\ CA;\)\), "\n",
767 \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn, DeltaFunction[1 - z]] /.
768 z \[Rule] 1 // FullSimplify)\)*
769 DeltaFunction[
770 1 - z])\) + \((\((\((Coefficient[\[Sigma]rn,
771 PlusDistribution[1/\((1 - z)\)]] //
772 FullSimplify)\))\)
773 PlusDistribution[
774 1/\((1 - z)\)])\) + \((\((\((Coefficient[\[Sigma]rn,
775 PlusDistribution[Log[1 - z]/\((1 - z)\)]] //
776 FullSimplify)\))\)
777 PlusDistribution[
778 Log[1 - z]/\((1 - z)\)])\) + \((\(\(\[Sigma]rn /.
779 DeltaFunction[x_] \[Rule] 0\) /.
780 PlusDistribution[Log[1 - z]/\((1 - z)\)] \[Rule] 0\) /.
781 PlusDistribution[1/\((1 - z)\)] \[Rule] 0)\))\);\)\), "\n",
782 \(\(\[Sigma]rn = \((\((\((Coefficient[\[Sigma]rn,
783 1/e\ PlusDistribution[1/\((1 - z)\)]]/\((1 - z)\) //
784 FullSimplify)\))\) 1/e)\) + \((\[Sigma]rn -
785 Coefficient[\[Sigma]rn, 1/e\ PlusDistribution[1/\((1 - z)\)]]
786 1/e\ PlusDistribution[1/\((1 - z)\)])\) //
787 Expand;\)\)}], "Input",
788 PageWidth->PaperWidth],
789
790Cell[CellGroupData[{
791
792Cell[BoxData[
793 \(divD =
794 Coefficient[\[Sigma]rn,
795 DeltaFunction[1 - z]]*\(as/2\)/\[Pi]\ c\[CapitalGamma]\)], "Input"],
796
797Cell[BoxData[
798 \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(11\ C\_A\)\/\(3\ e\) + \
799\(2\ C\_A\)\/e\^2 - \(\[Pi]\^2\ C\_A\)\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
800}, Open ]],
801
802Cell[CellGroupData[{
803
804Cell[BoxData[
805 \(UVC = \ \(\(1/
806 e\)\(\ \)\(4\)\(*\)\(\(-11\)\/6\) \(CA\)\(\ \)\(as\/\(4 \[Pi]\)\) \
807\(c\[CapitalGamma]\)\(\ \)\)\)], "Input"],
808
809Cell[BoxData[
810 \(TraditionalForm\`\(-\(\(11\ as\ C\_A\ c\[CapitalGamma]\)\/\(6\ e\ \[Pi]\
811\)\)\)\)], "Output"]
812}, Open ]],
813
814Cell[CellGroupData[{
815
816Cell[BoxData[
817 \(\((\(\((divD + UVC)\)/as\)/c\[CapitalGamma]\ 2\ \[Pi] //
818 Expand)\)\ as\ \(c\[CapitalGamma]/2\)/\[Pi]\)], "Input"],
819
820Cell[BoxData[
821 \(TraditionalForm\`\(as\ c\[CapitalGamma]\ \((\(2\ C\_A\)\/e\^2 - \(\[Pi]\
822\^2\ C\_A\)\/3 + C\_A\/3)\)\)\/\(2\ \[Pi]\)\)], "Output"]
823}, Open ]],
824
825Cell[BoxData[
826 \(\(sally =
827 as/\[Pi]\ \((\(-11\)/2\ \((1 - z)\)^3 +
828 6\ \((1 + z^4 + \((1 - z)\)^4)\)\ PlusDistribution[
829 Log[1 - z]/\((1 - z)\)] -
830 6\ \((z^2\ PlusDistribution[1/\((1 - z)\)] + \((1 - z)\) +
831 z^2 \((1 - z)\))\) Log[z])\);\)\)], "Input"],
832
833Cell[BoxData[
834 \(\((\(\(\((\[Sigma]rn*\(as/2\)/\[Pi] /. DeltaFunction[x_] \[Rule] 0)\) -
835 sally /. CA \[Rule] 3\) /. Pgg \[Rule] 0 // Expand\) //
836 Simplify)\) /.
837 PlusDistribution[1/\((1 - z)\)] \[Rule] 1/\((1 - z)\) //
838 Factor\)], "Input"]
839}, Open ]]
840}, Closed]],
841
842Cell[CellGroupData[{
843
844Cell["Gluon initiated process", "Section",
845 PageWidth->PaperWidth],
846
847Cell[CellGroupData[{
848
849Cell["Kinematics for the Born", "Subsection",
850 PageWidth->PaperWidth],
851
852Cell["\<\
853-----I take all momenta outgoing
854
855 p1 + p2 + p3 = 0
856
857 p1^2=0
858 p2^2=0
859 p3^3=Q^2
860
861
862 \
863\>", "Text",
864 PageWidth->PaperWidth],
865
866Cell[BoxData[{
867 \(\(ScalarProduct[p1, p1] = 0;\)\), "\[IndentingNewLine]",
868 \(\(ScalarProduct[p2, p2] = 0;\)\), "\[IndentingNewLine]",
869 \(\(ScalarProduct[p3, p3] = Q2;\)\), "\[IndentingNewLine]",
870 \(\(ScalarProduct[p1, p3] = \(-Q2\)/2;\)\), "\[IndentingNewLine]",
871 \(\(ScalarProduct[p1, p2] = Q2/2;\)\), "\[IndentingNewLine]",
872 \(\(ScalarProduct[p2, p3] = \(-\ Q2\)/2;\)\), "\[IndentingNewLine]",
873 \(\(ScalarProduct[p1, e1] = 0;\)\), "\[IndentingNewLine]",
874 \(\(ScalarProduct[p2, e2] = 0;\)\), "\[IndentingNewLine]",
875 \(\(ScalarProduct[p1, e2] = 0;\)\), "\[IndentingNewLine]",
876 \(\(\(ScalarProduct[p2, e1] = 0;\)\(\[IndentingNewLine]\)
877 \)\), "\[IndentingNewLine]",
878 \(\(ScalarProduct[p1, p1, Dimension \[Rule] D] =
879 0;\)\), "\[IndentingNewLine]",
880 \(\(ScalarProduct[p2, p2, Dimension \[Rule] D] =
881 0;\)\), "\[IndentingNewLine]",
882 \(\(ScalarProduct[p3, p3, Dimension \[Rule] D] =
883 Q2;\)\), "\[IndentingNewLine]",
884 \(\(ScalarProduct[p1, p3, Dimension \[Rule] D] = \(-Q2\)/
885 2;\)\), "\[IndentingNewLine]",
886 \(\(ScalarProduct[p1, p2, Dimension \[Rule] D] =
887 Q2/2;\)\), "\[IndentingNewLine]",
888 \(\(ScalarProduct[p2, p3, Dimension \[Rule] D] = \(-\ Q2\)/
889 2;\)\), "\[IndentingNewLine]",
890 \(\(ScalarProduct[p1, e1, Dimension \[Rule] D] =
891 0;\)\), "\[IndentingNewLine]",
892 \(\(ScalarProduct[p2, e2, Dimension \[Rule] D] =
893 0;\)\), "\[IndentingNewLine]",
894 \(\(ScalarProduct[p1, e2, Dimension \[Rule] D] =
895 0;\)\), "\[IndentingNewLine]",
896 \(\(ScalarProduct[p2, e1, Dimension \[Rule] D] =
897 0;\)\), "\[IndentingNewLine]",
898 \(\)}], "Input",
899 PageWidth->PaperWidth]
900}, Open ]],
901
902Cell[CellGroupData[{
903
904Cell["Real Amplitude", "Subsection",
905 PageWidth->PaperWidth],
906
907Cell[BoxData[{
908 \(\(Emme =
909 CF\ 1/s \((\((s^2 + u^2)\)\ - e\ \((s + u)\)^2)\)/
910 t;\)\), "\[IndentingNewLine]",
911 \(\(RealD = Emme/\((1 - e)\);\)\), "\[IndentingNewLine]",
912 \(\(Real4 = RealD /. \ e \[Rule] 0;\)\)}], "Input"]
913}, Open ]],
914
915Cell[CellGroupData[{
916
917Cell["Integration over the phase space in D dimensions", "Subsection",
918 PageWidth->PaperWidth],
919
920Cell[BoxData[{
921 \(\(PS = \(1\/\(8 \[Pi]\)\) \(\((\(\(4\)\(\ \)\(\[Pi]\)\(\ \
922\)\)\/mh2)\)\^e\)
923 1\/Gamma[1 - e]\ \((mh2\/s)\)\^e\ \ \((1 - mh2\/s)\)\^\(1 - 2 e\)\ \
924v\^\(-e\)\ \((1 - v)\)\^\(-e\);\)\), "\[IndentingNewLine]",
925 \(\(substu = {t \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) \((1 - v)\), \
926 u \[Rule] \ \(-s\)\ \((1 - mh2\/s)\) v\ ,
927 s \[Rule] \ mh2/z};\)\), "\[IndentingNewLine]",
928 \(\(cGamma = \((1/16)\)/Pi^2\ mh2^\((\(-e\))\) \((4\ Pi)\)^e\ Gamma[
929 1 + e]\ Gamma[1 - e]^2/Gamma[1 - 2\ e];\)\), "\n",
930 \(\(pgq =
931 CF \((\((1 - z)\)\^2 + 1)\)/z\ //
932 Factor;\)\), "\[IndentingNewLine]",
933 \(\)}], "Input",
934 PageWidth->PaperWidth],
935
936Cell[CellGroupData[{
937
938Cell["dim-reg", "Subsubsection",
939 PageWidth->PaperWidth],
940
941Cell[CellGroupData[{
942
943Cell[BoxData[{
944 \(\(\[Sigma]r =
945 Integrate[\((RealD\ PS\ c\[CapitalGamma]/cGamma\ //
946 Simplify)\) //. \ substu // Expand, {v, 0, 1}, \
947 GenerateConditions \[Rule] False] // Simplify;\)\), "\n",
948 \(\(\[Sigma]r =
949 Normal[Series[\[Sigma]r/\((1 + \ e)\), {e, 0, 0}]] /. \
950 gs^2\ \[Rule] \ as\ 4\ \[Pi]\ // FullSimplify;\)\), "\n",
951 \(\(\[Sigma]r = \(\(\(-\[Sigma]r\)/c\[CapitalGamma]\)/\[Pi]\)/2 -
952 1/e\ z\ \ \ Pgq\ + 1/e\ \ z\ \ pgq;\)\), "\n",
953 \(\[Sigma]r = \(\[Sigma]r // PowerExpand\) // Expand\)}], "Input",
954 PageWidth->PaperWidth],
955
956Cell[BoxData[
957 \(TraditionalForm\`\(-\(1\/2\)\)\ C\_F\ z\^2 +
958 2\ C\_F\ \(log(1 - z)\)\ z\^2 - C\_F\ \(log(z)\)\ z\^2 +
959 3\ C\_F\ z - \(Pgq\ z\)\/e - 4\ C\_F\ \(log(1 - z)\)\ z +
960 2\ C\_F\ \(log(z)\)\ z - \(3\ C\_F\)\/2 + 4\ C\_F\ \(log(1 - z)\) -
961 2\ C\_F\ \(log(z)\)\)], "Output"]
962}, Open ]],
963
964Cell[CellGroupData[{
965
966Cell[BoxData[{
967 \(sally =
968 2*\((\(-\ \ \((1 - z)\)\)\ \((7 - 3 z)\)/3\ +
969 1/2\ z\ pgq\ \((1 + 2 Log[1 - z] -
970 Log[z])\))\)\), "\[IndentingNewLine]",
971 \(\((\(\((\[Sigma]r - \ sally)\) /. \ CF -> 4/3\) /. \ Pgq \[Rule] 0)\) //
972 Simplify\)}], "Input"],
973
974Cell[BoxData[
975 \(TraditionalForm\`2\ \((1\/3\ \((7 - 3\ z)\)\ \((z - 1)\) +
976 1\/2\ C\_F\ \((z\^2 - 2\ z + 2)\)\ \((2\ \(log(1 - z)\) - log(z) +
977 1)\))\)\)], "Output"],
978
979Cell[BoxData[
980 \(TraditionalForm\`0\)], "Output"]
981}, Open ]],
982
983Cell[BoxData[""], "Input"]
984}, Open ]]
985}, Open ]]
986}, Closed]]
987}, Open ]]
988},
989FrontEndVersion->"4.1 for Macintosh",
990ScreenRectangle->{{0, 1280}, {0, 832}},
991WindowSize->{807, 655},
992WindowMargins->{{Automatic, 126}, {Automatic, 0}},
993PrintingCopies->1,
994PrintingPageRange->{Automatic, Automatic}
995]
996
997(*******************************************************************
998Cached data follows. If you edit this Notebook file directly, not
999using Mathematica, you must remove the line containing CacheID at
1000the top of the file. The cache data will then be recreated when
1001you save this file from within Mathematica.
1002*******************************************************************)
1003
1004(*CellTagsOutline
1005CellTagsIndex->{}
1006*)
1007
1008(*CellTagsIndex
1009CellTagsIndex->{}
1010*)
1011
1012(*NotebookFileOutline
1013Notebook[{
1014
1015Cell[CellGroupData[{
1016Cell[1727, 52, 72, 1, 108, "Title"],
1017
1018Cell[CellGroupData[{
1019Cell[1824, 57, 61, 1, 46, "Subsection"],
1020Cell[1888, 60, 82, 2, 27, "Input"],
1021Cell[1973, 64, 369, 14, 32, "Text"],
1022Cell[2345, 80, 80, 2, 27, "Input"]
1023}, Closed]],
1024
1025Cell[CellGroupData[{
1026Cell[2462, 87, 75, 1, 36, "Section"],
1027
1028Cell[CellGroupData[{
1029Cell[2562, 92, 57, 1, 46, "Subsection"],
1030Cell[2622, 95, 172, 12, 204, "Text"],
1031Cell[2797, 109, 1720, 33, 450, "Input"]
1032}, Closed]],
1033
1034Cell[CellGroupData[{
1035Cell[4554, 147, 71, 1, 30, "Subsection"],
1036Cell[4628, 150, 1246, 46, 152, "Text"],
1037Cell[5877, 198, 896, 16, 310, "Input"]
1038}, Closed]],
1039
1040Cell[CellGroupData[{
1041Cell[6810, 219, 67, 1, 30, "Subsection"],
1042
1043Cell[CellGroupData[{
1044Cell[6902, 224, 378, 8, 130, "Input"],
1045Cell[7283, 234, 54, 1, 70, "Output"],
1046Cell[7340, 237, 286, 7, 70, "Output"]
1047}, Open ]],
1048
1049Cell[CellGroupData[{
1050Cell[7663, 249, 488, 9, 110, "Input"],
1051Cell[8154, 260, 90, 1, 70, "Output"]
1052}, Open ]]
1053}, Closed]],
1054
1055Cell[CellGroupData[{
1056Cell[8293, 267, 66, 1, 30, "Subsection"],
1057Cell[8362, 270, 757, 16, 210, "Input"],
1058Cell[9122, 288, 26, 0, 30, "Input"],
1059Cell[9151, 290, 26, 0, 30, "Input"]
1060}, Closed]]
1061}, Closed]],
1062
1063Cell[CellGroupData[{
1064Cell[9226, 296, 22, 0, 36, "Section"],
1065
1066Cell[CellGroupData[{
1067Cell[9273, 300, 62, 1, 46, "Subsection"],
1068
1069Cell[CellGroupData[{
1070Cell[9360, 305, 897, 17, 235, "Input"],
1071Cell[10260, 324, 394, 12, 26, "Output"],
1072Cell[10657, 338, 1327, 28, 29, "Output"]
1073}, Open ]],
1074Cell[11999, 369, 26, 0, 27, "Input"]
1075}, Open ]],
1076
1077Cell[CellGroupData[{
1078Cell[12062, 374, 63, 1, 46, "Subsection"],
1079
1080Cell[CellGroupData[{
1081Cell[12150, 379, 673, 13, 219, "Input"],
1082Cell[12826, 394, 251, 4, 48, "Output"]
1083}, Open ]]
1084}, Open ]],
1085
1086Cell[CellGroupData[{
1087Cell[13126, 404, 38, 0, 46, "Subsection"],
1088
1089Cell[CellGroupData[{
1090Cell[13189, 408, 389, 7, 107, "Input"],
1091Cell[13581, 417, 136, 2, 43, "Output"]
1092}, Open ]],
1093
1094Cell[CellGroupData[{
1095Cell[13754, 424, 474, 10, 155, "Input"],
1096Cell[14231, 436, 85, 1, 43, "Output"]
1097}, Open ]],
1098
1099Cell[CellGroupData[{
1100Cell[14353, 442, 164, 3, 40, "Input"],
1101Cell[14520, 447, 160, 2, 52, "Output"]
1102}, Open ]],
1103Cell[14695, 452, 52, 1, 43, "Input"],
1104
1105Cell[CellGroupData[{
1106Cell[14772, 457, 63, 1, 27, "Input"],
1107Cell[14838, 460, 76, 1, 45, "Output"]
1108}, Open ]]
1109}, Open ]]
1110}, Closed]],
1111
1112Cell[CellGroupData[{
1113Cell[14975, 468, 66, 1, 36, "Section"],
1114
1115Cell[CellGroupData[{
1116Cell[15066, 473, 57, 1, 46, "Subsection"],
1117Cell[15126, 476, 702, 37, 574, "Text"],
1118Cell[15831, 515, 1310, 24, 299, "Input"]
1119}, Open ]],
1120
1121Cell[CellGroupData[{
1122Cell[17178, 544, 71, 1, 46, "Subsection"],
1123Cell[17252, 547, 1246, 46, 152, "Text"],
1124Cell[18501, 595, 757, 14, 187, "Input"]
1125}, Open ]],
1126
1127Cell[CellGroupData[{
1128Cell[19295, 614, 57, 0, 46, "Subsection"],
1129Cell[19355, 616, 419, 10, 147, "Input"]
1130}, Open ]],
1131
1132Cell[CellGroupData[{
1133Cell[19811, 631, 137, 3, 46, "Subsection"],
1134Cell[19951, 636, 396, 10, 147, "Input"],
1135
1136Cell[CellGroupData[{
1137Cell[20372, 650, 124, 3, 42, "Input"],
1138Cell[20499, 655, 649, 9, 98, "Output"]
1139}, Open ]],
1140Cell[21163, 667, 57, 3, 42, "Input"]
1141}, Open ]],
1142
1143Cell[CellGroupData[{
1144Cell[21257, 675, 85, 1, 46, "Subsection"],
1145Cell[21345, 678, 368, 7, 123, "Input"]
1146}, Open ]],
1147
1148Cell[CellGroupData[{
1149Cell[21750, 690, 74, 1, 46, "Subsection"],
1150Cell[21827, 693, 820, 15, 231, "Input"]
1151}, Closed]],
1152
1153Cell[CellGroupData[{
1154Cell[22684, 713, 50, 1, 30, "Subsection"],
1155
1156Cell[CellGroupData[{
1157Cell[22759, 718, 277, 6, 98, "Input"],
1158Cell[23039, 726, 708, 10, 121, "Output"]
1159}, Open ]],
1160Cell[23762, 739, 618, 12, 171, "Input"]
1161}, Closed]]
1162}, Closed]],
1163
1164Cell[CellGroupData[{
1165Cell[24429, 757, 26, 0, 36, "Section"],
1166
1167Cell[CellGroupData[{
1168Cell[24480, 761, 55, 0, 46, "Subsection"],
1169Cell[24538, 763, 1409, 24, 299, "Input"],
1170
1171Cell[CellGroupData[{
1172Cell[25972, 791, 136, 3, 27, "Input"],
1173Cell[26111, 796, 165, 2, 55, "Output"]
1174}, Open ]],
1175
1176Cell[CellGroupData[{
1177Cell[26313, 803, 155, 3, 42, "Input"],
1178Cell[26471, 808, 113, 2, 43, "Output"]
1179}, Open ]],
1180
1181Cell[CellGroupData[{
1182Cell[26621, 815, 144, 2, 27, "Input"],
1183Cell[26768, 819, 150, 2, 55, "Output"]
1184}, Open ]],
1185Cell[26933, 824, 329, 6, 59, "Input"],
1186Cell[27265, 832, 289, 5, 43, "Input"]
1187}, Open ]]
1188}, Closed]],
1189
1190Cell[CellGroupData[{
1191Cell[27603, 843, 67, 1, 36, "Section"],
1192
1193Cell[CellGroupData[{
1194Cell[27695, 848, 70, 1, 46, "Subsection"],
1195Cell[27768, 851, 172, 12, 174, "Text"],
1196Cell[27943, 865, 1720, 33, 363, "Input"]
1197}, Open ]],
1198
1199Cell[CellGroupData[{
1200Cell[29700, 903, 61, 1, 46, "Subsection"],
1201Cell[29764, 906, 253, 5, 59, "Input"]
1202}, Open ]],
1203
1204Cell[CellGroupData[{
1205Cell[30054, 916, 95, 1, 46, "Subsection"],
1206Cell[30152, 919, 712, 14, 186, "Input"],
1207
1208Cell[CellGroupData[{
1209Cell[30889, 937, 57, 1, 42, "Subsubsection"],
1210
1211Cell[CellGroupData[{
1212Cell[30971, 942, 623, 11, 139, "Input"],
1213Cell[31597, 955, 309, 5, 43, "Output"]
1214}, Open ]],
1215
1216Cell[CellGroupData[{
1217Cell[31943, 965, 300, 6, 43, "Input"],
1218Cell[32246, 973, 195, 3, 43, "Output"],
1219Cell[32444, 978, 52, 1, 26, "Output"]
1220}, Open ]],
1221Cell[32511, 982, 26, 0, 27, "Input"]
1222}, Open ]]
1223}, Open ]]
1224}, Closed]]
1225}, Open ]]
1226}
1227]
1228*)
1229
1230
1231
1232(*******************************************************************
1233End of Mathematica Notebook file.
1234*******************************************************************)
1235