Frascati: phenHiggs.nb

File phenHiggs.nb, 84.8 KB (added by (none), 13 years ago)
Line 
1(************** Content-type: application/mathematica **************
2
3 Mathematica-Compatible Notebook
4
5This notebook can be used with any Mathematica-compatible
6application, such as Mathematica, MathReader or Publicon. The data
7for the notebook starts with the line containing stars above.
8
9To get the notebook into a Mathematica-compatible application, do
10one of the following:
11
12* Save the data starting with the line of stars above into a file
13 with a name ending in .nb, then open the file inside the
14 application;
15
16* Copy the data starting with the line of stars above to the
17 clipboard, then use the Paste menu command inside the application.
18
19Data for notebooks contains only printable 7-bit ASCII and can be
20sent directly in email or through ftp in text mode. Newlines can be
21CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
22
23NOTE: If you modify the data for this notebook not in a Mathematica-
24compatible application, you must delete the line below containing
25the word CacheID, otherwise Mathematica-compatible applications may
26try to use invalid cache data.
27
28For more information on notebooks and Mathematica-compatible
29applications, contact Wolfram Research:
30 web: http://www.wolfram.com
31 email: info@wolfram.com
32 phone: +1-217-398-0700 (U.S.)
33
34Notebook reader applications are available free of charge from
35Wolfram Research.
36*******************************************************************)
37
38(*CacheID: 232*)
39
40
41(*NotebookFileLineBreakTest
42NotebookFileLineBreakTest*)
43(*NotebookOptionsPosition[ 81913, 2234]*)
44(*NotebookOutlinePosition[ 82552, 2256]*)
45(* CellTagsIndexPosition[ 82508, 2252]*)
46(*WindowFrame->Normal*)
47
48
49
50Notebook[{
51
52Cell[CellGroupData[{
53Cell["Phenomenology of pp\[Rule]H+X at NLO", "Subtitle"],
54
55Cell[CellGroupData[{
56
57Cell["Introduction", "Section"],
58
59Cell[TextData[{
60 StyleBox["In this notebook we calculate the inclusive cross section for \
61Higgs production at hadron colliders, at NLO in the strong coupling. We use \
62the analytic results obtained in a previous notebook corresponding to the \
63original calculation by Sally Dawson (Nuclear Physics B (1991) 283). To get \
64useful numbers we use a modern set of PDF, i.e. the MRST as implemented in ",
65 FontSize->16],
66 StyleBox["Mathematica",
67 FontSize->16,
68 FontSlant->"Italic"],
69 StyleBox[" by J.Andersen (many thanks!). A description of the calculation, \
70including the formulas used here for the numerical results, is given in the \
71notes.",
72 FontSize->16]
73}], "Text"]
74}, Closed]],
75
76Cell[CellGroupData[{
77
78Cell["Preliminaries", "Section"],
79
80Cell["\<\
81Off[General::spell];
82Off[General::spell1];
83Clear[\"Global`*\"];\
84\>", "Input"],
85
86Cell[CellGroupData[{
87
88Cell["Install Vegas", "Subsection"],
89
90Cell["\<\
91I use the Vegas package of CUBA library of T. Hahn \
92(hep-ph/0404043). If you do not want to use it, use NIntegrate instead of \
93Vegas\
94\>", "Text"],
95
96Cell[CellGroupData[{
97
98Cell[BoxData[
99 \(Install["\</Users/fabiomaltoni/Physics/Codes/CUBA/VegasX\>"]
100 Install["\</Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX\>"]\)], "Input"],
101
102Cell[BoxData[
103 \(TraditionalForm\`LinkObject[
104 "/Users/fabiomaltoni/Physics/Codes/CUBA/SuaveX", 3, 3]\ LinkObject[
105 "/Users/fabiomaltoni/Physics/Codes/CUBA/VegasX", 2, 2]\)], "Output"]
106}, Open ]]
107}, Closed]],
108
109Cell[CellGroupData[{
110
111Cell["Call special graphics routines", "Subsection"],
112
113Cell["\<\
114<< Graphics`Colors`;
115<< Graphics`Graphics`;\
116\>", "Input"]
117}, Closed]],
118
119Cell[CellGroupData[{
120
121Cell["Install PDF'S: for help read the PDF-HOWTO document", "Subsection"],
122
123Cell[CellGroupData[{
124
125Cell[BoxData[{
126 \(SetDirectory["\<~/Physics/Teaching/pp>Higgs\ at\ NLO/Jeppe\>"]\), "\
127\[IndentingNewLine]",
128 \(Install["\<pdf.exe\>"]\)}], "Input"],
129
130Cell[BoxData[
131 \(TraditionalForm\`"/Users/fabiomaltoni/Physics/Teaching/pp>Higgs at \
132NLO/Jeppe"\)], "Output"],
133
134Cell[BoxData[
135 \(TraditionalForm\`LinkObject["./pdf.exe", 4, 4]\)], "Output"]
136}, Open ]],
137
138Cell[CellGroupData[{
139
140Cell["\<\
141
142<<\"loadCTEQ5.m\";\
143\>", "Input"],
144
145Cell[BoxData[
146 \(TraditionalForm\`"Loading Package: PDF"\)], "Print"],
147
148Cell[BoxData[
149 \(TraditionalForm\`"PDF's from CTEQ5"\)], "Print"],
150
151Cell[BoxData[
152 \(TraditionalForm\`"Eur.Phys.J.C12:375-392,2000 "\)], "Print"],
153
154Cell[BoxData[
155 \(TraditionalForm\`"*** Warning *** Unofficial release. "\)], "Print"],
156
157Cell[BoxData[
158 \(TraditionalForm\`"*** Cross-check with official Fortran code."\)], \
159"Print"],
160
161Cell[BoxData[
162 \(TraditionalForm\`" Version 1.0: Written by Tamara Trout & Fred Olness, \
163October 1, 2000"\)], "Print"],
164
165Cell[BoxData[
166 \(TraditionalForm\`" "\)], "Print"],
167
168Cell[BoxData[
169 \(TraditionalForm\`"In case of problems, contact:"\)], "Print"],
170
171Cell[BoxData[
172 \(TraditionalForm\`"Fred Olness: olness@mail.physics.smu.edu"\)], "Print"]
173}, Open ]],
174
175Cell[CellGroupData[{
176
177Cell["\<\
178Wrapper to call the pdf. Notation is self-explanatory. Just notice \
179that all parton distribution codes usually return x f(x). To avoid confusion, \
180at expense of a couple more floating point operations, I divide all the \
181values by the corresponding x. pdfcall calculates the parton-parton \
182luminoties, gg qg, qq~\
183\>", "Subsubsection"],
184
185Cell["\<\
186(* MRST *)
187
188pdfMRST[X1_,X2_,q_]:=Module[
189{Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
190Q=q*1.;
191xgDF =f[3,X1,Q]/X1;
192xdbDF=f[8,X1,Q]/X1;
193xdDF =f[2,X1,Q]/X1+xdbDF;
194xubDF=f[4,X1,Q]/X1;
195xuDF =f[1,X1,Q]/X1+xubDF;
196xsDF =f[6,X1,Q]/X1;
197xcDF =f[5,X1,Q]/X1;
198xbDF =f[7,X1,Q]/X1;
199
200pd1={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
201xgDF =f[3,X2,Q]/X2;
202xdbDF=f[8,X2,Q]/X2;
203xdDF =f[2,X2,Q]/X2+xdbDF;
204xubDF=f[4,X2,Q]/X2;
205xuDF =f[1,X2,Q]/X2+xubDF;
206xsDF =f[6,X2,Q]/X2;
207xcDF =f[5,X2,Q]/X2;
208xbDF =f[7,X2,Q]/X2;
209pd2={xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF};
210
211
212xgg=pd1[[1]]*pd2[[1]];
213xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
214))+
215 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
216);
217xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
218 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
219
220 Return[{xgg,xqg,xqq}];
221];\
222\>", "Input"],
223
224Cell["\<\
225
226(* cteq5 *)\
227\>", "Input"],
228
229Cell["\<\
230pdfCTEQ[X1_,X2_,q_]:=Module[
231{Q,pd1,pd2,xgg,xqg,xqq},
232Q=q*1.;
233
234pd1={cteq5pdf[1,0,X1,Q],
235 cteq5pdf[1,2,X1,Q],
236 cteq5pdf[1,-2,X1,Q],
237 cteq5pdf[1,1,X1,Q],
238 cteq5pdf[1,-1,X1,Q],
239 cteq5pdf[1,3,X1,Q],
240 cteq5pdf[1,4,X1,Q],
241 cteq5pdf[1,5,X1,Q]};
242pd2={cteq5pdf[1,0,X2,Q],
243 cteq5pdf[1,2,X2,Q],
244 cteq5pdf[1,-2,X2,Q],
245 cteq5pdf[1,1,X2,Q],
246 cteq5pdf[1,-1,X2,Q],
247 cteq5pdf[1,3,X2,Q],
248 cteq5pdf[1,4,X2,Q],
249 cteq5pdf[1,5,X2,Q]};
250
251xgg=pd1[[1]]*pd2[[1]];
252xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
253))+
254 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
255);
256xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
257 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
258
259 Return[{xgg,xqg,xqq}];
260];
261
262pdfCTEQLO[X1_,X2_,q_]:=Module[
263{Q,xgDF,xdDF,xdbDF,xuDF,xubDF,xsDF,xcDF,xbDF,pd1,pd2,xgg,xqg,xqq},
264Q=q*1.;
265
266pd1={cteq5pdf[3,0,X1,Q],
267 cteq5pdf[3,2,X1,Q],
268 cteq5pdf[3,-2,X1,Q],
269 cteq5pdf[3,1,X1,Q],
270 cteq5pdf[3,-1,X1,Q],
271 cteq5pdf[3,3,X1,Q],
272 cteq5pdf[3,4,X1,Q],
273 cteq5pdf[3,5,X1,Q]};
274pd2={cteq5pdf[3,0,X2,Q],
275 cteq5pdf[3,2,X2,Q],
276 cteq5pdf[3,-2,X2,Q],
277 cteq5pdf[3,1,X2,Q],
278 cteq5pdf[3,-1,X2,Q],
279 cteq5pdf[3,3,X2,Q],
280 cteq5pdf[3,4,X2,Q],
281 cteq5pdf[3,5,X2,Q]};
282
283xgg=pd1[[1]]*pd2[[1]];
284xqg=pd1[[1]]*(pd2[[2]]+pd2[[3]]+pd2[[4]]+pd2[[5]]+2(pd2[[6]]+pd2[[7]]+pd2[[8]]\
285))+
286 pd2[[1]]*(pd1[[2]]+pd1[[3]]+pd1[[4]]+pd1[[5]]+2(pd1[[6]]+pd1[[7]]+pd1[[8]])\
287);
288xqq=pd1[[2]]*pd2[[3]]+pd1[[4]]*pd2[[5]]+pd1[[3]]*pd2[[2]]+pd1[[5]]*pd2[[4]]+
289 2(pd1[[6]] pd2[[6]]+pd1[[7]] pd2[[7]]+pd1[[8]] pd2[[8]]);
290
291 Return[{xgg,xqg,xqq}];
292];\
293\>", "Input"]
294}, Open ]],
295
296Cell[CellGroupData[{
297
298Cell["Decide the pdf family to be used ", "Subsubsection"],
299
300Cell["pdfcall[x__] = pdfCTEQ[x];", "Input"]
301}, Open ]]
302}, Open ]],
303
304Cell[CellGroupData[{
305
306Cell["\<\
307Alpha_S: Very basic implementation of Alpha_S.
308Check that the value of Lamda_4 or Lambda_5 is consistent with that of the \
309PDF.
310One simple, but indirect way to do it is to compare the value of alphas(MZ) \
311with the one quoted by MRST.\
312\>", "Subsection"],
313
314Cell[BoxData[{
315 \(\(b[nf_] := \(\((33 - 2\ nf)\)/12\)/
316 Pi;\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
317\ \ \ \), "\[IndentingNewLine]",
318 \(\(bp[
319 nf_] := \(\(\((153 - 19\ nf)\)/2\)/
320 Pi\)/\((33 - 2\ nf)\);\)\), "\[IndentingNewLine]",
321 \(\(t[nf] :=
322 Log[q^2/\[CapitalLambda][nf]^2];\)\), "\[IndentingNewLine]",
323 \(\(\(mb = 4.75;\)\(\[IndentingNewLine]\)
324 \)\), "\[IndentingNewLine]",
325 \(\(\[CapitalLambda][5] = 0.146;\)\), "\[IndentingNewLine]",
326 \(\(asLO[q_, nf_] = 1/\((b[nf]\ t[nf])\);\)\), "\n",
327 \(\(\[CapitalLambda][5] = 0.226;\)\), "\[IndentingNewLine]",
328 \(\(asNLO[q_, nf_] =
329 1/\((b[nf]\ t[nf])\) \((1 -
330 bp[nf]/b[nf]\ Log[t[nf]]/t[nf])\);\)\)}], "Input"],
331
332Cell[CellGroupData[{
333
334Cell["\<\
335Check the values of alpha_S at the scale MZ\
336\>", "Subsubsection"],
337
338Cell[CellGroupData[{
339
340Cell["asNLO[91.118,5]", "Input"],
341
342Cell[BoxData[
343 \(TraditionalForm\`0.11799518835498905`\)], "Output"]
344}, Open ]]
345}, Open ]]
346}, Open ]],
347
348Cell[CellGroupData[{
349
350Cell["Color factors ", "Subsection"],
351
352Cell["\<\
353CF=4/3;
354CA=3;
355nf=5;
356TF=1/2;
357b0=11/6 CA -2 nf TF/3;
358\
359\>", "Input"]
360}, Closed]]
361}, Open ]],
362
363Cell[CellGroupData[{
364
365Cell["LO cross section", "Section"],
366
367Cell[CellGroupData[{
368
369Cell["\<\
370Integral of the LO loop. The sign of the Imaginary part is given by \
371the usual prescription mt^2-i eps which is equivalent to t+i eps in the \
372notation below.
373t=mh^2/4/mt^2;\
374\>", "Subsubsection"],
375
376Cell[" ", "Input"],
377
378Cell[CellGroupData[{
379
380Cell["\<\
381eps=0.00000001;
382inte[t_]=3*Integrate[(1-4 x y)/(1-4 t x y),{x,0,1},{y,0,1-x}]//Simplify;
383Plot[{Re[inte[t+I eps]],Im[inte[t+I \
384eps]]},{t,0,10},PlotStyle\[Rule]{{Blue,Thickness[0.007]},{Red,Thickness[0.007]\
385}}];\
386\>", "Input"],
387
388Cell[GraphicsData["PostScript", "\<\
389%!
390%%Creator: Mathematica
391%%AspectRatio: .61803
392MathPictureStart
393/Mabs {
394Mgmatrix idtransform
395Mtmatrix dtransform
396} bind def
397/Mabsadd { Mabs
3983 -1 roll add
3993 1 roll add
400exch } bind def
401%% Graphics
402%%IncludeResource: font Courier
403%%IncludeFont: Courier
404/Courier findfont 10 scalefont setfont
405% Scaling calculations
4060.0238095 0.0952381 0.0147154 0.338579 [
407[.21429 .00222 -3 -9 ]
408[.21429 .00222 3 0 ]
409[.40476 .00222 -3 -9 ]
410[.40476 .00222 3 0 ]
411[.59524 .00222 -3 -9 ]
412[.59524 .00222 3 0 ]
413[.78571 .00222 -3 -9 ]
414[.78571 .00222 3 0 ]
415[.97619 .00222 -6 -9 ]
416[.97619 .00222 6 0 ]
417[.01131 .09936 -24 -4.5 ]
418[.01131 .09936 0 4.5 ]
419[.01131 .18401 -18 -4.5 ]
420[.01131 .18401 0 4.5 ]
421[.01131 .26865 -24 -4.5 ]
422[.01131 .26865 0 4.5 ]
423[.01131 .35329 -6 -4.5 ]
424[.01131 .35329 0 4.5 ]
425[.01131 .43794 -24 -4.5 ]
426[.01131 .43794 0 4.5 ]
427[.01131 .52258 -18 -4.5 ]
428[.01131 .52258 0 4.5 ]
429[.01131 .60723 -24 -4.5 ]
430[.01131 .60723 0 4.5 ]
431[ 0 0 0 0 ]
432[ 1 .61803 0 0 ]
433] MathScale
434% Start of Graphics
4351 setlinecap
4361 setlinejoin
437newpath
4380 g
439.25 Mabswid
440[ ] 0 setdash
441.21429 .01472 m
442.21429 .02097 L
443s
444[(2)] .21429 .00222 0 1 Mshowa
445.40476 .01472 m
446.40476 .02097 L
447s
448[(4)] .40476 .00222 0 1 Mshowa
449.59524 .01472 m
450.59524 .02097 L
451s
452[(6)] .59524 .00222 0 1 Mshowa
453.78571 .01472 m
454.78571 .02097 L
455s
456[(8)] .78571 .00222 0 1 Mshowa
457.97619 .01472 m
458.97619 .02097 L
459s
460[(10)] .97619 .00222 0 1 Mshowa
461.125 Mabswid
462.07143 .01472 m
463.07143 .01847 L
464s
465.11905 .01472 m
466.11905 .01847 L
467s
468.16667 .01472 m
469.16667 .01847 L
470s
471.2619 .01472 m
472.2619 .01847 L
473s
474.30952 .01472 m
475.30952 .01847 L
476s
477.35714 .01472 m
478.35714 .01847 L
479s
480.45238 .01472 m
481.45238 .01847 L
482s
483.5 .01472 m
484.5 .01847 L
485s
486.54762 .01472 m
487.54762 .01847 L
488s
489.64286 .01472 m
490.64286 .01847 L
491s
492.69048 .01472 m
493.69048 .01847 L
494s
495.7381 .01472 m
496.7381 .01847 L
497s
498.83333 .01472 m
499.83333 .01847 L
500s
501.88095 .01472 m
502.88095 .01847 L
503s
504.92857 .01472 m
505.92857 .01847 L
506s
507.25 Mabswid
5080 .01472 m
5091 .01472 L
510s
511.02381 .09936 m
512.03006 .09936 L
513s
514[(0.25)] .01131 .09936 1 0 Mshowa
515.02381 .18401 m
516.03006 .18401 L
517s
518[(0.5)] .01131 .18401 1 0 Mshowa
519.02381 .26865 m
520.03006 .26865 L
521s
522[(0.75)] .01131 .26865 1 0 Mshowa
523.02381 .35329 m
524.03006 .35329 L
525s
526[(1)] .01131 .35329 1 0 Mshowa
527.02381 .43794 m
528.03006 .43794 L
529s
530[(1.25)] .01131 .43794 1 0 Mshowa
531.02381 .52258 m
532.03006 .52258 L
533s
534[(1.5)] .01131 .52258 1 0 Mshowa
535.02381 .60723 m
536.03006 .60723 L
537s
538[(1.75)] .01131 .60723 1 0 Mshowa
539.125 Mabswid
540.02381 .03164 m
541.02756 .03164 L
542s
543.02381 .04857 m
544.02756 .04857 L
545s
546.02381 .0655 m
547.02756 .0655 L
548s
549.02381 .08243 m
550.02756 .08243 L
551s
552.02381 .11629 m
553.02756 .11629 L
554s
555.02381 .13322 m
556.02756 .13322 L
557s
558.02381 .15015 m
559.02756 .15015 L
560s
561.02381 .16708 m
562.02756 .16708 L
563s
564.02381 .20093 m
565.02756 .20093 L
566s
567.02381 .21786 m
568.02756 .21786 L
569s
570.02381 .23479 m
571.02756 .23479 L
572s
573.02381 .25172 m
574.02756 .25172 L
575s
576.02381 .28558 m
577.02756 .28558 L
578s
579.02381 .30251 m
580.02756 .30251 L
581s
582.02381 .31944 m
583.02756 .31944 L
584s
585.02381 .33637 m
586.02756 .33637 L
587s
588.02381 .37022 m
589.02756 .37022 L
590s
591.02381 .38715 m
592.02756 .38715 L
593s
594.02381 .40408 m
595.02756 .40408 L
596s
597.02381 .42101 m
598.02756 .42101 L
599s
600.02381 .45487 m
601.02756 .45487 L
602s
603.02381 .4718 m
604.02756 .4718 L
605s
606.02381 .48873 m
607.02756 .48873 L
608s
609.02381 .50566 m
610.02756 .50566 L
611s
612.02381 .53951 m
613.02756 .53951 L
614s
615.02381 .55644 m
616.02756 .55644 L
617s
618.02381 .57337 m
619.02756 .57337 L
620s
621.02381 .5903 m
622.02756 .5903 L
623s
624.25 Mabswid
625.02381 0 m
626.02381 .61803 L
627s
6280 0 m
6291 0 L
6301 .61803 L
6310 .61803 L
632closepath
633clip
634newpath
6350 0 1 r
636.007 w
637.02381 .35329 m
638.04262 .3703 L
639.06244 .39214 L
640.08255 .42072 L
641.09396 .44167 L
642.09905 .45278 L
643.10458 .46661 L
644.11004 .48287 L
645.11243 .49122 L
646.11508 .5017 L
647.11756 .51355 L
648.11989 .52899 L
649.12251 .54656 L
650.125 .56035 L
651.12723 .57062 L
652.12967 .57981 L
653.13191 .58664 L
654.13395 .59162 L
655.13636 .59622 L
656.1376 .59807 L
657.13894 .59973 L
658.14018 .60096 L
659.14132 .60184 L
660.14242 .60249 L
661.14357 .60296 L
662.14479 .60325 L
663.14548 .60331 L
664.14612 .60332 L
665.14729 .60319 L
666.14853 .60287 L
667.14964 .60244 L
668.15068 .60191 L
669.15305 .60029 L
670.1556 .59799 L
671.15794 .59542 L
672.16321 .58831 L
673.18154 .55452 L
674.22117 .46854 L
675.25928 .39356 L
676.29984 .32787 L
677.33888 .27688 L
678.38038 .23315 L
679.42036 .19894 L
680.45883 .17172 L
681.49975 .14757 L
682.53915 .12804 L
683.57704 .11202 L
684.61738 .09739 L
685.6562 .08524 L
686.69748 .07404 L
687Mistroke
688.73724 .06464 L
689.77548 .05669 L
690.81618 .04921 L
691.85536 .04283 L
692.897 .03681 L
693.93712 .03165 L
694.97572 .02719 L
695.97619 .02714 L
696Mfstroke
6971 0 0 r
698.02381 .01472 m
699.02499 .01472 L
700.02605 .01472 L
701.02846 .01472 L
702.03279 .01472 L
703.04262 .01472 L
704.05293 .01472 L
705.06244 .01472 L
706.07283 .01472 L
707.0782 .01472 L
708.0841 .01472 L
709.08889 .01472 L
710.09404 .01472 L
711.09948 .01472 L
712.10458 .01472 L
713.10712 .01472 L
714.10982 .01472 L
715.11237 .01472 L
716.1135 .01472 L
717.11468 .01472 L
718.11536 .01472 L
719.11611 .01472 L
720.11741 .01472 L
721.11815 .01472 L
722.11894 .01472 L
723.11968 .01557 L
724.12036 .01723 L
725.12168 .02163 L
726.12311 .02756 L
727.12571 .04023 L
728.1458 .15347 L
729.16558 .24403 L
730.17556 .27924 L
731.18659 .31111 L
732.20593 .35277 L
733.21681 .36992 L
734.22679 .38254 L
735.23594 .39192 L
736.24571 .4 L
737.25644 .40693 L
738.26641 .41184 L
739.27666 .4156 L
740.28243 .41723 L
741.28776 .41845 L
742.29282 .41938 L
743.29755 .42007 L
744.30248 .42062 L
745.3051 .42084 L
746.30791 .42103 L
747.31046 .42116 L
748Mistroke
749.31188 .42122 L
750.31317 .42126 L
751.31438 .42128 L
752.31568 .42131 L
753.31691 .42132 L
754.31804 .42132 L
755.31868 .42132 L
756.31937 .42132 L
757.32061 .42131 L
758.32136 .4213 L
759.32208 .42129 L
760.32342 .42126 L
761.32483 .42122 L
762.32613 .42117 L
763.32909 .42104 L
764.33373 .42076 L
765.33884 .42034 L
766.34919 .41922 L
767.36857 .41627 L
768.38944 .41216 L
769.43064 .40226 L
770.47031 .39155 L
771.50847 .38087 L
772.54909 .36953 L
773.58818 .35886 L
774.62973 .34793 L
775.66977 .33786 L
776.70829 .32862 L
777.74926 .31928 L
778.78871 .31076 L
779.82665 .30297 L
780.86704 .2951 L
781.90592 .28792 L
782.94725 .28068 L
783.97619 .27584 L
784Mfstroke
785% End of Graphics
786MathPictureEnd
787\
788\>"], "Graphics",
789 ImageSize->{439.375, 271.562},
790 ImageMargins->{{43, 0}, {0, 0}},
791 ImageRegion->{{0, 1}, {0, 1}},
792 ImageCache->GraphicsData["Bitmap", "\<\
793CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`40006g00013b000`400?l00000o`00003ooooooonh
794ooooo`00oooooonhooooo`00oooooonhooooo`00J_ooool5o`0004cooooo0ol0001<ooooo`?o0000
795COooool3o`0004[ooooo0ol00004ooooo`;o00001oooool006_ooooo00Co0000oooooooooooo0000
796COooool00ol0003oooooooooo`1:ooooo`05o`000?ooooooooooooooool00000Boooool01Ol0003o
797oooooooooooooooo000004[ooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00006
798ooooo`00K?ooool00ol0003oooooooooo`1:ooooo`Go0000Boooool01Ol0003ooooooooooooooooo
799000004_ooooo00Go0000ooooooooooooooooo`00001:ooooo`03o`000?oooooooooo00;ooooo00Co
8000000oooooooooooo00001_ooool006gooooo00?o0000ooooooooool0BOooool01?l0003ooooooooo
801ool0001<ooooo`Co0000COooool3o`0004_ooooo00?o0000ooooooooool00_ooool01?l0003ooooo
802ooooool00006ooooo`00J_ooool01Ol0003ooooooooooooooooo000004_ooooo00?o0000ooooool0
8030000C?ooool00ol0003oooooooooo`1=ooooo`05o`000?ooooooooooooooool00000B_ooool00ol0
804003oooooooooo`02ooooo`04o`000?ooooooooooo`0000Kooooo001Zooooo`05o`000?oooooooooo
805ooooool00000C?ooool2o`0004gooooo00?o0000ooooooooool0C?ooool01Ol0003ooooooooooooo
806oooo000004Wooooo0_l00004ooooo`04o`000?ooooooooooo`0000Kooooo001[ooooo`?o0000C_oo
807ool00ol0003oooooooooo`1<ooooo`;o0000COooool3o`0004_ooooo00?o0000ooooooooool00ooo
808ool2o`0000Oooooo000Mooooo`03o`000?oooooooooo0?ooooooV?ooool001gooooo00?o0000oooo
809ooooool0oooooonHooooo`007Oooool00ol0003oooooooooo`3ooooooiSooooo000Mooooo`03o`00
8100?oooooooooo0?ooooooV?ooool001gooooo00?o0000ooooooooool0oooooonHooooo`007Oooool0
8110ol0003oooooooooo`3ooooooiSooooo000Cooooo`Wo0000:_oo003oo`0007;o0000000Looooob[o
812o`004oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
813ool04?ooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
814ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
815ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
816ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
817ool04Oooool00ol0003oooooooooo`0Aooooo`03o`000?oooooooooo017ooooo00?o0000oooooooo
818ool02?ooool001gooooo00?o0000ooooooooool09?ooool2ool002Oooooo00?o0000ooooooooool0
819C?ooool00ol0003oooooooooo`1=ooooo`03o`000?oooooooooo04gooooo00?o0000ooooooooool0
820COooool00ol0003oooooooooo`08ooooo`007Oooool00ol0003oooooooooo`0Tooooo`?oo`009_oo
821ool00ol0003oooooooooo`1<ooooo`03o`000?oooooooooo04gooooo00?o0000ooooooooool0COoo
822ool00ol0003oooooooooo`1=ooooo`03o`000?oooooooooo00Sooooo000Mooooo`03o`000?oooooo
823oooo02Gooooo0_oo003oooooog7ooooo000Mooooo`03o`000?oooooooooo02Gooooo0_oo003ooooo
824of7ooooo1_l00?l:ooooo`007Oooool00ol0003oooooooooo`0Uooooo`;oo`00oooooomIooooo`ko
825003o2_ooool001gooooo0_l0000Vooooo`;oo`00oooooomAoooooa7o003o3oooool001gooooo00?o
8260000ooooooooool09Oooool2ool00?ooooooB?oooolBo`00oaOooooo000Mooooo`03o`000?oooooo
827oooo02Gooooo0ooo003ooooood3ooooo4Ol00?lOooooo`007Oooool00ol0003oooooooooo`0Voooo
828o`;oo`00ooooooljooooo`ko003o:?ooool001gooooo00?o0000ooooooooool09_ooool2ool00?oo
829oooo=?ooool=o`00oboooooo000Mooooo`03o`000?oooooooooo02Kooooo0_oo003oooooobgooooo
8303_l00?leooooo`007Oooool00ol0003oooooooooo`0Vooooo`;oo`00oooooolUoooooa3o003o>ooo
831ool001gooooo0_l0000Wooooo`;oo`00oooooolNoooooa3o003o@_ooool001gooooo00?o0000oooo
832ooooool09_ooool3ool00?oooooo5oooool>o`00od[ooooo000Mooooo`03o`000?oooooooooo02Oo
833oooo0_oo003ooooooa;ooooo3?l00?mAooooo`007Oooool00ol0003oooooooooo`0Wooooo`;oo`00
834ooooool=ooooo`_o003oEoooool001gooooo00?o0000ooooooooool09oooool2ool00?oooooo2Ooo
835ool:o`00oecooooo000Mooooo`03o`000?oooooooooo02Oooooo0_oo003oooooo`Gooooo2Ol00?mQ
836ooooo`007Oooool00ol0003oooooooooo`0Wooooo`?oo`00ooooool9o`00ofGooooo000Mooooo`;o
8370000:Oooool2ool00?_ooooo2Ol00?mYooooo`007Oooool00ol0003oooooooooo`0Xooooo`;oo`00
838moooool9o`00ofgooooo000Mooooo`03o`000?oooooooooo02Sooooo0_oo003booooo`[o003oLOoo
839ool001gooooo00?o0000ooooooooool0:?ooool2ool00>kooooo2_l00?meooooo`007Oooool00ol0
840003oooooooooo`0Xooooo`?oo`00jOooool9o`00og[ooooo000Mooooo`03o`000?oooooooooo02Wo
841oooo0_oo003Uooooo`Wo003oO_ooool001gooooo00?o0000ooooooooool0:Oooool2ool00>3ooooo
8422_l00?n2ooooo`007Oooool2o`0002[ooooo0_oo003Looooo`[o003oQ_ooool001gooooo00?o0000
843ooooooooool0:Oooool2ool00=Wooooo2?l00?n;ooooo`007Oooool00ol0003oooooooooo`0Yoooo
844o`?oo`00eOooool7o`00ohoooooo000Mooooo`03o`000?oooooooooo02[ooooo0_oo003Booooo`Oo
845003oT_ooool001gooooo00?o0000ooooooooool0:_ooool2ool00=3ooooo1_l00?nEooooo`000_oo
846ool2o`0000Cooooo00Co0000oooooooooooooooo1Ol00002ooooo`?o00001oooool00ol0003ooooo
847ooooo`0Zooooo`;oo`00cOooool6o`00oiSooooo00001Ooooooo0000oooooooooooo000000Sooooo
84800Ko0000oooooooooooo0000ooooool00003ooooo`03o`000?oooooooooo00Cooooo00?o0000oooo
849ooooool0:_ooool2ool00<[ooooo1ol00?nJooooo`0000Goooooo`000?ooooooooooo`000009oooo
850o`03o`000?oooooooooo00Gooooo00?o0000ooooooooool01?ooool3o`0002[ooooo0ooo0037oooo
851o`Ko003oWOooool00005ooooool0003oooooooooool000002_ooool00ol0003oooooooooo`04oooo
852o`03o`000?oooooooooo00Cooooo00?o0000ooooooooool0:oooool2ool00<Cooooo1_l00?nPoooo
853o`0000Goooooo`000?ooooooooooo`000007ooooo`06o`000?ooooooooooooooool0003ooooo1?l0
8540007ooooo`03o`000?oooooooooo02_ooooo0_oo0031ooooo`Oo003oX_ooool00005ooooool0003o
855ooooooooool000001oooool01ol0003ooooooooooooooooo0000ooooool000002_ooool00ol0003o
856ooooooooo`0[ooooo`;oo`00__ooool7o`00ojGooooo0002ooooo`;o00002Oooool3o`0000;ooooo
8571Ol00006ooooo`03o`000?oooooooooo02_ooooo0_oo002kooooo`Oo003oZ?ooool001gooooo00?o
8580000ooooooooool0:oooool2ool00;Sooooo1ol00?n[ooooo`007Oooool00ol0003oooooooooo`0[
859ooooo`?oo`00]Oooool6o`00ojkooooo000Mooooo`;o0000;Oooool2ool00;;ooooo1_l00?naoooo
860o`007Oooool00ol0003oooooooooo`0/ooooo`;oo`00[oooool7o`00ok?ooooo000Mooooo`03o`00
8610?oooooooooo02cooooo0_oo002]ooooo`Ko003o]_ooool001gooooo00?o0000ooooooooool0;?oo
862ool2ool00:[ooooo1_l00?niooooo`007Oooool00ol0003oooooooooo`0/ooooo`?oo`00Y_ooool7
863o`00ok_ooooo000Mooooo`03o`000?oooooooooo02gooooo0_oo002Tooooo`Ko003o__ooool001go
864oooo00?o0000ooooooooool0;Oooool2ool00:;ooooo1Ol00?o1ooooo`007Oooool00ol0003ooooo
865ooooo`0]ooooo`;oo`00X?ooool5o`00ol?ooooo000Mooooo`;o0000;_ooool2ool009kooooo1Ol0
8660?o5ooooo`007Oooool00ol0003oooooooooo`0]ooooo`?oo`00Voooool5o`00olOooooo000Moooo
867o`03o`000?oooooooooo02kooooo0_oo002Jooooo`Co003obOooool001gooooo00?o0000oooooooo
868ool0;_ooool2ool009Sooooo1?l00?o;ooooo`007Oooool00ol0003oooooooooo`0^ooooo`;oo`00
869U_ooool5o`00olcooooo000Mooooo`03o`000?oooooooooo02kooooo0_oo002Dooooo`Go003oc_oo
870ool001gooooo00?o0000ooooooooool0;_ooool3ool0097ooooo1Ol00?o@ooooo`007Oooool2o`00
871033ooooo0_oo002?ooooo`Go003od_ooool001gooooo00?o0000ooooooooool0;oooool2ool008ko
872oooo1?l00?oDooooo`007Oooool00ol0003oooooooooo`0_ooooo`;oo`00S?ooool4o`00omKooooo
873000Mooooo`03o`000?oooooooooo02oooooo0_oo002:ooooo`Go003oeoooool001gooooo00?o0000
874ooooooooool0;oooool3ool008Sooooo1?l00?oIooooo`007Oooool00ol0003oooooooooo`0`oooo
875o`;oo`00Q_ooool4o`00om_ooooo000Mooooo`03o`000?oooooooooo033ooooo0_oo0024ooooo`Go
876003og?ooool001gooooo0_l0000aooooo`;oo`00Poooool4o`00omkooooo000Mooooo`03o`000?oo
877oooooooo033ooooo0_oo0021ooooo`Co003oh?ooool001gooooo00?o0000ooooooooool0<?ooool3
878ool007kooooo1Ol00?oQooooo`007Oooool00ol0003oooooooooo`0aooooo`;oo`00OOooool4o`00
879on?ooooo0008ooooo`;o00001?ooool00ol0003oooooooooo`02ooooo`?o00001oooool00ol0003o
880ooooooooo`0aooooo`;oo`00Noooool4o`00onGooooo0007ooooo`04o`000?ooooooooooo`0000Oo
881oooo00Go0000ooooooooooooooooo`000006ooooo`03o`000?oooooooooo037ooooo0_oo001joooo
882o`Co003oi_ooool000Oooooo00Co0000oooooooooooo00002oooool00ol0003oooooooooo`04oooo
883o`03o`000?oooooooooo037ooooo0_oo001hooooo`Co003oj?ooool000Oooooo00Co0000oooooooo
884oooo00002oooool00ol0003oooooooooo`04ooooo`?o0000<Oooool3ool007Kooooo1?l00?oYoooo
885o`001oooool01?l0003oooooooooool00007ooooo`Co00001oooool00ol0003oooooooooo`0boooo
886o`;oo`00MOooool3o`00on_ooooo0007ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooo
887ooooool02?ooool00ol0003oooooooooo`0booooo`;oo`00Loooool4o`00oncooooo0008ooooo`;o
88800002?ooool5o`0000Kooooo00?o0000ooooooooool0<_ooool2ool007;ooooo1?l00?o]ooooo`00
8897Oooool00ol0003oooooooooo`0booooo`;oo`00L?ooool4o`00onoooooo000Mooooo`03o`000?oo
890oooooooo03;ooooo0ooo001^ooooo`Co003ol?ooool001gooooo00?o0000ooooooooool0<oooool2
891ool006cooooo1?l00?obooooo`007Oooool2o`0003Cooooo0_oo001[ooooo`Co003oloooool001go
892oooo00?o0000ooooooooool0<oooool2ool006[ooooo0ol00?oeooooo`007Oooool00ol0003ooooo
893ooooo`0cooooo`?oo`00J?ooool3o`00ooKooooo000Mooooo`03o`000?oooooooooo03Cooooo0_oo
894001Wooooo`?o003omoooool001gooooo00?o0000ooooooooool0=?ooool2ool006Gooooo1?l00?oh
895ooooo`007Oooool00ol0003oooooooooo`0dooooo`;oo`00I?ooool4o`00ooWooooo000Mooooo`03
896o`000?oooooooooo03Cooooo0_oo001Sooooo`?o003onoooool001gooooo0_l0000eooooo`?oo`00
897HOooool3o`00oocooooo000Mooooo`03o`000?oooooooooo03Gooooo0_oo001Oooooo`Co003ooOoo
898ool001gooooo00?o0000ooooooooool0=Oooool2ool005kooooo1?l00?onooooo`007Oooool00ol0
899003oooooooooo`0eooooo`;oo`00GOooool3o`00oooooooo0Oooool001gooooo00?o0000oooooooo
900ool0=Oooool2ool005cooooo0ol00?ooooooo`;ooooo000Mooooo`03o`000?oooooooooo03Gooooo
9010ooo001Jooooo`?o003oooooool3ooooo`007Oooool00ol0003oooooooooo`0fooooo`;oo`00FOoo
902ool3o`00oooooooo1?ooool001gooooo0_l0000gooooo`;oo`00FOooool2o`00oooooooo1Oooool0
90301gooooo00?o0000ooooooooool0=_ooool2ool005Sooooo0ol00?ooooooo`Gooooo000Mooooo`03
904o`000?oooooooooo03Kooooo0_oo001Gooooo`?o003oooooool6ooooo`007Oooool00ol0003ooooo
905ooooo`0fooooo`?oo`00EOooool3o`00oooooooo1oooool001gooooo00?o0000ooooooooool0=ooo
906ool2ool005Cooooo0ol00?ooooooo`Sooooo000Mooooo`03o`000?oooooooooo03Oooooo0_oo001C
907ooooo`?o003oooooool9ooooo`007Oooool00ol0003oooooooooo`0gooooo`;oo`00D_ooool3o`00
908oooooooo2_ooool001gooooo0_l0000hooooo`?oo`00D?ooool3o`00oooooooo2oooool001gooooo
90900?o0000ooooooooool0>?ooool2ool004oooooo0ol00?ooooooo`cooooo000Mooooo`03o`000?oo
910oooooooo03Sooooo0_oo001>ooooo`?o003oooooool=ooooo`007Oooool00ol0003oooooooooo`0h
911ooooo`;oo`00C_ooool2o`00oooooooo3_ooool001gooooo00?o0000ooooooooool0>?ooool3ool0
91204cooooo0ol00?ooooooo`kooooo0002ooooo`;o00001?ooool00ol0003oooooooooo`03ooooo`03
913o`000?oooooooooo00;ooooo0ol00007ooooo`03o`000?oooooooooo03Wooooo0_oo001;ooooo`?o
914003oooooool?ooooo`0000Goooooo`000?ooooooooooo`000009ooooo`05o`000?oooooooooooooo
915ool000000oooool00ol0003oooooooooo`04ooooo`03o`000?oooooooooo03Wooooo0_oo001:oooo
916o`?o003oooooool@ooooo`0000Goooooo`000?ooooooooooo`00000:ooooo`03o`000?oooooooooo
91700Cooooo00?o0000ooooooooool01?ooool3o`0003Wooooo0ooo0018ooooo`?o003ooooooolAoooo
918o`0000Goooooo`000?ooooooooooo`00000:ooooo`03o`000?oooooooooo00Cooooo00?o0000oooo
919ooooool01?ooool00ol0003oooooooooo`0jooooo`;oo`00Aoooool3o`00oooooooo4_ooool00005
920ooooool0003oooooooooool000002oooool00ol0003oooooo`000003o`0000Oooooo00?o0000oooo
921ooooool0>_ooool2ool004Kooooo0ol00?oooooooa?ooooo00001Ooooooo0000oooooooooooo0000
92200Oooooo00Oo0000ooooooooooooooooo`000?oooooo000000[ooooo00?o0000ooooooooool0>_oo
923ool2ool004Gooooo0ol00?ooooooo`Gooooo1Ooo000:ooooo`000_ooool2o`0000Sooooo1Ol00000
9240ooooooo0000o`000003o`0000Kooooo00?o0000ooooooooool0>_ooool3ool004?ooooo0ol00?oo
925ooooo`_oo`002_ooool001gooooo00?o0000ooooooooool0>oooool2ool004?ooooo0_l00?ojoooo
926o`goo`003_ooool001gooooo00?o0000ooooooooool0>oooool2ool004;ooooo0ol00?odooooo`go
927o`005?ooool001gooooo0_l0000looooo`?oo`00@?ooool3o`00onoooooo3Ooo000Jooooo`007Ooo
928ool00ol0003oooooooooo`0looooo`;oo`00?oooool3o`00on[ooooo3Ooo000Pooooo`007Oooool0
9290ol0003oooooooooo`0looooo`;oo`00?_ooool3o`00onKooooo3?oo000Vooooo`007Oooool00ol0
930003oooooooooo`0looooo`?oo`00?Oooool2o`00on;ooooo2ooo000/ooooo`007Oooool00ol0003o
931ooooooooo`0mooooo`;oo`00??ooool3o`00omgooooo2ooo000aooooo`007Oooool00ol0003ooooo
932ooooo`0mooooo`?oo`00>_ooool3o`00om[ooooo2_oo000fooooo`007Oooool00ol0003ooooooooo
933o`0nooooo`;oo`00>Oooool3o`00omKooooo2_oo000kooooo`007Oooool00ol0003oooooooooo`0n
934ooooo`;oo`00>?ooool3o`00om?ooooo2_oo000oooooo`007Oooool2o`0003oooooo0ooo000foooo
935o`?o003ocoooool:ool004Cooooo000Mooooo`03o`000?oooooooooo03oooooo0_oo000fooooo`;o
936003oboooool;ool004Sooooo000Mooooo`03o`000?oooooooooo03oooooo0_oo000eooooo`?o003o
937a_ooool;ool004gooooo000Mooooo`03o`000?oooooooooo03oooooo0ooo000cooooo`?o003o`_oo
938ool;ool005;ooooo000Mooooo`03o`000?oooooooooo043ooooo0_oo000booooo`?o003o_oooool:
939ool005Oooooo000Mooooo`03o`000?oooooooooo043ooooo0ooo000`ooooo`?o003o_?ooool9ool0
94005cooooo000Mooooo`03o`000?oooooooooo047ooooo0_oo000`ooooo`;o003o^Oooool9ool0063o
941oooo000Mooooo`;o0000@_ooool3ool002kooooo0ol00?ndooooo`[oo`00I?ooool001gooooo00?o
9420000ooooooooool0@_ooool2ool002gooooo0ol00?n_ooooo`coo`00J?ooool001gooooo00?o0000
943ooooooooool0@_ooool2ool002cooooo0ol00?n[ooooo`coo`00KOooool001gooooo00?o0000oooo
944ooooool0@_ooool3ool002[ooooo0ol00?nWooooo`_oo`00Loooool001gooooo00?o0000oooooooo
945ool0@oooool2ool002[ooooo0_l00?nTooooo`[oo`00N?ooool001gooooo00?o0000ooooooooool0
946@oooool3ool002Sooooo0ol00?nOooooo`[oo`00OOooool001gooooo00?o0000ooooooooool0A?oo
947ool2ool002Oooooo0ol00?nLooooo`[oo`00POooool001gooooo0_l00015ooooo`?oo`009_ooool2
948o`00oiWooooo2Ooo0026ooooo`007Oooool00ol0003oooooooooo`15ooooo`;oo`009Oooool3o`00
949oiKooooo2?oo002:ooooo`007Oooool00ol0003oooooooooo`15ooooo`?oo`009?ooool2o`00oiCo
950oooo1ooo002>ooooo`007Oooool00ol0003oooooooooo`16ooooo`;oo`008oooool3o`00oi7ooooo
9511ooo002Aooooo`004oooool3o`0000Oooooo00?o0000ooooooooool0A_ooool2ool002;ooooo0ol0
9520?n?ooooo`Ooo`00U?ooool001Cooooo00?o0000ooooooooool01_ooool00ol0003oooooooooo`16
953ooooo`?oo`008Oooool2o`00ohcooooo2?oo002Gooooo`005?ooool00ol0003oooooooooo`06oooo
954o`03o`000?oooooooooo04Oooooo0_oo000Pooooo`?o003oQoooool:ool009[ooooo000Dooooo`03
955o`000?oooooooooo00Gooooo0ol00?l00ol0003oooooooooo`15ooooo`?oo`007oooool2o`00ohCo
956oooo2_oo002Nooooo`005?ooool00ol0003oooooooooo`05ooooo`Co003oB?ooool2ool001kooooo
9570ol00?moooooo`[oo`00Xoooool001?ooooo0_l00008ooooo`04o`000?l00?oo003oo`00odOooooo
9580ooo000Looooo`?o003oO?ooool:ool00:Oooooo000Dooooo`03o`000?oooooooooo00Kooooo00?o
9590000ooooool00?l00_l00?m7ooooo`?oo`006oooool2o`00og[ooooo2?oo002/ooooo`007Oooool0
9600ol0003oooooooooo`03o`00odOooooo0ooo000Iooooo`?o003oMoooool7ool00;3ooooo000Moooo
961o`04o`000?ooooooooooooooo`?o003oAoooool2ool001Wooooo0_l00?meooooo`Ooo`00/oooool0
96201gooooo00?o0000ooooooooool00_ooool3o`00odKooooo0ooo000Gooooo`?o003oL_ooool7ool0
9630;Kooooo000Mooooo`;o00001?ooool3o`00odKooooo0ooo000Eooooo`?o003oKoooool8ool00;Wo
964oooo000Mooooo`03o`000?oooooooooo00Cooooo0_l00?m7ooooo`;oo`005Oooool2o`00ofcooooo
9652Ooo002looooo`007Oooool00ol0003oooooooooo`04ooooo`?o003oA_ooool3ool001?ooooo0ol0
9660?mWooooo`[oo`00`?ooool001gooooo00?o0000ooooooooool01Oooool3o`00odKooooo0ooo000B
967ooooo`;o003oI?ooool:ool00<Cooooo000Mooooo`03o`000?oooooooooo00Kooooo0ol00?m6oooo
968o`?oo`004?ooool3o`00of3ooooo2Ooo0039ooooo`007Oooool00ol0003oooooooooo`07ooooo`?o
969003oA_ooool3ool000kooooo0ol00?mNooooo`Soo`00cOooool001gooooo00?o0000ooooooooool0
9702?ooool3o`00odKooooo0ooo000=ooooo`;o003oG?ooool7ool00=7ooooo000Mooooo`;o00002_oo
971ool3o`00odKooooo0ooo000;ooooo`?o003oFOooool7ool00=Cooooo000Mooooo`03o`000?oooooo
972oooo00[ooooo0ol00?m6ooooo`?oo`002_ooool2o`00oeOooooo1ooo003Gooooo`007Oooool00ol0
973003oooooooooo`0;ooooo`?o003oA_ooool4ool000Oooooo0ol00?mCooooo`Soo`00f_ooool001go
974oooo00?o0000ooooooooool03?ooool2o`00odOooooo1?oo0005ooooo`?o003oD?ooool9ool00=go
975oooo000Mooooo`03o`000?oooooooooo00cooooo0ol00?m8ooooo`?oo`001?ooool2o`00odcooooo
9762_oo003Qooooo`007Oooool00ol0003oooooooooo`0=ooooo`?o003oB?ooool4ool00004ooooool0
9770?oo003oo`00odSooooo2_oo003Uooooo`007Oooool00ol0003oooooooooo`0>ooooo`;o003oBOoo
978ool4ool000;o003oAOooool9ool00>[ooooo000Mooooo`;o00003oooool3o`00od[ooooo0ooo0000
9790ol00?ooooooooooo`0oooooo`Woo`00k_ooool001gooooo00?o0000ooooooooool03oooool3o`00
980od[ooooo1?oo000kooooo`[oo`00l_ooool001gooooo00?o0000ooooooooool04?ooool2o`00odWo
981oooo0_l00?l5ool003Gooooo2_oo003fooooo`007Oooool00ol0003oooooooooo`0@ooooo`?o003o
982B?ooool2o`00o`;ooooo1Ooo000_ooooo`Woo`00noooool001gooooo00?o0000ooooooooool04Ooo
983ool3o`00odKooooo0ol00?l4ooooo`Koo`009oooool:ool00?oooooo000Mooooo`03o`000?oooooo
984oooo01;ooooo0_l00?m6ooooo`;o003o1oooool6ool001oooooo3?oo003oooooo`Cooooo000Moooo
985o`03o`000?oooooooooo01;ooooo0ol00?m4ooooo`?o003o2_ooool7ool001Gooooo3Ooo003ooooo
986o`Wooooo000Mooooo`;o00005?ooool3o`00od?ooooo0_l00?l=ooooob7oo`00ooooool?ooooo`00
9877Oooool00ol0003oooooooooo`0Dooooo`;o003o@_ooool3o`00oa7ooooo5ooo003ooooooaGooooo
988000Mooooo`03o`000?oooooooooo01Cooooo0ol00?m1ooooo`;o003ooooooolnooooo`007Oooool0
9890ol0003oooooooooo`0Eooooo`;o003o@?ooool3o`00oooooooo?_ooool001gooooo00?o0000oooo
990ooooool05Oooool3o`00ocoooooo0_l00?ooooooocoooooo00001?oooooo0000o`000?l00004oooo
991o`04o`000?ooooooooooooooo`Go00000_ooool3o`0000Oooooo00?o0000ooooooooool05_ooool3
992o`00ocgooooo0ol00?ooooooocoooooo0002ooooo`03o`000?oooooooooo00Sooooo00Ko0000oooo
993oooooooo0000ooooool00003ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool05ooo
994ool2o`00occooooo0ol00?oooooood3ooooo0002ooooo`03o`000?oooooooooo00Wooooo00?o0000
995ooooooooool01Oooool00ol0003oooooooooo`04ooooo`?o00005oooool3o`00oc_ooooo0_l00?oo
996oooood7ooooo0002ooooo`03o`000?oooooooooo00[ooooo00?o0000ooooooooool01?ooool00ol0
997003oooooooooo`04ooooo`03o`000?oooooooooo01Sooooo0_l00?ljooooo`?o003ooooooom1oooo
998o`000_ooool00ol0003oooooooooo`07ooooo`06o`000?ooooooooooooooool0003ooooo1?l00007
999ooooo`03o`000?oooooooooo01Sooooo0ol00?liooooo`;o003ooooooom2ooooo`0000?oooooo`00
10000?l000002Oooool01ol0003ooooooooooooooooo0000ooooool000002_ooool00ol0003ooooooooo
1001o`0Iooooo`;o003o>?ooool3o`00oooooooo@_ooool000;ooooo00?o0000ooooooooool02?ooool3
1002o`0000;ooooo1Ol00006ooooo`03o`000?oooooooooo01Wooooo0ol00?lgooooo`;o003ooooooom3
1003ooooo`007Oooool00ol0003oooooooooo`0Jooooo`;o003o=_ooool3o`00oooooooo@oooool001go
1004oooo00?o0000ooooooooool06_ooool2o`00ocKooooo0_l00?ooooooodCooooo000Mooooo`;o0000
10056oooool3o`00ocCooooo0ol00?ooooooodCooooo000Mooooo`03o`000?oooooooooo01_ooooo0_l0
10060?ldooooo`;o003ooooooom5ooooo`007Oooool00ol0003oooooooooo`0Kooooo`?o003o<_ooool3
1007o`00ooooooooAOooool001gooooo00?o0000ooooooooool07?ooool3o`00oc7ooooo0_l00?oooooo
1008odKooooo000Mooooo`03o`000?oooooooooo01gooooo0_l00?l`ooooo`?o003ooooooom6ooooo`00
10097Oooool00ol0003oooooooooo`0Mooooo`?o003o;oooool2o`00ooooooooAoooool001gooooo00?o
10100000ooooooooool07_ooool2o`00obkooooo0ol00?ooooooodOooooo000Mooooo`;o00007oooool2
1011o`00obkooooo0_l00?ooooooodSooooo000Mooooo`03o`000?oooooooooo01kooooo0ol00?l/oooo
1012o`?o003ooooooom8ooooo`007Oooool00ol0003oooooooooo`0Oooooo`;o003o;?ooool2o`00oooo
1013ooooBOooool001gooooo00?o0000ooooooooool07oooool2o`00ob_ooooo0ol00?ooooooodWooooo
1014000Mooooo`03o`000?oooooooooo01oooooo0ol00?lZooooo`;o003ooooooom:ooooo`007Oooool0
10150ol0003oooooooooo`0Pooooo`;o003o:_ooool2o`00ooooooooB_ooool001gooooo00?o0000oooo
1016ooooool08?ooool2o`00obWooooo0ol00?oooooood[ooooo000Mooooo`03o`000?oooooooooo023o
1017oooo0_l00?lYooooo`;o003ooooooom;ooooo`007Oooool2o`00027ooooo0ol00?lWooooo`?o003o
1018oooooom;ooooo`007Oooool00ol0003oooooooooo`0Qooooo`;o003o9oooool2o`00ooooooooC?oo
1019ool001gooooo00?o0000ooooooooool08Oooool2o`00obKooooo0ol00?ooooooodcooooo000Moooo
1020o`03o`000?oooooooooo027ooooo0_l00?lVooooo`;o003ooooooom=ooooo`007Oooool00ol0003o
1021ooooooooo`0Qooooo`?o003o9?ooool3o`00ooooooooCOooool001gooooo00?o0000ooooooooool0
10228_ooool2o`00obCooooo0_l00?ooooooodkooooo000Mooooo`03o`000?oooooooooo02;ooooo0_l0
10230?lTooooo`;o003ooooooom>ooooo`007Oooool2o`0002?ooooo0_l00?lSooooo`?o003ooooooom>
1024ooooo`007Oooool00ol0003oooooooooo`0Rooooo`?o003o8_ooool2o`00ooooooooCoooool001go
1025oooo00?o0000ooooooooool08oooool2o`00ob7ooooo0ol00?ooooooodoooooo000Mooooo`03o`00
10260?oooooooooo02?ooooo0_l00?lQooooo`;o003ooooooom@ooooo`001oooool3o`0000Cooooo00?o
10270000ooooooooool00_ooool3o`0000Oooooo00?o0000ooooooooool08oooool2o`00ob3ooooo0ol0
10280?oooooooe3ooooo0008ooooo`03o`000?oooooooooo00Oooooo00Go0000ooooooooooooooooo`00
10290006ooooo`03o`000?oooooooooo02?ooooo0_l00?lPooooo`;o003ooooooomAooooo`002?ooool0
10300ol0003oooooooooo`0;ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool08oooool2
1031o`00oaoooooo0ol00?oooooooe7ooooo0008ooooo`03o`000?oooooooooo00_ooooo00?o0000oooo
1032ooooool01?ooool3o`0002?ooooo0ol00?lNooooo`;o003ooooooomBooooo`002?ooool00ol0003o
1033ooooooooo`07ooooo`Co00001oooool00ol0003oooooooooo`0Tooooo`;o003o7_ooool2o`00oooo
1034ooooD_ooool000Oooooo0_l00009ooooo`03o`000?oooooooooo00Sooooo00?o0000ooooooooool0
10359?ooool2o`00oagooooo0ol00?oooooooe;ooooo0008ooooo`03o`000?oooooooooo00Oooooo1Ol0
10360006ooooo`03o`000?oooooooooo02Cooooo0_l00?lMooooo`;o003ooooooomCooooo`007Oooool0
10370ol0003oooooooooo`0Tooooo`;o003o7?ooool3o`00ooooooooDoooool001gooooo00?o0000oooo
1038ooooool09?ooool2o`00oacooooo0_l00?oooooooeCooooo000Mooooo`03o`000?oooooooooo02Co
1039oooo0_l00?lKooooo`?o003ooooooomDooooo`007Oooool2o`0002Gooooo0ol00?lJooooo`;o003o
1040oooooomEooooo`007Oooool00ol0003oooooooooo`0Uooooo`;o003o6Oooool3o`00ooooooooEOoo
1041ool001gooooo00?o0000ooooooooool09Oooool2o`00oaWooooo0_l00?oooooooeKooooo000Moooo
1042o`03o`000?oooooooooo02Gooooo0_l00?lIooooo`;o003ooooooomFooooo`007Oooool00ol0003o
1043ooooooooo`0Uooooo`;o003o6?ooool3o`00ooooooooE_ooool001gooooo00?o0000ooooooooool0
10449Oooool2o`00oaSooooo0_l00?oooooooeOooooo000Mooooo`03o`000?oooooooooo02Gooooo0_l0
10450?lGooooo`?o003ooooooomGooooo`007Oooool2o`0002Kooooo0ol00?lFooooo`;o003ooooooomH
1046ooooo`007Oooool00ol0003oooooooooo`0Vooooo`;o003o5Oooool3o`00ooooooooF?ooool001go
1047oooo00?o0000ooooooooool09_ooool2o`00oaGooooo0_l00?oooooooeWooooo000Mooooo`03o`00
10480?oooooooooo02Kooooo0_l00?lDooooo`?o003ooooooomIooooo`007Oooool00ol0003ooooooooo
1049o`0Vooooo`;o003o4oooool3o`00ooooooooF_ooool001gooooo00?o0000ooooooooool09_ooool3
1050o`00oa;ooooo0_l00?oooooooe_ooooo000Mooooo`03o`000?oooooooooo02Oooooo0_l00?lAoooo
1051o`?o003ooooooomKooooo`007Oooool2o`0002Sooooo0_l00?lAooooo`;o003ooooooomLooooo`00
10527Oooool00ol0003oooooooooo`0Wooooo`;o003o4?ooool3o`00ooooooooG?ooool001gooooo00?o
10530000ooooooooool09oooool3o`00o`oooooo0_l00?oooooooegooooo000Mooooo`03o`000?oooooo
1054oooo02Sooooo0_l00?l>ooooo`?o003ooooooomMooooo`007Oooool00ol0003oooooooooo`0Xoooo
1055o`;o003o3Oooool3o`00ooooooooG_ooool001gooooo00?o0000ooooooooool0:?ooool3o`00o`co
1056oooo0_l00?oooooooeoooooo000Mooooo`03o`000?oooooooooo02Wooooo0_l00?l;ooooo`?o003o
1057oooooomOooooo`007Oooool2o`0002[ooooo0_l00?l;ooooo`;o003ooooooomPooooo`007Oooool0
10580ol0003oooooooooo`0Yooooo`?o003o2Oooool3o`00ooooooooH?ooool001gooooo00?o0000oooo
1059ooooool0:_ooool2o`00o`Sooooo0ol00?ooooooof7ooooo000Mooooo`03o`000?oooooooooo02[o
1060oooo0ol00?l6ooooo`?o003ooooooomRooooo`007Oooool00ol0003oooooooooo`0[ooooo`?o003o
10611?ooool3o`00ooooooooHoooool00004ooooool0003o0000o`0000Cooooo00?o0000ooooooooool0
10620oooool00ol0003oooooooooo`02ooooo`?o00001oooool00ol0003oooooooooo`0/ooooo`So003o
1063oooooomTooooo`000_ooool00ol0003oooooooooo`09ooooo`05o`000?ooooooooooooooool00000
10640oooool00ol0003oooooooooo`04ooooo`03o`000?oooooooooo02gooooo1_l00?ooooooofGooooo
10650002ooooo`03o`000?oooooooooo00[ooooo00?o0000ooooooooool01?ooool00ol0003ooooooooo
1066o`04ooooo`?o0000;_ooool3o`00ooooooooIoooool000;ooooo00?o0000ooooooooool02_ooool0
10670ol0003oooooooooo`04ooooo`03o`000?oooooooooo00Cooooo00?o0000ooooooooool0oooooonH
1068ooooo`000_ooool00ol0003oooooooooo`0;ooooo`03o`000?oooooo000000?o00001oooool00ol0
1069003oooooooooo`3ooooooiSooooo00000ooooooo0000o`000009ooooo`07o`000?oooooooooooooo
1070ool0003oooooo`00000:ooooo`03o`000?oooooooooo0?ooooooV?ooool000;ooooo00?o0000oooo
1071ooooool01oooool5o`000003ooooool0003o000000?o00001_ooool00ol0003oooooooooo`3ooooo
1072oiSooooo000Mooooo`03o`000?oooooooooo0?ooooooV?ooool00?oooooo^?ooool00001\
1073\>"],
1074 ImageRangeCache->{{{0, 438.375}, {270.562, 0}} -> {-0.732569, -0.112555, \
10750.025053, 0.00704711}}]
1076}, Open ]],
1077
1078Cell["\<\
1079Plot of the real and imaginary part of 3*I(a) as defined in the \
1080notes (I use 3*I(a) so that the function goes to 1 as a->0.)\
1081\>", "Text"]
1082}, Open ]],
1083
1084Cell[CellGroupData[{
1085
1086Cell[TextData[{
1087 "Function to be integrated to get the LO cross section. In general, we use \
1088the convention that all functions to be numerically integrated in the \
1089hypercubes ",
1090 Cell[BoxData[
1091 \(TraditionalForm\`\([0, 1]\)\^d\)]],
1092 ", where d is the dimension of the integration space. dsigma depends on the \
1093Higgs mass (mh), the total collider energy (sqrtS) and from the arbitrary \
1094normalization and factorization scales (mur,muf)."
1095}], "Subsubsection"],
1096
1097Cell["\<\
1098dsigmaLO[zz_,mh_,sqrtS_,muf_,mur_]:=Module[
1099{y,x1,x2,gg0,qg0,qq0,s0,ymin,ymax,JAC,v,S,tau0},
1100Muf=muf*1.;
1101v=246.;
1102S=sqrtS^2;
1103tau0=mh^2/S;
1104ymax=-Log[Sqrt[tau0]];
1105ymin=-ymax;
1106y=ymin+(ymax-ymin)*zz;
1107JAC=ymax-ymin;
1108x1=Sqrt[tau0] Exp[y];
1109x2=Sqrt[tau0] Exp[-y];
1110{gg0,qg0,qq0}=pdfCTEQLO[x1,x2,Muf];
1111s0=asLO[mur,5]^2/576/Pi/v^2*tau0;
1112s0=s0*gg0;
1113s0=s0*389379660; (*to picobarns*)
1114s0=s0*JAC;
1115Return[s0];
1116];\
1117\>", "Input"],
1118
1119Cell[CellGroupData[{
1120
1121Cell["sLO=NIntegrate[dsigmaLO[xx,100,14000,100,100],{xx,0,1}]", "Input"],
1122
1123Cell[BoxData[
1124 \(TraditionalForm\`28.056643821030747`\)], "Output"]
1125}, Open ]]
1126}, Open ]],
1127
1128Cell[CellGroupData[{
1129
1130Cell["\<\
1131Get the cross section for various Higgs masses and including the \
1132form factor of the loop.
1133I first build a table with the results of the cross section in picobarns, and \
1134then plot it.\
1135\>", "Subsection"],
1136
1137Cell["\<\
1138resEFT=Table[{i,NIntegrate[dsigmaLO[x,i*1.,14000.,i*1.,i*1.],{x,0,1}\
1139]},{i,20,600,10}];\
1140\>", "Input"],
1141
1142Cell["\<\
1143resFULL=Table[{resEFT[[i]][[1]],Abs[inte[resEFT[[i]][[1]]^2/175^2/4]\
1144]^2*resEFT[[i]][[2]]},{i,1,Length[resEFT]}];\
1145\>", "Input"],
1146
1147Cell["resFULL", "Input"],
1148
1149Cell[CellGroupData[{
1150
1151Cell[TextData[{
1152 "Show[LogListPlot[resEFT, ",
1153 StyleBox["PlotJoined", "MR"],
1154 " ",
1155 StyleBox["->", "MR"],
1156 " ",
1157 StyleBox["True,", "MR"],
1158 "PlotStyle\[Rule]{Red}],\nplotFULL=LogListPlot[resFULL, ",
1159 StyleBox["PlotJoined", "MR"],
1160 " ",
1161 StyleBox["->True,", "MR"],
1162 "PlotStyle\[Rule]{Blue}]];\n\n"
1163}], "Input"],
1164
1165Cell[GraphicsData["PostScript", "\<\
1166%!
1167%%Creator: Mathematica
1168%%AspectRatio: .61803
1169MathPictureStart
1170/Mabs {
1171Mgmatrix idtransform
1172Mtmatrix dtransform
1173} bind def
1174/Mabsadd { Mabs
11753 -1 roll add
11763 1 roll add
1177exch } bind def
1178%% Graphics
1179%%IncludeResource: font Courier
1180%%IncludeFont: Courier
1181/Courier findfont 10 scalefont setfont
1182% Scaling calculations
11830.0238095 0.0015873 0.078927 0.221776 [
1184[.02381 -0.0125 -3 -9 ]
1185[.02381 -0.0125 3 0 ]
1186[.18254 -0.0125 -9 -9 ]
1187[.18254 -0.0125 9 0 ]
1188[.34127 -0.0125 -9 -9 ]
1189[.34127 -0.0125 9 0 ]
1190[.5 -0.0125 -9 -9 ]
1191[.5 -0.0125 9 0 ]
1192[.65873 -0.0125 -9 -9 ]
1193[.65873 -0.0125 9 0 ]
1194[.81746 -0.0125 -9 -9 ]
1195[.81746 -0.0125 9 0 ]
1196[.97619 -0.0125 -9 -9 ]
1197[.97619 -0.0125 9 0 ]
1198[-0.0125 .07893 -10 -6 ]
1199[-0.0125 .07893 0 6 ]
1200[-0.0125 .14569 -10 -6 ]
1201[-0.0125 .14569 0 6 ]
1202[-0.0125 .23394 -10 -6 ]
1203[-0.0125 .23394 0 6 ]
1204[-0.0125 .3007 -16 -6 ]
1205[-0.0125 .3007 0 6 ]
1206[-0.0125 .36746 -16 -6 ]
1207[-0.0125 .36746 0 6 ]
1208[-0.0125 .45572 -16 -6 ]
1209[-0.0125 .45572 0 6 ]
1210[-0.0125 .52248 -22 -6 ]
1211[-0.0125 .52248 0 6 ]
1212[-0.0125 .58924 -22 -6 ]
1213[-0.0125 .58924 0 6 ]
1214[ -0.0005 0 0 0 ]
1215[ 1 .61803 0 0 ]
1216] MathScale
1217% Start of Graphics
12181 setlinecap
12191 setlinejoin
1220newpath
12210 g
1222.25 Mabswid
1223[ ] 0 setdash
1224.02381 0 m
1225.02381 .00625 L
1226s
1227[(0)] .02381 -0.0125 0 1 Mshowa
1228.18254 0 m
1229.18254 .00625 L
1230s
1231[(100)] .18254 -0.0125 0 1 Mshowa
1232.34127 0 m
1233.34127 .00625 L
1234s
1235[(200)] .34127 -0.0125 0 1 Mshowa
1236.5 0 m
1237.5 .00625 L
1238s
1239[(300)] .5 -0.0125 0 1 Mshowa
1240.65873 0 m
1241.65873 .00625 L
1242s
1243[(400)] .65873 -0.0125 0 1 Mshowa
1244.81746 0 m
1245.81746 .00625 L
1246s
1247[(500)] .81746 -0.0125 0 1 Mshowa
1248.97619 0 m
1249.97619 .00625 L
1250s
1251[(600)] .97619 -0.0125 0 1 Mshowa
1252.125 Mabswid
1253.05556 0 m
1254.05556 .00375 L
1255s
1256.0873 0 m
1257.0873 .00375 L
1258s
1259.11905 0 m
1260.11905 .00375 L
1261s
1262.15079 0 m
1263.15079 .00375 L
1264s
1265.21429 0 m
1266.21429 .00375 L
1267s
1268.24603 0 m
1269.24603 .00375 L
1270s
1271.27778 0 m
1272.27778 .00375 L
1273s
1274.30952 0 m
1275.30952 .00375 L
1276s
1277.37302 0 m
1278.37302 .00375 L
1279s
1280.40476 0 m
1281.40476 .00375 L
1282s
1283.43651 0 m
1284.43651 .00375 L
1285s
1286.46825 0 m
1287.46825 .00375 L
1288s
1289.53175 0 m
1290.53175 .00375 L
1291s
1292.56349 0 m
1293.56349 .00375 L
1294s
1295.59524 0 m
1296.59524 .00375 L
1297s
1298.62698 0 m
1299.62698 .00375 L
1300s
1301.69048 0 m
1302.69048 .00375 L
1303s
1304.72222 0 m
1305.72222 .00375 L
1306s
1307.75397 0 m
1308.75397 .00375 L
1309s
1310.78571 0 m
1311.78571 .00375 L
1312s
1313.84921 0 m
1314.84921 .00375 L
1315s
1316.88095 0 m
1317.88095 .00375 L
1318s
1319.9127 0 m
1320.9127 .00375 L
1321s
1322.94444 0 m
1323.94444 .00375 L
1324s
1325.25 Mabswid
13260 0 m
13271 0 L
1328s
13290 .07893 m
1330.00625 .07893 L
1331s
1332gsave
1333-0.0125 .07893 -71 -10 Mabsadd m
13341 1 Mabs scale
1335currentpoint translate
13360 20 translate 1 -1 scale
133763.000 13.000 moveto
1338%%IncludeResource: font Courier
1339%%IncludeFont: Courier
1340/Courier findfont 10.000 scalefont
1341[1 0 0 -1 0 0 ] makefont setfont
13420.000 0.000 0.000 setrgbcolor
13430.000 0.000 rmoveto
134463.000 13.000 moveto
1345%%IncludeResource: font Courier
1346%%IncludeFont: Courier
1347/Courier findfont 10.000 scalefont
1348[1 0 0 -1 0 0 ] makefont setfont
13490.000 0.000 0.000 setrgbcolor
1350(1) show
135169.000 13.000 moveto
1352%%IncludeResource: font Courier
1353%%IncludeFont: Courier
1354/Courier findfont 10.000 scalefont
1355[1 0 0 -1 0 0 ] makefont setfont
13560.000 0.000 0.000 setrgbcolor
13570.000 0.000 rmoveto
13581.000 setlinewidth
1359grestore
13600 .14569 m
1361.00625 .14569 L
1362s
1363gsave
1364-0.0125 .14569 -71 -10 Mabsadd m
13651 1 Mabs scale
1366currentpoint translate
13670 20 translate 1 -1 scale
136863.000 13.000 moveto
1369%%IncludeResource: font Courier
1370%%IncludeFont: Courier
1371/Courier findfont 10.000 scalefont
1372[1 0 0 -1 0 0 ] makefont setfont
13730.000 0.000 0.000 setrgbcolor
13740.000 0.000 rmoveto
137563.000 13.000 moveto
1376%%IncludeResource: font Courier
1377%%IncludeFont: Courier
1378/Courier findfont 10.000 scalefont
1379[1 0 0 -1 0 0 ] makefont setfont
13800.000 0.000 0.000 setrgbcolor
1381(2) show
138269.000 13.000 moveto
1383%%IncludeResource: font Courier
1384%%IncludeFont: Courier
1385/Courier findfont 10.000 scalefont
1386[1 0 0 -1 0 0 ] makefont setfont
13870.000 0.000 0.000 setrgbcolor
13880.000 0.000 rmoveto
13891.000 setlinewidth
1390grestore
13910 .23394 m
1392.00625 .23394 L
1393s
1394gsave
1395-0.0125 .23394 -71 -10 Mabsadd m
13961 1 Mabs scale
1397currentpoint translate
13980 20 translate 1 -1 scale
139963.000 13.000 moveto
1400%%IncludeResource: font Courier
1401%%IncludeFont: Courier
1402/Courier findfont 10.000 scalefont
1403[1 0 0 -1 0 0 ] makefont setfont
14040.000 0.000 0.000 setrgbcolor
14050.000 0.000 rmoveto
140663.000 13.000 moveto
1407%%IncludeResource: font Courier
1408%%IncludeFont: Courier
1409/Courier findfont 10.000 scalefont
1410[1 0 0 -1 0 0 ] makefont setfont
14110.000 0.000 0.000 setrgbcolor
1412(5) show
141369.000 13.000 moveto
1414%%IncludeResource: font Courier
1415%%IncludeFont: Courier
1416/Courier findfont 10.000 scalefont
1417[1 0 0 -1 0 0 ] makefont setfont
14180.000 0.000 0.000 setrgbcolor
14190.000 0.000 rmoveto
14201.000 setlinewidth
1421grestore
14220 .3007 m
1423.00625 .3007 L
1424s
1425gsave
1426-0.0125 .3007 -77 -10 Mabsadd m
14271 1 Mabs scale
1428currentpoint translate
14290 20 translate 1 -1 scale
143063.000 13.000 moveto
1431%%IncludeResource: font Courier
1432%%IncludeFont: Courier
1433/Courier findfont 10.000 scalefont
1434[1 0 0 -1 0 0 ] makefont setfont
14350.000 0.000 0.000 setrgbcolor
14360.000 0.000 rmoveto
143763.000 13.000 moveto
1438%%IncludeResource: font Courier
1439%%IncludeFont: Courier
1440/Courier findfont 10.000 scalefont
1441[1 0 0 -1 0 0 ] makefont setfont
14420.000 0.000 0.000 setrgbcolor
1443(10) show
144475.000 13.000 moveto
1445%%IncludeResource: font Courier
1446%%IncludeFont: Courier
1447/Courier findfont 10.000 scalefont
1448[1 0 0 -1 0 0 ] makefont setfont
14490.000 0.000 0.000 setrgbcolor
14500.000 0.000 rmoveto
14511.000 setlinewidth
1452grestore
14530 .36746 m
1454.00625 .36746 L
1455s
1456gsave
1457-0.0125 .36746 -77 -10 Mabsadd m
14581 1 Mabs scale
1459currentpoint translate
14600 20 translate 1 -1 scale
146163.000 13.000 moveto
1462%%IncludeResource: font Courier
1463%%IncludeFont: Courier
1464/Courier findfont 10.000 scalefont
1465[1 0 0 -1 0 0 ] makefont setfont
14660.000 0.000 0.000 setrgbcolor
14670.000 0.000 rmoveto
146863.000 13.000 moveto
1469%%IncludeResource: font Courier
1470%%IncludeFont: Courier
1471/Courier findfont 10.000 scalefont
1472[1 0 0 -1 0 0 ] makefont setfont
14730.000 0.000 0.000 setrgbcolor
1474(20) show
147575.000 13.000 moveto
1476%%IncludeResource: font Courier
1477%%IncludeFont: Courier
1478/Courier findfont 10.000 scalefont
1479[1 0 0 -1 0 0 ] makefont setfont
14800.000 0.000 0.000 setrgbcolor
14810.000 0.000 rmoveto
14821.000 setlinewidth
1483grestore
14840 .45572 m
1485.00625 .45572 L
1486s
1487gsave
1488-0.0125 .45572 -77 -10 Mabsadd m
14891 1 Mabs scale
1490currentpoint translate
14910 20 translate 1 -1 scale
149263.000 13.000 moveto
1493%%IncludeResource: font Courier
1494%%IncludeFont: Courier
1495/Courier findfont 10.000 scalefont
1496[1 0 0 -1 0 0 ] makefont setfont
14970.000 0.000 0.000 setrgbcolor
14980.000 0.000 rmoveto
149963.000 13.000 moveto
1500%%IncludeResource: font Courier
1501%%IncludeFont: Courier
1502/Courier findfont 10.000 scalefont
1503[1 0 0 -1 0 0 ] makefont setfont
15040.000 0.000 0.000 setrgbcolor
1505(50) show
150675.000 13.000 moveto
1507%%IncludeResource: font Courier
1508%%IncludeFont: Courier
1509/Courier findfont 10.000 scalefont
1510[1 0 0 -1 0 0 ] makefont setfont
15110.000 0.000 0.000 setrgbcolor
15120.000 0.000 rmoveto
15131.000 setlinewidth
1514grestore
15150 .52248 m
1516.00625 .52248 L
1517s
1518gsave
1519-0.0125 .52248 -83 -10 Mabsadd m
15201 1 Mabs scale
1521currentpoint translate
15220 20 translate 1 -1 scale
152363.000 13.000 moveto
1524%%IncludeResource: font Courier
1525%%IncludeFont: Courier
1526/Courier findfont 10.000 scalefont
1527[1 0 0 -1 0 0 ] makefont setfont
15280.000 0.000 0.000 setrgbcolor
15290.000 0.000 rmoveto
153063.000 13.000 moveto
1531%%IncludeResource: font Courier
1532%%IncludeFont: Courier
1533/Courier findfont 10.000 scalefont
1534[1 0 0 -1 0 0 ] makefont setfont
15350.000 0.000 0.000 setrgbcolor
1536(100) show
153781.000 13.000 moveto
1538%%IncludeResource: font Courier
1539%%IncludeFont: Courier
1540/Courier findfont 10.000 scalefont
1541[1 0 0 -1 0 0 ] makefont setfont
15420.000 0.000 0.000 setrgbcolor
15430.000 0.000 rmoveto
15441.000 setlinewidth
1545grestore
15460 .58924 m
1547.00625 .58924 L
1548s
1549gsave
1550-0.0125 .58924 -83 -10 Mabsadd m
15511 1 Mabs scale
1552currentpoint translate
15530 20 translate 1 -1 scale
155463.000 13.000 moveto
1555%%IncludeResource: font Courier
1556%%IncludeFont: Courier
1557/Courier findfont 10.000 scalefont
1558[1 0 0 -1 0 0 ] makefont setfont
15590.000 0.000 0.000 setrgbcolor
15600.000 0.000 rmoveto
156163.000 13.000 moveto
1562%%IncludeResource: font Courier
1563%%IncludeFont: Courier
1564/Courier findfont 10.000 scalefont
1565[1 0 0 -1 0 0 ] makefont setfont
15660.000 0.000 0.000 setrgbcolor
1567(200) show
156881.000 13.000 moveto
1569%%IncludeResource: font Courier
1570%%IncludeFont: Courier
1571/Courier findfont 10.000 scalefont
1572[1 0 0 -1 0 0 ] makefont setfont
15730.000 0.000 0.000 setrgbcolor
15740.000 0.000 rmoveto
15751.000 setlinewidth
1576grestore
1577.001 w
15780 .18474 m
1579.00375 .18474 L
1580s
15810 .21245 m
1582.00375 .21245 L
1583s
15840 .2515 m
1585.00375 .2515 L
1586s
15870 .26635 m
1588.00375 .26635 L
1589s
15900 .27921 m
1591.00375 .27921 L
1592s
15930 .29056 m
1594.00375 .29056 L
1595s
15960 .40652 m
1597.00375 .40652 L
1598s
15990 .43423 m
1600.00375 .43423 L
1601s
16020 .47328 m
1603.00375 .47328 L
1604s
16050 .48813 m
1606.00375 .48813 L
1607s
16080 .50099 m
1609.00375 .50099 L
1610s
16110 .51233 m
1612.00375 .51233 L
1613s
1614.25 Mabswid
16150 0 m
16160 .61803 L
1617s
16180 0 m
16191 0 L
16201 .61803 L
16210 .61803 L
1622closepath
1623clip
1624newpath
16251 0 0 r
1626.5 Mabswid
1627.05556 .60332 m
1628.07143 .56246 L
1629.0873 .52864 L
1630.10317 .49984 L
1631.11905 .47468 L
1632.13492 .4523 L
1633.15079 .43206 L
1634.16667 .41355 L
1635.18254 .39647 L
1636.19841 .38059 L
1637.21429 .36574 L
1638.23016 .35176 L
1639.24603 .33854 L
1640.2619 .326 L
1641.27778 .31405 L
1642.29365 .30264 L
1643.30952 .29171 L
1644.3254 .28121 L
1645.34127 .2711 L
1646.35714 .26135 L
1647.37302 .25194 L
1648.38889 .24283 L
1649.40476 .23401 L
1650.42063 .22545 L
1651.43651 .21714 L
1652.45238 .20905 L
1653.46825 .20117 L
1654.48413 .1935 L
1655.5 .18601 L
1656.51587 .17869 L
1657.53175 .17154 L
1658.54762 .16454 L
1659.56349 .1577 L
1660.57937 .15099 L
1661.59524 .14441 L
1662.61111 .13797 L
1663.62698 .13164 L
1664.64286 .12543 L
1665.65873 .11933 L
1666.6746 .11334 L
1667.69048 .10744 L
1668.70635 .10165 L
1669.72222 .09594 L
1670.7381 .09033 L
1671.75397 .0848 L
1672.76984 .07935 L
1673.78571 .07398 L
1674.80159 .06868 L
1675.81746 .06346 L
1676.83333 .05831 L
1677Mistroke
1678.84921 .05322 L
1679.86508 .0482 L
1680.88095 .04325 L
1681.89683 .03835 L
1682.9127 .03351 L
1683.92857 .02873 L
1684.94444 .02401 L
1685.96032 .01934 L
1686.97619 .01472 L
1687Mfstroke
16880 0 1 r
1689.05556 .60347 m
1690.07143 .5628 L
1691.0873 .52923 L
1692.10317 .50076 L
1693.11905 .47602 L
1694.13492 .45412 L
1695.15079 .43445 L
1696.16667 .41658 L
1697.18254 .40023 L
1698.19841 .38517 L
1699.21429 .37121 L
1700.23016 .35822 L
1701.24603 .3461 L
1702.2619 .33474 L
1703.27778 .32408 L
1704.29365 .31407 L
1705.30952 .30464 L
1706.3254 .29578 L
1707.34127 .28743 L
1708.35714 .27959 L
1709.37302 .27223 L
1710.38889 .26534 L
1711.40476 .25892 L
1712.42063 .25295 L
1713.43651 .24745 L
1714.45238 .24243 L
1715.46825 .23791 L
1716.48413 .23392 L
1717.5 .23052 L
1718.51587 .22778 L
1719.53175 .22583 L
1720.54762 .2249 L
1721.56349 .22544 L
1722.57937 .22909 L
1723.59524 .23671 L
1724.61111 .241 L
1725.62698 .24264 L
1726.64286 .24222 L
1727.65873 .24019 L
1728.6746 .23691 L
1729.69048 .23265 L
1730.70635 .2276 L
1731.72222 .22194 L
1732.7381 .21579 L
1733.75397 .20926 L
1734.76984 .20242 L
1735.78571 .19533 L
1736.80159 .18806 L
1737.81746 .18065 L
1738.83333 .17312 L
1739Mistroke
1740.84921 .16551 L
1741.86508 .15785 L
1742.88095 .15015 L
1743.89683 .14243 L
1744.9127 .1347 L
1745.92857 .12697 L
1746.94444 .11926 L
1747.96032 .11157 L
1748.97619 .10391 L
1749Mfstroke
1750% End of Graphics
1751MathPictureEnd
1752\
1753\>"], "Graphics",
1754 ImageSize->{413, 255.125},
1755 ImageMargins->{{43, 0}, {0, 0}},
1756 ImageRegion->{{0, 1}, {0, 1}},
1757 ImageCache->GraphicsData["Bitmap", "\<\
1758CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`40006M0000ob000`400?l00000o`00003ooooooonN
1759ooooo`00oooooonNooooo`00oooooonNooooo`008_ooool2o`0003Gooooo0ol00004ooooo`;o0000
17601?ooool2o`0002gooooo1Ol00003ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o0000
17611?ooool2o`0002oooooo0ol00003ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o0000
17621?ooool2o`0002kooooo0ol00004ooooo`;o00001?ooool2o`0000Cooooo000Qooooo`04o`000?oo
1763ooooooooo`0003Gooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00002ooooo`04
1764o`000?ooooooooooo`0002gooooo00Co0000oooooooooooo00000_ooool01?l0003oooooooooool0
17650002ooooo`04o`000?ooooooooooo`0002cooooo00Go0000ooooooooooooooooo`000002ooooo`04
1766o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000;oooool01Ol0003ooooooooooooo
1767oooo000000;ooooo00Co0000oooooooooooo00000_ooool00ol0003oooooooooo`0Zooooo`05o`00
17680?ooooooooooooooool000000_ooool01?l0003oooooooooool00002ooooo`04o`000?oooooooooo
1769o`0002cooooo00Go0000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo
177000Co0000oooooooooooo00000oooool0027ooooo00Co0000oooooooooooo0000=Oooool00ol0003o
1771ooooooooo`02ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000;_ooool0
17720ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
1773<?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000;ooooo00?o0000oooo
1774ooooool0:_ooool5o`0000;ooooo00Co0000oooooooooooo00000_ooool01?l0003oooooooooool0
1775000`ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo00000_ooool00ol0003o
1776ooooooooo`0Zooooo`05o`000?ooooooooooooooool000000_ooool01?l0003oooooooooool00002
1777ooooo`04o`000?ooooooooooo`0000?ooooo000Qooooo`04o`000?ooooooooooo`0003Gooooo00?o
17780000ooooooooool00_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002oo
1779oooo00Go0000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00?o0000
1780ooooooooool0;?ooool2o`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0003ooooooooo
1781ool0000/ooooo`04o`000?ooooooooooo`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0
1782003oooooooooool0000`ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
17830_ooool00ol0003oooooooooo`0Zooooo`Co00000oooool01?l0003oooooooooool00002ooooo`04
1784o`000?ooooooooooo`0000?ooooo000Qooooo`04o`000?ooooooooooo`0003Gooooo00?o0000oooo
1785ooooool00_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002cooooo00Go
17860000ooooooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooo
1787oooo0000<?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000;ooooo00?o
17880000ooooooooool0:oooool00ol0003oooooo`000003ooooo`04o`000?ooooooooooo`0000;ooooo
178900Co0000oooooooooooo0000;?ooool4o`0000?ooooo00Co0000oooooooooooo00000_ooool01?l0
1790003oooooooooool0000/ooooo`03o`000?oooooooooo00Cooooo00Co0000oooooooooooo00000_oo
1791ool01?l0003oooooooooool00003ooooo`008Oooool01?l0003oooooooooool0000dooooo`;o0000
17921?ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0002cooooo00Go0000oooo
1793ooooooooooooo`000002ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000oooooooooooo0000
1794;?ooool01Ol0003ooooooooooooooooo000000;ooooo00Co0000oooooooooooo00000_ooool01?l0
1795003oooooooooool0000^ooooo`;o00000oooool01?l0003oooooooooool00002ooooo`04o`000?oo
1796ooooooooo`0002cooooo00?o0000ooooooooool01?ooool01?l0003oooooooooool00002ooooo`04
1797o`000?ooooooooooo`0002gooooo00?o0000ooooooooool00oooool01?l0003oooooooooool00002
1798ooooo`04o`000?ooooooooooo`0000?ooooo000Rooooo`;o0000=_ooool00ol0003oooooooooo`03
1799ooooo`;o00001?ooool2o`0002kooooo0ol00004ooooo`;o00001?ooool2o`0002kooooo0ol00004
1800ooooo`;o00001?ooool2o`00033ooooo00?o0000ooooooooool00_ooool2o`0000Cooooo0_l0000]
1801ooooo`Go00000oooool2o`0000Cooooo0_l0000_ooooo`;o00001?ooool2o`0000Cooooo0_l00004
1802ooooo`00oooooonNooooo`00oooooonNooooo`00oooooonNooooo`00oooooonNooooo`00oooooonN
1803ooooo`006_ooooooo`0008Co0000000Jooooo`03o`000?oooooooooo00Kooooo00?o0000oooooooo
1804ool02_ooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1805ool02Oooool00ol0003oooooooooo`0:ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1806ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
1807ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1808ool02Oooool00ol0003oooooooooo`0:ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1809ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
1810ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1811ool02_ooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1812ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00[ooooo00?o0000oooooooo
1813ool02Oooool00ol0003oooooooooo`09ooooo`03o`000?oooooooooo00Wooooo00?o0000oooooooo
1814ool02?ooool001[ooooo00?o0000ooooooooool01_ooool00ol0003oooooooooo`0:ooooo`03o`00
18150?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
18160?oooooooooo00[ooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
18170?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
18180?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
18190?oooooooooo00[ooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
18200?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
18210?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`0:ooooo`03o`00
18220?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`09ooooo`03o`00
18230?oooooooooo00Wooooo00?o0000ooooooooool02_ooool00ol0003oooooooooo`09ooooo`03o`00
18240?oooooooooo00Wooooo00?o0000ooooooooool02Oooool00ol0003oooooooooo`08ooooo`006_oo
1825ool00ol0003oooooooooo`06ooooo`03o`000?oooooooooo03_ooooo00?o0000ooooooooool0>_oo
1826ool00ol0003oooooooooo`0jooooo`03o`000?oooooooooo03[ooooo00?o0000ooooooooool0>_oo
1827ool00ol0003oooooooooo`0jooooo`03o`000?oooooooooo00Sooooo000Jooooo`03o`000?oooooo
1828oooo0?ooooooPOooool001[ooooo00?o0000ooooooooool0oooooon1ooooo`006_ooool00ol0003o
1829ooooooooo`3oooooogGooooo0_oo000:ooooo`006_ooool00ol0003oooooooooo`3oooooog;ooooo
18300ooo000<ooooo`006_ooool00ol0003oooooooooo`3oooooofoooooo0ooo000?ooooo`006_ooool0
18310ol0003oooooooooo`3oooooofcooooo0ooo000Booooo`006_ooool00ol0003oooooooooo`3ooooo
1832ofOooooo1Ooo000Eooooo`006_ooool00ol0003oooooooooo`3oooooof?ooooo1?oo000Jooooo`00
18336_ooool00ol0003oooooooooo`3oooooof3ooooo0ooo000Nooooo`006_ooool00ol0003ooooooooo
1834o`3ooooooegooooo0ooo000Qooooo`006_ooool00ol0003oooooooooo`3ooooooe[ooooo0ooo000T
1835ooooo`006_ooool00ol0003oooooooooo`3ooooooeOooooo0ooo000Wooooo`006_ooool00ol0003o
1836ooooooooo`3ooooooeCooooo0ooo000Zooooo`006_ooool00ol0003oooooooooo`3ooooooe7ooooo
18370ooo000]ooooo`006_ooool00ol0003oooooooooo`3oooooodkooooo0ooo000`ooooo`006_ooool0
18380ol0003oooooooooo`3ooooood[ooooo1?oo000cooooo`006_ooool00ol0003oooooooooo`3ooooo
1839odOooooo0ooo000gooooo`006_ooool00ol0003oooooooooo`3oooooodCooooo0ooo000jooooo`00
18406_ooool00ol0003oooooooooo`3ooooood7ooooo0ooo000mooooo`006_ooool00ol0003ooooooooo
1841o`3oooooockooooo0ooo0010ooooo`006_ooool00ol0003oooooooooo`3ooooooc_ooooo0ooo0013
1842ooooo`006_ooool00ol0003oooooooooo`3oooooocSooooo0ooo0016ooooo`006_ooool00ol0003o
1843ooooooooo`3oooooocGooooo0ooo0019ooooo`006_ooool00ol0003oooooooooo`3ooooooc;ooooo
18440ooo001<ooooo`006_ooool00ol0003oooooooooo`3ooooooboooooo0ooo001?ooooo`003oooool3
1845o`0000Sooooo00?o0000ooooooooool0ooooool/ooooo`?oo`00D_ooool0013ooooo00?o0000oooo
1846ooooool01oooool00ol0003oooooooooo`3oooooobWooooo0ooo001Eooooo`004?ooool00ol0003o
1847ooooooooo`07ooooo`Co0000oooooolUooooo`?oo`00F?ooool0013ooooo00?o0000ooooooooool0
18481oooool00ol0003oooooooooo`3oooooob?ooooo0ooo001Kooooo`004?ooool00ol0003ooooooooo
1849o`07ooooo`03o`000?oooooooooo0?oooooo8?ooool3ool005kooooo000?ooooo`;o00002Oooool0
18500ol0003oooooooooo`3ooooooagooooo0ooo001Qooooo`004?ooool00ol0003oooooooooo`07oooo
1851o`03o`000?oooooooooo0?oooooo6_ooool3ool006Cooooo000Jooooo`03o`000?oooooooooo0?oo
1852oooo5oooool3ool006Oooooo000Jooooo`03o`000?oooooooooo0?oooooo4oooool4ool006[ooooo
1853000Jooooo`03o`000?oooooooooo0?oooooo4?ooool3ool006kooooo000Jooooo`03o`000?oooooo
1854oooo0?oooooo3Oooool3ool0077ooooo000Jooooo`03o`000?oooooooooo0?oooooo2oooool2ool0
185506Sooooo0_l00?l:ooooo`006_ooool00ol0003oooooooooo`3oooooo`Wooooo0_oo001Xooooo`;o
1856003o3?ooool001[ooooo00?o0000ooooooooool0ooooool7ooooo`;oo`00J?ooool2o`00o`kooooo
1857000Jooooo`03o`000?oooooooooo0?oooooo1?ooool3ool006Sooooo0_l00?l@ooooo`006_ooool0
18580ol0003oooooooooo`3oooooo`7ooooo0ooo001Yooooo`;o003o4_ooool001[ooooo00?o0000oooo
1859ooooool0oOooool3ool006[ooooo0_l00?lDooooo`006_ooool00ol0003oooooooooo`3jooooo`?o
1860o`00Joooool2o`00oaKooooo000Jooooo`03o`000?oooooooooo0?Sooooo0_oo001/ooooo`;o003o
18616?ooool001[ooooo00?o0000ooooooooool0m_ooool2ool006cooooo0_l00?lJooooo`006_ooool0
18620ol0003oooooooooo`3dooooo`;oo`00K?ooool2o`00oacooooo000Jooooo`03o`000?oooooooooo
18630?7ooooo0ooo001/ooooo`;o003o7_ooool001[ooooo00?o0000ooooooooool0k_ooool3ool006go
1864oooo0_l00?lPooooo`006_ooool00ol0003oooooooooo`3[ooooo`?oo`00K_ooool2o`00ob;ooooo
1865000Jooooo`03o`000?oooooooooo0>Sooooo0ooo001_ooooo`;o003o9?ooool000kooooo1Ol00007
1866ooooo`03o`000?oooooooooo0>Kooooo0_oo001`ooooo`;o003o9_ooool000oooooo00Co0000oooo
1867oooooooo00001oooool00ol0003oooooooooo`3Tooooo`;oo`00L?ooool2o`00obSooooo000@oooo
1868o`03o`000?oooooooooo00Oooooo1?l0003Pooooo`?oo`00L?ooool2o`00ob[ooooo000Aooooo`03
1869o`000?oooooooooo00Kooooo00?o0000ooooooooool0g_ooool3ool0077ooooo0_l00?l/ooooo`00
18703_ooool01Ol0003ooooooooooooooooo000000Oooooo00?o0000ooooooooool0foooool3ool007;o
1871oooo0_l00?l^ooooo`003_ooool01Ol0003ooooooooooooooooo000000Oooooo00?o0000oooooooo
1872ool0fOooool2ool007?ooooo0_l00?l`ooooo`003oooool3o`0000Sooooo00?o0000ooooooooool0
1873eoooool2ool007?ooooo0_l00?lbooooo`006_ooool00ol0003oooooooooo`3Eooooo`;oo`00Looo
1874ool2o`00ocCooooo000Jooooo`03o`000?oooooooooo0=?ooooo0_oo001booooo`?o003o=_ooool0
187501[ooooo00?o0000ooooooooool0dOooool2ool007;ooooo0_l00?liooooo`006_ooool00ol0003o
1876ooooooooo`3?ooooo`;oo`00L_ooool2o`00oc_ooooo000Jooooo`03o`000?oooooooooo0<cooooo
18770ooo001booooo`;o003o?Oooool001[ooooo00?o0000ooooooooool0bOooool3ool007?ooooo0_l0
18780?loooooo`006_ooool00ol0003oooooooooo`37ooooo`;oo`00M?ooool2o`00od7ooooo000Joooo
1879o`03o`000?oooooooooo0<Gooooo0_oo001dooooo`;o003o@oooool001[ooooo00?o0000oooooooo
1880ool0`oooool2ool007Cooooo0_l00?m5ooooo`006_ooool00ol0003oooooooooo`31ooooo`;oo`00
1881M?ooool2o`00odOooooo000Jooooo`?o0000_oooool2ool007Cooooo0_l00?m9ooooo`006_ooool0
18820ol0003oooooooooo`2mooooo`;oo`00M?ooool2o`00od_ooooo000Jooooo`03o`000?oooooooooo
18830;_ooooo0_oo001dooooo`;o003oCOooool001[ooooo00?o0000ooooooooool0^Oooool2ool007Co
1884oooo0_l00?m?ooooo`006_ooool00ol0003oooooooooo`2gooooo`;oo`00M?ooool2o`00oe7ooooo
1885000Jooooo`03o`000?oooooooooo0;Gooooo0_oo001dooooo`;o003oDoooool001[ooooo00?o0000
1886ooooooooool0/oooool2ool007?ooooo0ol00?mEooooo`006_ooool00ol0003oooooooooo`2aoooo
1887o`;oo`00L_ooool3o`00oeSooooo000Jooooo`03o`000?oooooooooo0:oooooo0_oo001booooo`;o
1888003oFoooool001[ooooo00?o0000ooooooooool0[Oooool2ool007;ooooo0_l00?mMooooo`006_oo
1889ool00ol0003oooooooooo`2[ooooo`;oo`00L_ooool2o`00oeoooooo000Jooooo`?o0000Z?ooool3
1890ool0077ooooo0ol00?mQooooo`006_ooool00ol0003oooooooooo`2Vooooo`;oo`00LOooool3o`00
1891ofCooooo000Jooooo`03o`000?oooooooooo0:Cooooo0_oo001aooooo`;o003oIoooool001[ooooo
189200?o0000ooooooooool0X_ooool2ool0077ooooo0_l00?mYooooo`006_ooool00ol0003ooooooooo
1893o`2Pooooo`;oo`00L?ooool3o`00of_ooooo000Jooooo`03o`000?oooooooooo09kooooo0_oo000W
1894oooooa;o003o=_ooool3o`00ofkooooo000?ooooo`?o00002?ooool00ol0003oooooooooo`2Loooo
1895o`;oo`008oooool6o`00oa;ooooo0ol00?l`ooooo`?o003oLOooool000kooooo00Go0000oooooooo
1896ooooooooo`000007ooooo`03o`000?oooooooooo09[ooooo0_oo000Oooooo`Ko003o6oooool3o`00
1897ob[ooooo0ol00?mdooooo`004_ooool00ol0003oooooooooo`05ooooo`Co0000Uoooool2ool001go
1898oooo1?l00?lTooooo`?o003o9?ooool3o`00ogOooooo000Booooo`03o`000?oooooooooo00Gooooo
189900?o0000ooooooooool0Uoooool00ooo003oooooooooo`0Jooooo`?o003o:oooool4o`00oagooooo
19000ol00?mjooooo`003_ooool4o`0000Sooooo00?o0000ooooooooool0UOooool2ool001[ooooo0ol0
19010?lbooooo`?o003o5Oooool5o`00oggooooo000>ooooo`03o`000?oooooooooo00Wooooo00?o0000
1902ooooooooool0U?ooool00ooo003oooooooooo`0Gooooo`?o003o>?ooool4o`00o`_ooooo1_l00?n2
1903ooooo`003_ooool5o`0000Oooooo00?o0000ooooooooool0T_ooool2ool001Kooooo1?l00?looooo
1904o`_o003oR?ooool001[ooooo00?o0000ooooooooool0T?ooool2ool001Gooooo0ol00?oFooooo`00
19056_ooool00ol0003oooooooooo`2>ooooo`;oo`005?ooool3o`00omWooooo000Jooooo`?o0000S?oo
1906ool2ool001?ooooo0ol00?oLooooo`006_ooool00ol0003oooooooooo`2;ooooo`03ool00?oooooo
1907oooo013ooooo0ol00?oOooooo`006_ooool00ol0003oooooooooo`29ooooo`;oo`004?ooool3o`00
1908on;ooooo000Jooooo`03o`000?oooooooooo08Sooooo00?oo`00ooooooooool03Oooool3o`00onGo
1909oooo000Jooooo`03o`000?oooooooooo08Kooooo0_oo000>ooooo`;o003oj?ooool001[ooooo00?o
19100000ooooooooool0QOooool00ooo003oooooooooo`0<ooooo`;o003oj_ooool001[ooooo0ol00023
1911ooooo`;oo`003Oooool2o`00oncooooo000Jooooo`03o`000?oooooooooo08;ooooo00?oo`00oooo
1912ooooool02_ooool3o`00onkooooo000Jooooo`03o`000?oooooooooo083ooooo0_oo000:ooooo`?o
1913003olOooool001[ooooo00?o0000ooooooooool0Ooooool00ooo003oooooooooo`08ooooo`;o003o
1914m?ooool001[ooooo00?o0000ooooooooool0OOooool2ool000Wooooo0_l00?ofooooo`006_ooool3
1915o`0007cooooo00?oo`00ooooooooool01oooool2o`00ooSooooo000Jooooo`03o`000?oooooooooo
191607[ooooo0_oo0008ooooo`;o003on_ooool001[ooooo00?o0000ooooooooool0NOooool00ooo003o
1917ooooooooo`06ooooo`;o003oo?ooool001[ooooo00?o0000ooooooooool0Moooool2ool000Oooooo
19180_l00?onooooo`006_ooool3o`0007Kooooo00?oo`00ooooooooool01Oooool2o`00oooooooo0Ooo
1919ool001[ooooo00?o0000ooooooooool0M?ooool2ool000Kooooo0_l00?ooooooo`?ooooo0009oooo
1920o`?o00001?ooool2o`0000Sooooo00?o0000ooooooooool0L_ooool2ool000Kooooo0_l00?oooooo
1921o`Gooooo000:ooooo`03o`000?oooooooooo00;ooooo00Co0000oooooooooooo00001oooool00ol0
1922003oooooooooo`1aooooo`03ool00?oooooooooo00Gooooo00?o003oooooooooool0ooooool5oooo
1923o`002_ooool00ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`0000Oooooo1?l0001^oooo
1924o`;oo`001_ooool2o`00oooooooo2?ooool000[ooooo00?o0000ooooooooool00_ooool01?l0003o
1925ooooooooool00007ooooo`03o`000?oooooooooo06gooooo0_oo0007ooooo`03o`00oooooooooooo
19260?oooooo2?ooool000[ooooo00?o0000ooooooooool00_ooool01?l0003oooooooooool00007oooo
1927o`03o`000?oooooooooo06cooooo00?oo`00ooooooooool01Oooool2o`00oooooooo2oooool000Wo
1928oooo0_l00004ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0J_ooool2ool0
192900Gooooo0ol00?ooooooo`gooooo000:ooooo`03o`000?oooooooooo00?ooooo0_l00008ooooo`03
1930o`000?oooooooooo06Wooooo00?oo`00ooooooooool00oooool2o`00oooooooo4?ooool001[ooooo
193100?o0000ooooooooool0Ioooool2ool000Cooooo0_l00?oooooooa;ooooo000Jooooo`03o`000?oo
1932oooooooo06Kooooo00?oo`00ooooooooool00oooool00ol00?ooooooooooo`3ooooooa;ooooo000J
1933ooooo`03o`000?oooooooooo06Gooooo00?oo`00ooooooooool00_ooool2o`00oooooooo5Oooool0
193401[ooooo00?o0000ooooooooool0I?ooool00ooo003oooooooooo`02ooooo`03o`00oooooooooooo
19350?oooooo5Oooool001[ooooo00?o0000ooooooooool0Hoooool01?oo003oooooooooooooool2o`00
1936oooooooo6?ooool001[ooooo00?o0000ooooooooool0HOooool2ool000?ooooo00?o003ooooooooo
1937ool0oooooolHooooo`006_ooool00ol0003oooooooooo`1Pooooo`04ool00?ooooooooooooooo`;o
1938003ooooooolKooooo`006_ooool00ol0003oooooooooo`1Oooooo`05ool00?ooooooooooooooool0
19390?l0oooooolMooooo`006_ooool00ol0003oooooooooo`1Nooooo`03ool00?oooooooooo00;o003o
1940oooooolNooooo`006_ooool00ol0003oooooooooo`1Mooooo`04ool00?ooooooooooo`00oooooooo
19418?ooool001[ooooo00?o0000ooooooooool0Foooool2ool000;ooooo00?o003oooooooooool0oooo
1942oolOooooo`006_ooool00ol0003oooooooooo`1Jooooo`05ool00?ooooooooooooooool00?l0oooo
1943oolRooooo`006_ooool00ol0003oooooooooo`1Iooooo`05ool00?ooooooooooooooool00?l0oooo
1944oolSooooo`006_ooool00ol0003oooooooooo`1Hooooo`03ool00?oooooooooo00;o003ooooooolT
1945ooooo`006_ooool00ol0003oooooooooo`1Gooooo`04ool00?ooooooooooo`00oooooooo9_ooool0
194601[ooooo00?o0000ooooooooool0EOooool2ool00003ooooool00?oo003o0?oooooo9oooool001[o
1947oooo00?o0000ooooooooool0E?ooool01?oo003oooooooooool00?ooooooobWooooo000Jooooo`03
1948o`000?oooooooooo05?ooooo00Coo`00ooooool00?oo003ooooooolZooooo`006_ooool00ol0003o
1949ooooooooo`1Booooo`03ool00?oooooo003o0?oooooo;?ooool000Sooooo1Ol00003ooooo`;o0000
19502?ooool00ol0003oooooooooo`1Aooooo`03ool00?oooooo003o0?oooooo;Oooool000Wooooo00Co
19510000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo053o
1952oooo00?oo`00ooooool00?l0ooooool^ooooo`002_ooool00ol0003oooooooooo`02ooooo`04o`00
19530?ooooooooooo`0000Oooooo1?l0001>ooooo`03ool00?oooooo003o0?oooooo;oooool000_ooooo
195400Go0000ooooooooooooooooo`000002ooooo`03o`000?oooooooooo00Gooooo00?o0000oooooooo
1955ool0C_ooool00ooo003oooooo`00o`3ooooooc3ooooo0008ooooo`05o`000?ooooooooooooooool0
195600000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo04gooooo00?oo`00oooo
1957ool00?l0oooooolaooooo`002?ooool01Ol0003ooooooooooooooooo000000;ooooo00Co0000oooo
1958oooooooo00001oooool00ol0003oooooooooo`1<ooooo`03ool00?oooooo003o0?oooooo<_ooool0
195900Wooooo0ol00004ooooo`;o00002?ooool00ol0003oooooooooo`1;ooooo`03ool00?oooooo003o
19600?oooooo<oooool001[ooooo00?o0000ooooooooool0B_ooool00ooo003oooooo`00o`3oooooocCo
1961oooo000Jooooo`03o`000?oooooooooo04Wooooo00?oo`00ooooool00?l0ooooooleooooo`006_oo
1962ool00ol0003oooooooooo`18ooooo`03ool00?l00?oo003o0?oooooo=_ooool001[ooooo00?o0000
1963ooooooooool0Aoooool00ooo003o003oooooo`3oooooocOooooo000Jooooo`03o`000?oooooooooo
196404Kooooo00?oo`00o`00ooooool0oooooolhooooo`006_ooool00ol0003oooooooooo`15ooooo`03
1965ool00?l00?oooooo0?oooooo>Oooool001[ooooo00?o0000ooooooooool0A?ooool00ooo003o003o
1966ooooo`3ooooooc[ooooo000Jooooo`03o`000?oooooooooo04Cooooo00?o003oooooooooool0oooo
1967ooljooooo`006_ooool00ol0003oooooooooo`13ooooo`03ool00?l00?oooooo0?oooooo>oooool0
196801[ooooo00?o0000ooooooooool0@_ooool00ooo003o003oooooo`3ooooooccooooo000Jooooo`?o
19690000@Oooool00ooo003o003oooooo`3oooooocgooooo000Jooooo`03o`000?oooooooooo043ooooo
197000?oo`00o`00ooooool0oooooolnooooo`006_ooool00ol0003oooooooooo`0oooooo`03ool00?l0
19710?oooooo0?oooooo?oooool001[ooooo00?o0000ooooooooool0?_ooool00ooo003o003oooooo`3o
1972oooood3ooooo000Jooooo`03o`000?oooooooooo03gooooo00?oo`00o`00ooooool0oooooom1oooo
1973o`006_ooool00ol0003oooooooooo`0looooo`03ool00?l00?oooooo0?oooooo@_ooool001[ooooo
197400?o0000ooooooooool0>oooool00ooo003o003oooooo`3ooooood?ooooo000Jooooo`03o`000?oo
1975oooooooo03[ooooo00?oo`00o`00ooooool0oooooom4ooooo`006_ooool00ol0003oooooooooo`0i
1976ooooo`03ool00?l00?oooooo0?ooooooAOooool001[ooooo00?o0000ooooooooool0>?ooool00ooo
1977003o003oooooo`3oooooodKooooo000Jooooo`03o`000?oooooooooo03Oooooo00?oo`00o`00oooo
1978ool0oooooom7ooooo`006_ooool3o`0003Oooooo00?o003oooooooooool0oooooom7ooooo`006_oo
1979ool00ol0003oooooooooo`0fooooo`03ool00?l00?oooooo0?ooooooB?ooool001[ooooo00?o0000
1980ooooooooool0=Oooool00ooo003o003oooooo`3oooooodWooooo000Jooooo`03o`000?oooooooooo
198103Cooooo00?oo`00o`00ooooool0oooooom:ooooo`006_ooool00ol0003oooooooooo`0dooooo`03
1982o`00oooooooooooo0?ooooooB_ooool001[ooooo00?o0000ooooooooool0<oooool00ol00?oooooo
1983ooooo`3ooooood_ooooo0009ooooo`?o00001?ooool2o`0000Sooooo00?o0000ooooooooool0<_oo
1984ool00ol00?ooooooooooo`3oooooodcooooo0008ooooo`05o`000?ooooooooooooooool000000_oo
1985ool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo037ooooo00?o003oooooooooool0
1986oooooom=ooooo`003?ooool01?l0003oooooooooool00002ooooo`03o`000?oooooooooo00Gooooo
19871?l0000`ooooo`03o`00oooooooooooo0?ooooooCOooool000cooooo00Co0000oooooooooooo0000
19880_ooool00ol0003oooooooooo`05ooooo`03o`000?oooooooooo033ooooo00?o003oooooooooool0
1989oooooom>ooooo`002?ooool4o`0000?ooooo00Co0000oooooooooooo00001oooool00ol0003ooooo
1990ooooo`0_ooooo`03o`00oooooooooooo0?ooooooCoooool000Sooooo00?o0000ooooooooool01?oo
1991ool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo02kooooo00?oo`00o`00ooooool0
1992oooooom@ooooo`002?ooool5o`0000?ooooo0_l00008ooooo`03o`000?oooooooooo02kooooo00?o
1993003oooooooooool0oooooom@ooooo`006_ooool00ol0003oooooooooo`0]ooooo`03o`00oooooooo
1994oooo0?ooooooDOooool001[ooooo00?o0000ooooooooool0;?ooool00ooo003o003oooooo`3ooooo
1995oe;ooooo000Jooooo`?o0000:oooool00ooo003o003oooooo`3ooooooe?ooooo000Jooooo`03o`00
19960?oooooooooo02_ooooo00?o003oooooooooool0oooooomCooooo`006_ooool00ol0003ooooooooo
1997o`0Zooooo`03ool00?l00?oooooo0?ooooooE?ooool001[ooooo00?o0000ooooooooool0:Oooool0
19980ooo003o003oooooo`3ooooooeGooooo000Jooooo`03o`000?oooooooooo02Wooooo00?o003ooooo
1999ooooool0oooooomEooooo`006_ooool3o`0002Sooooo00?oo`00o`00ooooool0oooooomFooooo`00
20006_ooool00ol0003oooooooooo`0Xooooo`03o`00oooooooooooo0?ooooooE_ooool001[ooooo00?o
20010000ooooooooool09oooool00ol00?ooooooooooo`3ooooooeOooooo000Jooooo`03o`000?oooooo
2002oooo02Kooooo00?oo`00o`00ooooool0oooooomHooooo`006_ooool00ol0003oooooooooo`0Voooo
2003o`03o`00oooooooooooo0?ooooooF?ooool001[ooooo0ol0000Uooooo`03o`00oooooooooooo0?oo
2004ooooFOooool001[ooooo00?o0000ooooooooool09Oooool00ol00?ooooooooooo`3ooooooeWooooo
2005000Jooooo`03o`000?oooooooooo02Cooooo00?o003oooooooooool0oooooomJooooo`006_ooool0
20060ol0003oooooooooo`0Tooooo`03o`00oooooooooooo0?ooooooF_ooool001[ooooo00?o0000oooo
2007ooooool08oooool00ol00?ooooooooooo`3ooooooe_ooooo000Jooooo`?o00008oooool00ol00?oo
2008ooooooooo`3ooooooe_ooooo000Jooooo`03o`000?oooooooooo02;ooooo00?o003oooooooooool0
2009oooooomLooooo`000oooool3o`0000Cooooo0_l00004ooooo`;o00002?ooool00ol0003ooooooooo
2010o`0Qooooo`03o`00oooooooooooo0?ooooooGOooool000Cooooo00?o0000ooooooooool00_ooool0
20111?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0
20128Oooool00ol00?ooooooooooo`3ooooooegooooo0004ooooo`03o`000?oooooooooo00;ooooo00Co
20130000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`Co00007oooool00ol00?oo
2014ooooooooo`3ooooooekooooo0004ooooo`03o`000?oooooooooo00;ooooo00Co0000oooooooooooo
201500000_ooool01?l0003oooooooooool00007ooooo`03o`000?oooooooooo023ooooo00?o003ooooo
2016ooooool0oooooomNooooo`001?ooool00ol0003oooooooooo`02ooooo`04o`000?ooooooooooo`00
201700;ooooo00Co0000oooooooooooo00001oooool00ol0003oooooooooo`0Oooooo`03o`00oooooooo
2018oooo0?ooooooGoooool000?ooooo0_l00004ooooo`04o`000?ooooooooooo`0000;ooooo00Co0000
2019oooooooooooo00001oooool00ol0003oooooooooo`0Oooooo`03o`00oooooooooooo0?ooooooGooo
2020ool000Cooooo00?o0000ooooooooool00oooool2o`0000Cooooo0_l00008ooooo`03o`000?oooooo
2021oooo01kooooo00?o003oooooooooool0oooooomPooooo`006_ooool00ol0003oooooooooo`0Noooo
2022o`03o`00oooooooooooo0?ooooooH?ooool001[ooooo00?o0000ooooooooool07Oooool00ol00?oo
2023ooooooooo`3oooooof7ooooo000Jooooo`03o`000?oooooooooo01gooooo00?o003oooooooooool0
2024oooooomQooooo`006_ooool00ol0003oooooooooo`0Looooo`03o`00oooooooooooo0?ooooooH_oo
2025ool001[ooooo00?o0000ooooooooool07?ooool00ol00?ooooooooooo`3oooooof;ooooo000Joooo
2026o`03o`000?oooooooooo01cooooo00?o003oooooooooool0oooooomRooooo`006_ooool00ol0003o
2027ooooooooo`0Kooooo`03o`00oooooooooooo0?ooooooHoooool001[ooooo00?o0000ooooooooool0
20286oooool00ol00?ooooooooooo`3oooooof?ooooo000Jooooo`03o`000?oooooooooo01[ooooo00?o
2029003oooooooooool0oooooomTooooo`006_ooool00ol0003oooooooooo`0Jooooo`03o`00oooooooo
2030oooo0?ooooooI?ooool001[ooooo00?o0000ooooooooool06Oooool00ol00?ooooooooooo`3ooooo
2031ofGooooo000Jooooo`03o`000?oooooooooo01Wooooo00?o003oooooooooool0oooooomUooooo`00
20326_ooool00ol0003oooooooooo`0Hooooo`03o`00oooooooooooo0?ooooooI_ooool001[ooooo00?o
20330000ooooooooool06?ooool00ol00?ooooooooooo`3oooooofKooooo000Jooooo`03o`000?oooooo
2034oooo01Sooooo00?o003oooooooooool0oooooomVooooo`006_ooool00ol0003oooooooooo`0Goooo
2035o`03o`00oooooooooooo0?ooooooIoooool001[ooooo00?o0000ooooooooool05oooool00ol00?oo
2036ooooooooo`3oooooofOooooo000Jooooo`03o`000?oooooooooo01Oooooo00?o003oooooooooool0
2037oooooomWooooo`000_ooool5o`0000?ooooo0_l00004ooooo`;o00002?ooool00ol0003ooooooooo
2038o`0Fooooo`03o`00oooooooooooo0?ooooooJ?ooool000?ooooo00Co0000oooooooooooo00000_oo
2039ool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooooooo
2040ool05_ooool00ol00?ooooooooooo`3oooooofSooooo0004ooooo`03o`000?oooooooooo00;ooooo
204100Co0000oooooooooooo00000_ooool01?l0003oooooooooool00007ooooo`Co00005?ooool00ol0
20420?ooooooooooo`3oooooofWooooo0005ooooo`05o`000?ooooooooooooooool000000_ooool01?l0
2043003oooooooooool00002ooooo`03o`000?oooooooooo00Gooooo00?o0000ooooooooool05Oooool0
20440ol00?ooooooooooo`3oooooofWooooo0002ooooo`05o`000?ooooooooooooooool000000_ooool0
20451?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000ooooooooool0
20465Oooool00ol00?ooooooooooo`3oooooofWooooo0002ooooo`05o`000?ooooooooooooooool00000
20470_ooool01?l0003oooooooooool00002ooooo`04o`000?ooooooooooo`0000Oooooo00?o0000oooo
2048ooooool05?ooool00ol00?ooooooooooo`3oooooof[ooooo0003ooooo`?o00001?ooool2o`0000Co
2049oooo0_l00008ooooo`03o`000?oooooooooo01Cooooo00?o003oooooooooool0oooooomZooooo`00
20506_ooool00ol0003oooooooooo`0Dooooo`03o`00oooooooooooo0?ooooooJ_ooool001[ooooo00?o
20510000ooooooooool04oooool00ol00?ooooooooooo`3oooooof_ooooo000Jooooo`03o`000?oooooo
2052oooo0?ooooooPOooool001[ooooo00?o0000ooooooooool0oooooon1ooooo`006_ooool00ol0003o
2053ooooooooo`3ooooooh7ooooo000Jooooo`03o`000?oooooooooo0?ooooooPOooool001[ooooo00?o
20540000ooooooooool0oooooon1ooooo`00oooooonNooooo`00\
2055\>"],
2056 ImageRangeCache->{{{0, 412}, {254.125, 0}} -> {-58.8613, -0.530814, \
20571.63559, 0.0117063}}]
2058}, Open ]],
2059
2060Cell["\<\
2061Cross section (pb) as a function of the Higgs mass. This plot shows \
2062how well the EFT does. For a Higgs<200 GeV the approximation is very \
2063good.\
2064\>", "Text"]
2065}, Open ]],
2066
2067Cell[CellGroupData[{
2068
2069Cell["Various ways to do the integration over the x1 and x2.", "Subsection"],
2070
2071Cell[CellGroupData[{
2072
2073Cell["\<\
2074
2075uno=Integrate[x1*x2,{x1,t0,1},{x2,t0/x1,1}]//Expand
2076due=Integrate[ta,{ta,t0,1},{y,Log[Sqrt[ta]],-Log[Sqrt[ta]]}]//PowerExpand//\
2077Expand
2078tre=Integrate[t0/z \
2079t0/z^2,{z,t0,1},{y,Log[Sqrt[t0/z]],-Log[Sqrt[t0/z]]}]//PowerExpand//Expand\
2080\>\
2081", "Input"],
2082
2083Cell[BoxData[
2084 \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"],
2085
2086Cell[BoxData[
2087 \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"],
2088
2089Cell[BoxData[
2090 \(TraditionalForm\`1\/2\ \(log(t0)\)\ t0\^2 - t0\^2\/4 + 1\/4\)], "Output"]
2091}, Open ]]
2092}, Closed]]
2093}, Closed]],
2094
2095Cell[CellGroupData[{
2096
2097Cell["NLO cross section", "Section"],
2098
2099Cell["\<\
2100We have integrate over the angular variables, so we are only left \
2101with two integrations. One is over z (=mh/S/x1/x2) and the other over the \
2102rapidity y of the partonic cms. For every point in the phase space we have to \
2103calculate an event and a corresponding counter-event with z=1 to implement \
2104the + distributions in the gg channel. Various contributions add to the final \
2105result:
2106
2107virtual: gg>h at 1-loop + corrections to the effective lagrangian (UV and IR \
2108divergent)
2109real: qq~ >h g (finite)
2110 qg > qh (collinear divergent)
2111 gg>gh (soft and collinear divergent)
2112\
2113\>", "Text",
2114 FontSize->16],
2115
2116Cell[CellGroupData[{
2117
2118Cell["Born+Virtual ", "Subsection"],
2119
2120Cell[TextData[{
2121 "dsigmaBV[yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
2122 StyleBox["(* local variables *)",
2123 FontColor->RGBColor[0, 1, 0]],
2124 "\n{y0,x10,x20,sig0,ymax0,JAC0,v,S,tau0,beta,gg0,qg0,qq0},\nMuf=muf 1.;\n\
2125Mur=mur 1.;\nv=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nbeta=Sqrt[1-tau0];\n\n",
2126 StyleBox["(* calculate quantities for z=1 *)",
2127 FontColor->RGBColor[1, 0, 0]],
2128 "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\nJAC0=2*ymax0;\n\
2129x10=Sqrt[tau0] Exp[y0];\nx20=Sqrt[tau0] Exp[-y0];\n\
2130{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
2131 StyleBox["(* sigma0 *)",
2132 FontColor->RGBColor[1, 0, 0]],
2133 "\nsig0=asNLO[Mur,5]^2/576/Pi/v^2*tau0;\nsig0=sig0+sig0*asNLO[Mur,5]/2/Pi*\n\
2134(11/3 CA+ 2 Pi^2 - 2 b0 2 Log[Muf/Mur]+\n16 CA Log[beta] Log[mh/Muf]+16 CA \
2135Log[beta]^2);\nsig0=sig0*gg0;\nsig0=sig0*389379660; (*to picobarns*)\n\
2136sig0=sig0*JAC0;\n\n\
2137(*Print[{muf,mur,v,S,tau0,beta,ymax0,y0,JAC0,x10,x20,gg0,qg0,qq0,sig0}];*)\n\
2138Return[sig0];\n];"
2139}], "Input"]
2140}, Open ]],
2141
2142Cell[CellGroupData[{
2143
2144Cell["Real contributions", "Subsection"],
2145
2146Cell[TextData[{
2147 "dsigmaR[xx_,yy_,mh_,sqrtS_,muf_,mur_]:=Module[\n",
2148 StyleBox["(* local variables *)",
2149 FontColor->RGBColor[0, 1, 0]],
2150 "\n{v,S,tau0,\n y,y0,z,tau,\n x1,x2,x10,x20,\n ymax0,ymax,\n JAC,JAC0,\n \
2151gg,qg,qq,gg0,qg0,qq0,\n qqterm,qgterm,ggterm,ggterm0,\n sig,sig0,\n Muf},\n\n\
2152v=246.;\nS=sqrtS^2;\ntau0=mh^2/S;\nMuf=muf*1.0;\n\n",
2153 StyleBox["(* calculate quantities for an event *)",
2154 FontColor->RGBColor[1, 0, 0]],
2155 "\nz=tau0+(1-tau0)*xx;\ntau=tau0/z;\nymax =-Log[Sqrt[tau]];\n\
2156y=-ymax+2*ymax*yy;\nJAC =2*ymax*(1-tau0)*tau0/z^2;\nx1=Sqrt[tau] Exp[y];\n\
2157x2=tau/x1;\n",
2158 StyleBox["(* call the pdf *)\n",
2159 FontColor->RGBColor[1, 0, 0]],
2160 "\n{gg,qg,qq}=pdfcall[x1,x2,Muf];\n\n",
2161 StyleBox["(* calculate quantities for counter-event *)",
2162 FontColor->RGBColor[1, 0, 0]],
2163 "\nymax0=-Log[Sqrt[tau0]];\ny0=-ymax0+2*ymax0*yy;\n\
2164JAC0=2*ymax0*(1-tau0)*tau0;\nx10=Sqrt[tau0] Exp[y0];\nx20=tau0/x10;\n",
2165 StyleBox["(* call the pdf at z=1 *)",
2166 FontColor->RGBColor[1, 0, 0]],
2167 "\n{gg0,qg0,qq0}=pdfcall[x10,x20,Muf];\n\n",
2168 StyleBox["(* sigma0 *)",
2169 FontColor->RGBColor[1, 0, 0]],
2170 "\nsig0=asNLO[mur,5]^2/576/Pi/v^2;\nsig0=sig0*asNLO[mur,5]/2/Pi;\n\n",
2171 StyleBox["(* qq channnel : no counter event *)",
2172 FontColor->RGBColor[1, 0, 0]],
2173 "\nqqterm=64/27*(1-z)^3;\nqqterm=qqterm*sig0*JAC*qq;\n\n",
2174 StyleBox["(* qg channnel : no counter event *)",
2175 FontColor->RGBColor[1, 0, 0]],
2176 "\nqgterm=CF*( (1+(1-z)^2)/z (2*Log[mh/muf]+2 Log[1-z]-Log[z])\n \
2177+(z^2-3/2(1-z)^2)/z )*z;\nqgterm=qgterm*sig0*JAC*qg;\n\n",
2178 StyleBox["(* gg channnel *)",
2179 FontColor->RGBColor[1, 0, 0]],
2180 "\nggterm=CA*(2 (2 (z/(1-z)+(1-z)/z+z (1-z) )) * (2*Log[mh/muf])-\n \
218111/3 (1-z)^3/z -\n 4 (1-z+z^2)^2/z/(1-z) Log[z]+\n 8 \
2182(1-z+z^2)^2/z Log[1-z]/(1-z) )*z;\nggterm=ggterm*sig0*JAC*gg;\n",
2183 StyleBox["(* gg counter-event *)",
2184 FontColor->RGBColor[1, 0, 0]],
2185 "\nggterm0=CA*(-4/(1-z) 2*Log[mh/muf] - 8*Log[1-z]/(1-z) );\n\
2186ggterm0=ggterm0*sig0*JAC0*gg0;\n\n\n",
2187 StyleBox["(* total *)",
2188 FontColor->RGBColor[1, 0, 0]],
2189 "\nsig=0;\nsig=sig+qqterm;\nsig=sig+qgterm;\nsig=sig+ggterm+ggterm0;\n\
2190sig=sig*389379660; (*to picobarns*)\n\nReturn[sig];\n\n];\n"
2191}], "Input"],
2192
2193Cell[CellGroupData[{
2194
2195Cell["\<\
2196virt=NIntegrate[dsigmaBV[xvar,100,14000,100,100],{xvar,0,1}];
2197virt\
2198\>", "Input"],
2199
2200Cell[BoxData[
2201 \(TraditionalForm\`33.56877602575538`\)], "Output"]
2202}, Open ]],
2203
2204Cell[CellGroupData[{
2205
2206Cell["\<\
2207eps=0.0000000001;
2208real=Vegas[dsigmaR[xvar,yvar,100,14000,100,100],{xvar,eps,1-eps},{yvar,eps,1-\
2209eps},Compiled->False,NStart->1000,MaxPoints->10000]\
2210\>", "Input"],
2211
2212Cell[BoxData[
2213 \(TraditionalForm\`"\nIteration 1: 1000 integrand evaluations so far\n\
2214[1] 16.6638 +- 0.729445 \tchisq -0 (0 df)"\)], "Print"],
2215
2216Cell[BoxData[
2217 \(TraditionalForm\`"\nIteration 2: 2500 integrand evaluations so far\n\
2218[1] 16.6521 +- 0.173781 \tchisq 0.000273976 (1 df)"\)], "Print"],
2219
2220Cell[BoxData[
2221 \(TraditionalForm\`$Aborted\)], "Output"]
2222}, Open ]],
2223
2224Cell[CellGroupData[{
2225
2226Cell["asNLO[100,5]", "Input"],
2227
2228Cell[BoxData[
2229 \(TraditionalForm\`0.11636176382460801`\)], "Output"]
2230}, Open ]]
2231}, Open ]]
2232}, Open ]]
2233}, Open ]]
2234},
2235FrontEndVersion->"4.1 for Macintosh",
2236ScreenRectangle->{{0, 1280}, {0, 832}},
2237WindowSize->{872, 573},
2238WindowMargins->{{131, Automatic}, {106, Automatic}}
2239]
2240
2241(*******************************************************************
2242Cached data follows. If you edit this Notebook file directly, not
2243using Mathematica, you must remove the line containing CacheID at
2244the top of the file. The cache data will then be recreated when
2245you save this file from within Mathematica.
2246*******************************************************************)
2247
2248(*CellTagsOutline
2249CellTagsIndex->{}
2250*)
2251
2252(*CellTagsIndex
2253CellTagsIndex->{}
2254*)
2255
2256(*NotebookFileOutline
2257Notebook[{
2258
2259Cell[CellGroupData[{
2260Cell[1727, 52, 56, 0, 65, "Subtitle"],
2261
2262Cell[CellGroupData[{
2263Cell[1808, 56, 31, 0, 56, "Section"],
2264Cell[1842, 58, 687, 14, 114, "Text"]
2265}, Closed]],
2266
2267Cell[CellGroupData[{
2268Cell[2566, 77, 32, 0, 36, "Section"],
2269Cell[2601, 79, 88, 4, 57, "Input"],
2270
2271Cell[CellGroupData[{
2272Cell[2714, 87, 35, 0, 46, "Subsection"],
2273Cell[2752, 89, 159, 4, 32, "Text"],
2274
2275Cell[CellGroupData[{
2276Cell[2936, 97, 161, 2, 43, "Input"],
2277Cell[3100, 101, 201, 3, 28, "Output"]
2278}, Open ]]
2279}, Closed]],
2280
2281Cell[CellGroupData[{
2282Cell[3350, 110, 52, 0, 30, "Subsection"],
2283Cell[3405, 112, 68, 3, 42, "Input"]
2284}, Closed]],
2285
2286Cell[CellGroupData[{
2287Cell[3510, 120, 73, 0, 30, "Subsection"],
2288
2289Cell[CellGroupData[{
2290Cell[3608, 124, 155, 3, 43, "Input"],
2291Cell[3766, 129, 113, 2, 28, "Output"],
2292Cell[3882, 133, 80, 1, 28, "Output"]
2293}, Open ]],
2294
2295Cell[CellGroupData[{
2296Cell[3999, 139, 44, 3, 42, "Input"],
2297Cell[4046, 144, 72, 1, 24, "Print"],
2298Cell[4121, 147, 68, 1, 24, "Print"],
2299Cell[4192, 150, 80, 1, 24, "Print"],
2300Cell[4275, 153, 88, 1, 24, "Print"],
2301Cell[4366, 156, 97, 2, 24, "Print"],
2302Cell[4466, 160, 122, 2, 24, "Print"],
2303Cell[4591, 164, 53, 1, 24, "Print"],
2304Cell[4647, 167, 81, 1, 24, "Print"],
2305Cell[4731, 170, 92, 1, 24, "Print"]
2306}, Open ]],
2307
2308Cell[CellGroupData[{
2309Cell[4860, 176, 349, 6, 58, "Subsubsection"],
2310Cell[5212, 184, 945, 37, 522, "Input"],
2311Cell[6160, 223, 37, 3, 42, "Input"],
2312Cell[6200, 228, 1739, 64, 897, "Input"]
2313}, Open ]],
2314
2315Cell[CellGroupData[{
2316Cell[7976, 297, 58, 0, 42, "Subsubsection"],
2317Cell[8037, 299, 43, 0, 27, "Input"]
2318}, Open ]]
2319}, Open ]],
2320
2321Cell[CellGroupData[{
2322Cell[8129, 305, 267, 6, 82, "Subsection"],
2323Cell[8399, 313, 778, 16, 155, "Input"],
2324
2325Cell[CellGroupData[{
2326Cell[9202, 333, 76, 2, 42, "Subsubsection"],
2327
2328Cell[CellGroupData[{
2329Cell[9303, 339, 32, 0, 27, "Input"],
2330Cell[9338, 341, 71, 1, 28, "Output"]
2331}, Open ]]
2332}, Open ]]
2333}, Open ]],
2334
2335Cell[CellGroupData[{
2336Cell[9470, 349, 36, 0, 46, "Subsection"],
2337Cell[9509, 351, 76, 7, 102, "Input"]
2338}, Closed]]
2339}, Open ]],
2340
2341Cell[CellGroupData[{
2342Cell[9634, 364, 35, 0, 56, "Section"],
2343
2344Cell[CellGroupData[{
2345Cell[9694, 368, 207, 5, 58, "Subsubsection"],
2346Cell[9904, 375, 18, 0, 27, "Input"],
2347
2348Cell[CellGroupData[{
2349Cell[9947, 379, 236, 6, 72, "Input"],
2350Cell[10186, 387, 28784, 687, 280, 5861, 400, "GraphicsData", "PostScript", \
2351"Graphics"]
2352}, Open ]],
2353Cell[38985, 1077, 150, 3, 32, "Text"]
2354}, Open ]],
2355
2356Cell[CellGroupData[{
2357Cell[39172, 1085, 468, 9, 74, "Subsubsection"],
2358Cell[39643, 1096, 420, 20, 297, "Input"],
2359
2360Cell[CellGroupData[{
2361Cell[40088, 1120, 72, 0, 27, "Input"],
2362Cell[40163, 1122, 70, 1, 28, "Output"]
2363}, Open ]]
2364}, Open ]],
2365
2366Cell[CellGroupData[{
2367Cell[40282, 1129, 215, 5, 64, "Subsection"],
2368Cell[40500, 1136, 113, 3, 27, "Input"],
2369Cell[40616, 1141, 139, 3, 42, "Input"],
2370Cell[40758, 1146, 24, 0, 27, "Input"],
2371
2372Cell[CellGroupData[{
2373Cell[40807, 1150, 319, 12, 72, "Input"],
2374Cell[41129, 1164, 34897, 892, 264, 10632, 588, "GraphicsData", "PostScript", \
2375"Graphics"]
2376}, Open ]],
2377Cell[76041, 2059, 170, 4, 30, "Text"]
2378}, Open ]],
2379
2380Cell[CellGroupData[{
2381Cell[76248, 2068, 76, 0, 46, "Subsection"],
2382
2383Cell[CellGroupData[{
2384Cell[76349, 2072, 259, 8, 72, "Input"],
2385Cell[76611, 2082, 93, 1, 46, "Output"],
2386Cell[76707, 2085, 93, 1, 46, "Output"],
2387Cell[76803, 2088, 93, 1, 46, "Output"]
2388}, Open ]]
2389}, Closed]]
2390}, Closed]],
2391
2392Cell[CellGroupData[{
2393Cell[76957, 2096, 36, 0, 36, "Section"],
2394Cell[76996, 2098, 636, 15, 194, "Text"],
2395
2396Cell[CellGroupData[{
2397Cell[77657, 2117, 35, 0, 46, "Subsection"],
2398Cell[77695, 2119, 958, 19, 462, "Input"]
2399}, Open ]],
2400
2401Cell[CellGroupData[{
2402Cell[78690, 2143, 40, 0, 46, "Subsection"],
2403Cell[78733, 2145, 2219, 45, 1107, "Input"],
2404
2405Cell[CellGroupData[{
2406Cell[80977, 2194, 91, 3, 42, "Input"],
2407Cell[81071, 2199, 69, 1, 28, "Output"]
2408}, Open ]],
2409
2410Cell[CellGroupData[{
2411Cell[81177, 2205, 173, 4, 57, "Input"],
2412Cell[81353, 2211, 147, 2, 60, "Print"],
2413Cell[81503, 2215, 156, 2, 60, "Print"],
2414Cell[81662, 2219, 59, 1, 28, "Output"]
2415}, Open ]],
2416
2417Cell[CellGroupData[{
2418Cell[81758, 2225, 29, 0, 27, "Input"],
2419Cell[81790, 2227, 71, 1, 28, "Output"]
2420}, Open ]]
2421}, Open ]]
2422}, Open ]]
2423}, Open ]]
2424}
2425]
2426*)
2427
2428
2429
2430(*******************************************************************
2431End of Mathematica Notebook file.
2432*******************************************************************)
2433