CernSchool2011: HiggsGG-LO-mtfinite.nb

File HiggsGG-LO-mtfinite.nb, 12.4 KB (added by trac, 6 years ago)
Line 
1(************** Content-type: application/mathematica **************
2
3                    Mathematica-Compatible Notebook
4
5This notebook can be used with any Mathematica-compatible
6application, such as Mathematica, MathReader or Publicon. The data
7for the notebook starts with the line containing stars above.
8
9To get the notebook into a Mathematica-compatible application, do
10one of the following:
11
12* Save the data starting with the line of stars above into a file
13  with a name ending in .nb, then open the file inside the
14  application;
15
16* Copy the data starting with the line of stars above to the
17  clipboard, then use the Paste menu command inside the application.
18
19Data for notebooks contains only printable 7-bit ASCII and can be
20sent directly in email or through ftp in text mode.  Newlines can be
21CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
22
23NOTE: If you modify the data for this notebook not in a Mathematica-
24compatible application, you must delete the line below containing
25the word CacheID, otherwise Mathematica-compatible applications may
26try to use invalid cache data.
27
28For more information on notebooks and Mathematica-compatible
29applications, contact Wolfram Research:
30  web: http://www.wolfram.com
31  email: info@wolfram.com
32  phone: +1-217-398-0700 (U.S.)
33
34Notebook reader applications are available free of charge from
35Wolfram Research.
36*******************************************************************)
37
38(*CacheID: 232*)
39
40
41(*NotebookFileLineBreakTest
42NotebookFileLineBreakTest*)
43(*NotebookOptionsPosition[     10709,        318]*)
44(*NotebookOutlinePosition[     11346,        340]*)
45(*  CellTagsIndexPosition[     11302,        336]*)
46(*WindowFrame->Normal*)
47
48
49
50Notebook[{
51
52Cell[CellGroupData[{
53Cell[TextData[{
54  "Calculation for ",
55  StyleBox["gg > Higgs at LO with full top-mass dependence",
56    "DisplayFormula"]
57}], "Title"],
58
59Cell[CellGroupData[{
60
61Cell["Input FeynCalc", "Subsection"],
62
63Cell[BoxData[
64    \(\(<< HighEnergyPhysics`fc`;\)\)], "Input"],
65
66Cell[TextData[{
67  StyleBox["FeynCalc",
68    FontWeight->"Bold"],
69  " ",
70  "4.1.0.3b",
71  "    ",
72  " Evaluate ?FeynCalc for help or visit ",
73  ButtonBox["www.feyncalc.org",
74    ButtonData:>{
75      URL[ "http://www.feyncalc.org"], None},
76    ButtonStyle->"Hyperlink",
77    ButtonNote->"http://www.feyncalc.org"]
78}], "Text",
79  GeneratedCell->True,
80  CellAutoOverwrite->True]
81}, Closed]],
82
83Cell[CellGroupData[{
84
85Cell["Preliminaries", "Subsection"],
86
87Cell[CellGroupData[{
88
89Cell["Kinematics 2->1 ", "Subsubsection"],
90
91Cell[BoxData[
92    \(\(\(\[IndentingNewLine]\)\(\(ScalarProduct[q1, q1] =
93        0;\)\[IndentingNewLine]
94    \(ScalarProduct[q2, q2] = 0;\)\[IndentingNewLine]
95    \(ScalarProduct[q1, q2] = mh2/2;\)\[IndentingNewLine]
96    \(ScalarProduct[q, q1] = mh2/2;\)\[IndentingNewLine]
97    \(ScalarProduct[q, q2] = mh2/2;\)\[IndentingNewLine]
98    \(ScalarProduct[q, q] = mh2;\)\[IndentingNewLine]
99    \)\)\)], "Input"]
100}, Open  ]]
101}, Closed]],
102
103Cell[CellGroupData[{
104
105Cell["Amplitude (2 diagrams)", "Subsection"],
106
107Cell[CellGroupData[{
108
109Cell[BoxData[
110    \(\(\(\[IndentingNewLine]\)\(\(Amp = \((\(-I\))\) \((\(\((\(-\((\(-I\)\ \
111gs)\)^2\)\ \ \((\(-\ I\)\ mt\ /v)\)\ *\ I^3*deltaAB/2*
112                      Tr[\((GSD[l + q1] + mt)\) .
113                            GAD[mu] . \((GSD[l] + mt)\) .
114                            GAD[nu] . \((GSD[l - q2] +
115                                mt)\) + \((GSD[l + q2] + mt)\) .
116                            GAD[nu] . \((GSD[l] + mt)\) .
117                            GAD[mu] . \((GSD[l - q1] + mt)\)]\  //
118                    DiracSimplify)\) /. \
119                Pair[Momentum[q2], LorentzIndex[nu]] \[Rule] 0\) /. \
120              Pair[Momentum[q1], LorentzIndex[mu]] \[Rule] 0)\)\  //
121        Simplify\)\(\[IndentingNewLine]\)
122    \)\)\)], "Input"],
123
124Cell[BoxData[
125    FormBox[
126      RowBox[{\(1\/v\),
127        RowBox[{"(",
128          RowBox[{
129          "2", " ", "\[ImaginaryI]", " ", "deltaAB", " ", \(gs\^2\),
130            " ", \(mt\^2\), " ",
131            RowBox[{"(",
132              RowBox[{
133                RowBox[{"8", " ",
134                  SuperscriptBox[
135                    FormBox["l",
136                      "TraditionalForm"],
137                    FormBox[
138                      FormBox["mu",
139                        "TraditionalForm"],
140                      "TraditionalForm"]], " ",
141                  SuperscriptBox[
142                    FormBox["l",
143                      "TraditionalForm"],
144                    FormBox[
145                      FormBox["nu",
146                        "TraditionalForm"],
147                      "TraditionalForm"]]}], "+",
148                RowBox[{"2", " ",
149                  SuperscriptBox[
150                    FormBox["q2",
151                      "TraditionalForm"],
152                    FormBox[
153                      FormBox["mu",
154                        "TraditionalForm"],
155                      "TraditionalForm"]], " ",
156                  SuperscriptBox[
157                    FormBox["q1",
158                      "TraditionalForm"],
159                    FormBox[
160                      FormBox["nu",
161                        "TraditionalForm"],
162                      "TraditionalForm"]]}], "-",
163                RowBox[{"2", " ",
164                  SuperscriptBox[
165                    FormBox["q1",
166                      "TraditionalForm"],
167                    FormBox[
168                      FormBox["mu",
169                        "TraditionalForm"],
170                      "TraditionalForm"]], " ",
171                  SuperscriptBox[
172                    FormBox["q2",
173                      "TraditionalForm"],
174                    FormBox[
175                      FormBox["nu",
176                        "TraditionalForm"],
177                      "TraditionalForm"]]}], "-",
178                RowBox[{
179                  SuperscriptBox["g",
180                    RowBox[{
181                      FormBox[
182                        FormBox["mu",
183                          "TraditionalForm"],
184                        "TraditionalForm"], "\[NoBreak]",
185                      FormBox[
186                        FormBox["nu",
187                          "TraditionalForm"],
188                        "TraditionalForm"]}]], " ",
189                  RowBox[{"(",
190                    RowBox[{\(\(-2\)\ mt\^2\), "+", "mh2", "+",
191                      RowBox[{"2", " ",
192                        SuperscriptBox[
193                          FormBox["l",
194                            "TraditionalForm"], "2"]}]}], ")"}]}]}], ")"}]}],
195          ")"}]}], TraditionalForm]], "Output"]
196}, Open  ]]
197}, Closed]],
198
199Cell[CellGroupData[{
200
201Cell["Let's ask FeynCalc to do the tensor reduction", "Subsection"],
202
203Cell[CellGroupData[{
204
205Cell[BoxData[
206    \(\(\(\[IndentingNewLine]\)\(\(res = \(\(1/\((2\ Pi)\)^4*
207                OneLoop[l,
208                  FAD[{l, mt}, {l + q1, mt}, {l - q2, mt}]\ Amp // Contract] //
209              PaVeReduce\) // Factor\) // Simplify;\)\[IndentingNewLine]
210    res = \((\(res /. \ Pair[Momentum[q2], LorentzIndex[nu]] \[Rule] 0\) /. \
211            Pair[Momentum[q1], LorentzIndex[mu]] \[Rule] 0\ )\) //
212        Simplify\)\)\)], "Input"],
213
214Cell[BoxData[
215    FormBox[
216      RowBox[{\(1\/\(8\ mh2\ \[Pi]\^2\ v\)\),
217        RowBox[{"(",
218          RowBox[{"deltaAB", " ", \(gs\^2\), " ", \(mt\^2\), " ",
219            RowBox[{"(",
220              RowBox[{
221                RowBox[{\((mh2 - 4\ mt\^2)\), " ",
222                  RowBox[{
223                    FormBox[\("C"\_"0"\),
224                      "TraditionalForm"], "\[NoBreak]", "(", "\[NoBreak]",
225                    "mh2", "\[NoBreak]", ",", "\[NoBreak]",
226                    FormBox["0",
227                      "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
228                    FormBox["0",
229                      "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
230                    FormBox[\(mt\^2\),
231                      "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
232                    FormBox[\(mt\^2\),
233                      "TraditionalForm"], "\[NoBreak]", ",", "\[NoBreak]",
234                    FormBox[\(mt\^2\),
235                      "TraditionalForm"], "\[NoBreak]", ")"}]}], "-", "2"}],
236              ")"}], " ",
237            RowBox[{"(",
238              RowBox[{\(mh2\ g\^\(mu\[NoBreak]nu\)\), "-",
239                RowBox[{"2", " ",
240                  SuperscriptBox[
241                    FormBox["q2",
242                      "TraditionalForm"],
243                    FormBox[
244                      FormBox["mu",
245                        "TraditionalForm"],
246                      "TraditionalForm"]], " ",
247                  SuperscriptBox[
248                    FormBox["q1",
249                      "TraditionalForm"],
250                    FormBox[
251                      FormBox["nu",
252                        "TraditionalForm"],
253                      "TraditionalForm"]]}]}], ")"}]}], ")"}]}],
254      TraditionalForm]], "Output"]
255}, Open  ]]
256}, Closed]],
257
258Cell[CellGroupData[{
259
260Cell["\<\
261The scalar integral C0, can be evaluated with the help of the \
262Feynman parameters (by hand) and the result is:\
263\>", "Subsection"],
264
265Cell["\<\
266c0=-I/(16 Pi^2)*1/mt^2*Integrate[1/(1-4 \[Tau] x \
267y),{x,0,1},{y,0,1-x}, Assumptions \[Rule] {\[Tau]<1}]//Simplify;
268c0FC=(2 Pi)^4/(I Pi^2) c0;\
269\>", "Input"]
270}, Closed]],
271
272Cell[CellGroupData[{
273
274Cell["\<\
275Let's take the mt->Infinity limit and see that the amplitude does \
276not depend on m_top:\
277\>", "Subsection"],
278
279Cell[CellGroupData[{
280
281Cell[BoxData[
282    \(myamp =
283      Normal[Series[\(\(\(\((\
284                        res\  /. \ C0[x__]\  \[Rule] c0FC // Simplify)\) /. \
285                      gs^2\  \[Rule] \ as\ 4\ Pi\) /. \
286                    mh2 \[Rule] mh^2\) /. \ \[Tau] \[Rule] \ \(mh^2/4\)/mt^2 //
287                PowerExpand\) // FullSimplify, {mt, Infinity, 4}]] //
288        Simplify\)], "Input"],
289
290Cell[BoxData[
291    FormBox[
292      RowBox[{"-",
293        FractionBox[
294          RowBox[{"as", " ", "deltaAB", " ",
295            RowBox[{"(",
296              RowBox[{\(mh\^2\ g\^\(mu\[NoBreak]nu\)\), "-",
297                RowBox[{"2", " ",
298                  SuperscriptBox[
299                    FormBox["q2",
300                      "TraditionalForm"],
301                    FormBox[
302                      FormBox["mu",
303                        "TraditionalForm"],
304                      "TraditionalForm"]], " ",
305                  SuperscriptBox[
306                    FormBox["q1",
307                      "TraditionalForm"],
308                    FormBox[
309                      FormBox["nu",
310                        "TraditionalForm"],
311                      "TraditionalForm"]]}]}], ")"}]}], \(6\ \[Pi]\ v\)]}],
312      TraditionalForm]], "Output"]
313}, Open  ]],
314
315Cell[BoxData[""], "Input"]
316}, Closed]]
317}, Open  ]]
318},
319FrontEndVersion->"4.1 for Macintosh",
320ScreenRectangle->{{0, 1280}, {0, 832}},
321WindowSize->{710, 706},
322WindowMargins->{{Automatic, 230}, {Automatic, 4}}
323]
324
325(*******************************************************************
326Cached data follows.  If you edit this Notebook file directly, not
327using Mathematica, you must remove the line containing CacheID at
328the top of  the file.  The cache data will then be recreated when
329you save this file from within Mathematica.
330*******************************************************************)
331
332(*CellTagsOutline
333CellTagsIndex->{}
334*)
335
336(*CellTagsIndex
337CellTagsIndex->{}
338*)
339
340(*NotebookFileOutline
341Notebook[{
342
343Cell[CellGroupData[{
344Cell[1727, 52, 134, 4, 156, "Title"],
345
346Cell[CellGroupData[{
347Cell[1886, 60, 36, 0, 46, "Subsection"],
348Cell[1925, 62, 62, 1, 27, "Input"],
349Cell[1990, 65, 369, 14, 70, "Text"]
350}, Closed]],
351
352Cell[CellGroupData[{
353Cell[2396, 84, 35, 0, 30, "Subsection"],
354
355Cell[CellGroupData[{
356Cell[2456, 88, 41, 0, 42, "Subsubsection"],
357Cell[2500, 90, 407, 8, 139, "Input"]
358}, Open  ]]
359}, Closed]],
360
361Cell[CellGroupData[{
362Cell[2956, 104, 44, 0, 30, "Subsection"],
363
364Cell[CellGroupData[{
365Cell[3025, 108, 753, 13, 219, "Input"],
366Cell[3781, 123, 2747, 71, 62, "Output"]
367}, Open  ]]
368}, Closed]],
369
370Cell[CellGroupData[{
371Cell[6577, 200, 67, 0, 30, "Subsection"],
372
373Cell[CellGroupData[{
374Cell[6669, 204, 438, 7, 155, "Input"],
375Cell[7110, 213, 1772, 40, 62, "Output"]
376}, Open  ]]
377}, Closed]],
378
379Cell[CellGroupData[{
380Cell[8931, 259, 141, 3, 48, "Subsection"],
381Cell[9075, 264, 167, 4, 57, "Input"]
382}, Closed]],
383
384Cell[CellGroupData[{
385Cell[9279, 273, 118, 3, 30, "Subsection"],
386
387Cell[CellGroupData[{
388Cell[9422, 280, 378, 7, 123, "Input"],
389Cell[9803, 289, 837, 22, 46, "Output"]
390}, Open  ]],
391Cell[10655, 314, 26, 0, 27, "Input"]
392}, Closed]]
393}, Open  ]]
394}
395]
396*)
397
398
399
400(*******************************************************************
401End of Mathematica Notebook file.
402*******************************************************************)
403